Patrick Pannuto – Personal Statement

A recent article in the Wall Street Journal bemoaned the lack of students pursuing degrees in STEM (Science, Technology, Engineering, and Mathematics) fields; it cites both the difficulty of the fields and a general disinterest in the material. Fortunately, there are those who buck this trend. I have always loved STEM; from my second grade microscope, my fourth grade chemistry kit, and the day I discovered a QBasic book in the library - I knew I had found my calling. A proud "Mathlete", I competed at myriad local math competitions. I joined my middle school's FIRST Lego team and continued with FIRST Robotics through high school where I was the two-year captain of a team that would become the third best in the nation. I did not know it then, but all of this was little more than a foundation for the skills and experience I would gain in college.

I entered college like many ambitious young students, certain I was going to become a doctor. A few months later, however, my true path quickly emerged and I fell in love with computer science. The computer is a fascinating, amazing machine, and I wanted to understand it - every bit of it. The University of Michigan takes horizontal approach to teaching computer science. After basic introduction, one takes a course on Operating Systems, or Mobile Phone Application Development, or perhaps Advanced Algorithms. Computer science is a world of abstractions. A person could graduate and be successful with no knowledge of the inner workings of a compiler or even how interrupts work, but I am not a person who would be satisfied with such limited knowledge. Instead I pursued more and more courses until I could comprehend every layer: the interaction between input/output devices, operating systems, and user programs; the compiler and architecture; transistors and the logical blocks they build.

In this never-ending quest to understand both the depth and breadth of computer science, I endured a period where I was lost, unsure of what I liked best, of what interested me, until I found embedded systems. Embedded systems is the realm where the abstractions break down, where there is no longer an operating system elegantly sharing machine resources, where a handful of instructions matter to burn a few less watts of power, where an understanding of the whole system is a fundamental requirement. I found my nirvana. And while I did set down to work, it was also time to begin the process of bringing others to join me in this enlightenment.

My love for teaching others grew as naturally in me as my love of STEM. In elementary school, my teachers quickly identified me as one of the brighter students, and I was often asked to help struggling students along. As time progressed, I became known as a resource for students needing help. Without realizing it, I have spent my entire recallable life teaching others. Some of the best moments came mentoring younger children through the FIRST program; the feeling when you help someone to that moment of understanding is guaranteed to keep me teaching for life. At college, I am privileged to have had the opportunity to teach as an undergraduate student.

I am an instructor for two radically different courses. The first is our undergraduate operating systems course. The class is an institution at the university and is generally one of the first "upper-level" computer science courses taken. I have taken a cue from the course professor who learns the names of all one hundred and fifty students in the class; at my office hours I am often met with surprise when I call students by name. It is a small but powerful gesture that course staff are also people, just like students, and our goal is to help the students learn.

The second course I help teach is an embedded systems class. Unlike the operating systems course, this class was completely rebuilt from the ground up two years ago. Early this semester, the course professor indicated a desire to build a CPU simulator project, to help students to understand the system. With a little initiative, I brought back a week later what has become one of the most interesting and educational projects for both students and course staff.

The traditional course project model is to create a relatively simple project and assign identical copies of it to each student or small group of students. Everyone implements the same project, encounters the same bugs and problems, and ultimately must derive fairly similar solutions. While useful as an educational tool, this does not model the real world – real engineering projects – at all. This project took a very different approach. The entire class would work on one shared project. A framework was put in place, the skeleton of a simulator, and an entire class of thirty students worked from a single, common Subversion repository, each with their own assignment. The technical challenge – and intellectual merit – of the simulator lies in its unconventional instruction decode mechanism. This simulator targeted the ARM Cortex-M3 and its three-stage pipeline (fetch, decode, execute). Most simulators implement the decode operation in a large case statement, but the inevitable conflicts of thirty students editing the same file was a distraction I was unwilling to endure. Instead, the simulator framework allowed order into such chaos by allowing each student to register one or more opcode masks: "Any instruction opcode beginning with 0b1101, use this callback". In this way, one student could be assigned the ADD family of instructions, another the STRs, and everyone could work in parallel without trampling on each other’s code. However, as in the real world, they still depended on one another's code; if the ADD implementation was incorrect, the simulator would STR the wrong value to memory! Students found the project interesting, valuable, and extremely challenging. They were not used to the idea of not owning the whole project or how to deal with and debug their corner of code when the rest of the system may be unreliable. For the course staff, the project was a poignant revelation that the department currently does not do a sufficient job of preparing students for the real world. Rarely (more and likely never) outside of an academic or hobby project does one own and understand the entire project code base, yet students are completely shielded from this reality in every other course they take.

Recently, I identified another critical shortcoming of my department. To compile the operating systems project requires several flags and libraries – the command is nearly sixty characters long – yet I watch many students repeatedly typing the whole line. The most junior computer science student eligible to take the course has taken at least three prior programming classes, yet nowhere along the way has he picked up the creation of even the most basic Makefile to automate this task. This example turns out to be symptomatic of a more pervasive problem. In a quest to teach purely the principles and practices of computer science, no course ever teaches the tools to execute them effectively. Investigation revealed an expectation that students would "pick up" these tools and learn them on their own out of sheer necessity, but evidence suggests otherwise. To remedy this, I put together a syllabus for a small seminar course: Computing for Computer Scientists. The course is designed to teach everything that many take for granted: the power of grep, sort, uniq; the utility of Makefiles and shell scripts; revision control. Floating the idea around has thus far garnered the support of three professors – and over one hundred students clamoring to take the class. I am currently working with the department to offer this course.

I spent my undergraduate career learning every layer of computer systems, down to an understanding of how electrons flow to make bits flip and up through the systems using those bits to build modern computing. I found the area of computer science that brings this all together and I have jumped in head-first. I have been enhancing the education of those around me for as long as I can remember, and in recent years, I have been provided with an opportunity to expand the scope of whom I can educate. I have seized this opportunity and can write with confidence that I have improved the understanding of my students. I look forward to continuing to teach myself and others, and towards helping to build a better, smarter world.

