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ABSTRACT stacks, file descriptors, and many kernel data structures. Fur-

Decades of research has attempted to add safety mechanisms
to operating system kernels, but this effort has failed in most
practical systems. In particular, solutions that sacrifice per-
formance have been generally avoided. However, isolation
techniques in modern languages can provide safety while
avoiding performance issues. Moreover, utilizing a type-safe
language with no garbage collector or other runtime services
avoids what would otherwise be some of the largest sections
of trusted code base. We report on our experiences in writing
a resource efficient embedded kernel in Rust, finding that
only a small set of unsafe abstractions are necessary in order
to form common kernel building blocks. Further, we argue
that Rust’s choice to avoid runtime memory management by
using a linear type system will enable the next generation of
safe operating systems.
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1 INTRODUCTION

Most operating system kernels assume all kernel code is
trusted. In part, this is because systems builders have tra-
ditionally relied on hardware enforced memory protection,
and the process abstraction in particular, to provide isolation.
The process, however, is a heavy-weight abstraction: it has
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thermore, switching between virtual address spaces is costly.
Systems such as Nooks [23], lightweight contexts [15] and
seL4 [12] have all explored using address spaces for isolation
at a finer grain than a process, showing ways to significantly
reduce overhead.

This paper takes a more extreme approach: entirely throw
away hardware protection within the kernel and, instead,
write the kernel in a memory-safe programming language.
This approach has been tried before, with varying success:
Spin [3] allows applications to extend and optimize kernel
performance by downloading modules written in Modula-
3 [6], while Singularity [9] is written in Sing# (a variant of
C#) and provides a software isolated process (SIP) abstraction.
Both Spin and Singularity, however, use garbage-collected
languages, which pose many problems for kernels. Garbage
collection complicates memory placement and layout, cre-
ates timing non-determinism from background locks and
introduces stop-the-world intervals that pause the entire OS.
Furthermore, both Spin and Singularity depend on a large,
unsafe code base: the Spin kernel and Singularity’s runtime,
respectively.

Encouraged by recent advances in type-safe program-
ming languages, this paper proposes, instead, to write the
entire kernel in a type-safe programming language that is
not garbage collected. By not relying on a complex garbage
collector or other runtime services, such a kernel is simul-
taneously memory safe and gives kernel programmers the
degree of memory management control and deterministic
behavior they need. A recent language, Rust [17], fits this
model. In Rust, values are tracked by their lifetime and deal-
located as they go out of scope.

While writing any kernel requires some unsafe code, we
argue that a primary design goal for kernels is to minimize
the amount of unsafe code that must be trusted. We built a
kernel for low-power uniprocessors that follows this design
goal. In our kernel, unsafe code falls into two categories:
Rust library code, written by language developers, and ker-
nel code, written by kernel developers. The required Rust
library code includes only a few low-level operations, such
as floating point, bounds checks, and type casts. The kernel
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trusted code is also extremely small. It includes the standard
abstractions of context switches, system call traps, interrupt
handling, and memory-mapped I/O, as well as one new ab-
straction, TakeCell, that stems from Rust’s memory model.
A TakeCell allows kernel code to safely modify complex
structures by using inline closures that statically compile
with no overhead.

We describe Rust’s memory model and the challenges
kernel code introduces to this model [14] (Section 2). We
then describe a minimal set of trusted abstractions that we
use to build a kernel (Section 3) and provide a few examples
of how our kernel uses these abstractions to provide common
OS features (Section 4).

2 RUST

Rust is a type-safe language designed for systems software [17].
Originally, it was motivated by the challenges of writing Fire-
fox’s layout engine to be both fast and highly parallel. Since
then, it has also been successfully used in large scale projects
like Dropbox’s back end storage [18]. It is a particularly at-
tractive language for low-level systems because it preserves
type-safety (e.g. no memory leaks or buffer overflows) while
providing runtime characteristics similar to C’s. This section
gives a brief overview of the challenges that Rust’s memory
management poses to writing a kernel; interested readers
can refer to Levy et al. [14] for more details.

2.1 Only One Mutable Reference

Rust uses a concept called ownership (an affine type sys-
tem [24]) to determine at compile time when memory should
be freed. The principal challenge that ownership introduces
to kernel software is that there cannot be two mutable ref-
erences (non-const pointers in C) to the same memory [14].
This is necessary because allowing mutable aliases would
allow a program to circumvent the type system [8]. For exam-
ple, consider Rust’s enum types which allow multiple distinct
types to share the same memory, similar to unions in C. In
this example, the enum can be either a 32-bit unsigned num-
ber, or a mutable reference (pointer) to a 32-bit unsigned
number:

// Equivalent C

// Rust ) ‘
enum NumOrPointer { un1?n NumOrPointer {
Num(u32), u?nt32_t Numi
Pointer (&mut u32) ) uint32_t* Pointer;
3 ;

Unlike unions in C, a Rust enum is type safe. The language
ensures that it is impossible to access a NumOrPointer as a
Num when the compiler thinks it is a Pointer, and vice-versa.

Having two mutable references to the same memory could
violate NumOrPointer’s safety and would allow code to con-
struct arbitrary pointers and access any memory. Suppose
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Figure 1: Software architecture for a system call interface
to a hardware random number generator: both RNG and the
system call interface need references to SimpleRng.

that the NumOrPointer is currently a Pointer. If one of the
references is to a Pointer but the other can change it to a
Num, then it can create an arbitrary pointer:

// Rust
// n.b. will not compile
let external : &mut NumOrPointer;
match external {
Pointer(internal) => {
// This would violate safety and
// write to memory at @xdeadbeef
*external = Num(@xdeadbeef);
*internal = 12345; // Kaboom
+

// Equivalent C

// compiles without warning

union NumOrPointer* external;
uint32_t* numptr = &external->Num;
*numptr = Oxdeadbeef;
*external->Pointer = 12345;

2.2 Kernels Need Multiple References

Operating system kernels depend heavily on callbacks and
other event-driven programming mechanisms. Often, multi-
ple components must both be able to mutate a shared data
structure. Consider, for example, the random number gen-
erator software stack as shown in Figure 1. RNG provides an
abstraction of an underlying hardware RNG, such as Intel’s
RDRAND/RDSEED [10] or a TRNG on an ARM processor [1].

SimpleRng sits between RNG and the system call layer.
It translates between userspace system calls and the RNG
interface. It calls into RNG when a process requests random
numbers and calls back to the system call layer when random
numbers are ready to deliver to the process. A natural way
of structuring this stack is for both the system call layer and
RNG to have a reference to SimpleRng:
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pub struct SimpleRNG {

busy: bool,
3
impl SimpleRng {
fn command(&mut self) { self.busy = true; ... }
fn deliver(&mut self, rand: u32) { self.busy = false; ... }

3

impl SysCallDispatcher {
fn dispatch(&mut self, num: u32) {
match num {

/...
43 => self.simple_rng.command(),
}
3
3
impl RNG {

fn done(&mut self, rand: u32) {
self.simple_rng.deliver(rand);
3
3

Rust’s ownership model does not allow both structures to
have a mutable reference to SimpleRng (the reference must
be mutable because command marks SimpleRNG as busy, and
deliver_rand marks it as not busy, mutating the internal
state of the SimpleRNG object). Prior work suggested that
this problem means writing a kernel requires changes to the
Rust language [14]. However, the next section describes an
alternate solution, consisting of a minimal set of trusted code
that includes two software abstractions, Cell and TakeCell.

3 TOWARDS A RUST KERNEL

Writing an operating system in Rust does not require any
changes to the language, but does require trusting two types
of unsafe code. The first consists of Rust language mecha-
nisms and libraries, written by the Rust language team. These
provide a safe interface, but their underlying implementa-
tions use unsafe code. The second type of code which must
be trusted are portions of kernel code, written by kernel
developers, that use unsafe code in order to implement basic
operating system functionality but again can provide safe
interfaces.

The rest of this section describes what code falls into these
two categories. Together, they constitute the complete set of
unsafe code in the kernel and are surprisingly small, primar-
ily consisting of mechanisms that any language or kernel
needs to provide. There are two additional abstractions, how-
ever. One provided, by Rust, is a Cell, which allows multiple
references to a mutable object but exposes a limited API that
requires copying the data out in order to access it, rather
than accessing it in place. The second, provided by the kernel,
is called TakeCell. A TakeCell allows kernel code to safely
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share complex structures with no runtime overhead (such as
copies) and a very simple programming abstraction.

3.1 Trusted Rust Code

Rust has a large set of available libraries, including data struc-
tures, web browser engines, JavaScript compilers and I/0. A
kernel requires only libcore, which supports primitive types
such as arrays and an interface to compiler (LLVM [13]) in-
trinsic operations. A kernel wanting to use a generic, existing
dynamic memory allocator would require liballoc as well.

Both of these libraries contain some trusted code either
because they must subvert the type system (memory manage-
ment requires type casts) or for performance optimizations.
Specifically, a kernel relies on the following four Rust ab-
stractions that use unsafe code:

Bounds checks: Arrays are bounds-checked, so unsafe code
uses the length field to ensure accesses are safe.

Iterator optimizations: The canonical way to operate across
Rust arrays is with iterators, which use unsafe code to avoid
unnecessary intermediate checks.

Compiler intrinsics and primitive casts: Floating point,
volatile loads/stores and casting between primitive types
have architecture specific details that Rust relies on LLVM
for.

Cell: An abstraction that encapsulates data such that interior
references cannot escape and it can be operated on with an
immutable reference.

Cell provides a partial solution to the problem of event
driven code needing to hold multiple mutable references
(Section 2.2). A Rust Cell is an opaque memory container
that code can copy into and out of, but cannot internally
reference. The key feature of Cell is that an immutable
reference can copy into it. The unsafe type cast that arose
with enums in Section 2.1 cannot happen with Cell since
multiple referrers operate on separate copies of the shared
data.

pub struct SimpleRng {
busy: Cell<bool>,

3

impl Syscall for SimpleRng {
fn command(&self) {

self.busy.set(true);
}
3

Above, we show how Cell can solve the problem in the
random number generator example (Figure 1). Both the RNG
and the system call dispatcher hold an immutable reference
to the same SimpleRng. Normally, this would mean that
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calls from either would not be able to modify SimpleRNG’s
internal state. However, as shown below, Cell allows the
command method, to set busy to be true even though &self
is an immutable reference.

Cell, unfortunately, is only a partial solution. It imposes
the significant cost of requiring memory copies, which is
an unacceptable overhead for complex or large kernel data
structures. The next section describes a new abstraction,
TakeCell, which allows safe, efficient implementations of
complex kernel abstractions.

3.2 Trusted Kernel Code

The Rust abstractions described above all provide safe inter-
faces to the kernel programmer. Assuming these abstractions
are correctly implemented, they do not allow callers to vio-
late type safety. Kernels, however, must do some fundamen-
tally unsafe things (such as context switch), and must wrap
these unsafe implementations in safe interfaces. Surprisingly,
this requires very little Rust code. The following six pieces
of unsafe kernel code need to be trusted:

Context switches: Switching between thread contexts re-
quires saving and restoring the program counter and stack
pointer as well as potentially changing process state between
protected and unprotected mode.

Memory-mapped I/0 and structures: Processors provide
I/O through memory-mapped registers, so the kernel needs
to be able transform raw memory addresses (e.g., 0x40008000)
into typed registers and bit fields, while file systems require
casting disk blocks into structures.

Memory allocator: Kernels define specialized memory al-
locators (e.g., slab [4]) which must type cast raw pointers.

Userspace buffers: Because user space could pass invalidly
sized buffers to the kernel, unsafe code must check that
buffers are valid.

Interrupt/exception handlers: Handlers are inherently
unsafe because they preempt running code so memory may
be in an inconsistent state.

TakeCell: An abstraction that allows multiple references,
like Cell, but without memory copies.

TakeCell is unique among these in that it is a purely
software abstraction designed to allow efficient, safe kernel
code. Cell works well for primitive types and small values
for which the copying semantics do not add any overhead.
On these types, Cell optimizes down to just loading into
a register and storing to memory. TakeCell is for larger or
more complex data objects. Rather than copy values out of a
TakeCell, a program passes code in, through a closure. For
example, a system call interface which keeps caller/process
state through a structure named App can access it this way:
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struct App { /* many variables */ }
app: TakeCell<App>

self.app.map(|app| {
// code can read/write app's variables

DR

Like Rust’s Cell, a TakeCell internally owns the shared
data, e.g. a mutable reference, and a TakeCell can be shared
by multiple callers. However, rather than copy values out
of a TakeCell, its API consists of a single method, map(f).
Normally, map (f) will invoke the closure f with a reference
to the TakeCell’s internal data. However, in cases where
there already exists a reference to the internal data—such as
a recursive call-map(f) is a no-op and does not execute the
closure.

As a result, TakeCell is a form of mutual exclusion. Like
a mutex, TakeCell ensures that there is only one mutable
reference to the internal value. However, unlike a mutex,
it skips the operation instead of blocking. Once compiled,
TakeCell is just as fast as unchecked C code. For example,
the following snippet of TakeCell code

struct App {
count: u32,
tx_callback: Callback,
rx_callback: Callback,
app_read: Option<AppSlice<Shared, u8>>,
app_write: Option<AppSlice<Shared, u8>>,

pub struct Driver {
app: TakeCell<App>,
3

driver.app.map(|app| {
app.count = app.count + 1

D

generates the following ARM assembly, which safely checks
if app is a null pointer, operates on app.count only if it is a
value, then stores the result:

/* Load App address into r1, replace with null */
ldr r1, [ro, 0]

movs r2, 0

str r2, [ro, o]

/* If TakeCell is empty (null) return */
cmp rl, o

it eq

bx 1r

/* Non-null: increment count */
1dr r2, [r1, 0]
add r2, r2, 1

str r2, [r1, 0]

/* Store App back to TakeCell %/
str r1, [ro, o]

bx 1r

Note that, since the closure is scoped to the stack frame,
it requires no special allocation.
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4 CASE STUDIES

In this section, we briefly describe three kernel abstractions
in Rust, showing how given the special cases described in
Section 3, kernel building blocks are naturally expressed in
Rust. These cases are taken from our kernel. The kernel’s
trusted computing base includes the Rust core library as well
as under 1000 lines out of over 6000 lines of kernel code.

4.1 Direct Memory Access

Direct memory access (DMA) is a common source of such
violations in kernels today. Because the hardware will use
whatever address it is given, kernel code using DMA can
circumvent virtual memory and other protection mecha-
nisms [11].

A Rust-based kernel exposes memory-mapped registers as
typed data structures. Exposing them safely in this manner
ensures that kernel code cannot write arbitrary values to
them. For example, a DMA interface that uses a Rust slice
(dynamically sized array)
struct DMAChannel {

enabled: Cell<bool>,

buffer: TakeCell<&'static mut [u8]>,
}
enforces that the buffer field is a valid pointer to a block of
memory. Furthermore, it can use the buffer length to ensure
it does not write past the end of the block. For a caller to
passa&’static [u8],it must have been granted access to a
statically allocated byte buffer. This interface also highlights
an interesting safety concern that Rust enforces. Rust cannot
reason about how long the DMA operation will take, but it
needs assurances that the buffer will still be live (not freed)
when it completes. The only types of memory that can satisfy
this are statically (global) allocated buffers and heap buffers,
so it requires that the buffer is ’static. The only unsafe
code in the DMA implementation is the code that memory-
maps registers to write the buffer and length into the DMA
registers and enables the completion interrupt.

4.2 Universal Serial Bus

Universal Serial Bus (USB) uses in-memory descriptors speci-
fied by the programmer to configure and control USB end-
points. The hardware assumes these descriptors are laid out
in a particular way. Representing these hardware memory
structures in Rust is straight-forward.

This example below shows a hardware interface that relies
on two levels of data structures that require a particular lay-
out and reference integrity. USBRegisters.in_endpoints
is reference to an array of endpoint descriptors. InEndpoint
lays out exactly how the processor lays out these descrip-
tors in memory. Finally, the EpCtl type defines the set of
valid values which are checked at compile-time. It is worth
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noting that unlike pointers, references cannot be null; an
InEndpoint can exist if and only if dma_address points
to a valid DMADescriptor and a USBRegisters can exist
if and only if in_endpoints points to a valid array of 16
InEndpoints.

enum EpCtl {

Enable = 1 << 31,

ClearNak = 1 << 26,
Stall = 1 << 21
3

struct InEndpoint {
control: Cell<EpCtl>,
dma_address: Cell<&'static DMADescriptor>,

}
struct USBRegisters {

// There can be 16 endpoints
in_endpoints: Cell<&[InEndpoint; 161>,

4.3 Complex Data Structures

It is common for kernel components, such as the buffer cache,
page tables, and file systems to rely on data structures with
circular references like doubly linked-lists or trees. This of-
ten requires multiple aliases to the same mutable data, but
those aliases can be logical. For example, a buffer cache en-
try references a disk block, but this is encoded as a device
id and sector number, and so does not require managing
Rust’s ownership semantics. Cases where data structures
use bi-directional pointers such as doubly-linked lists can be
handled with the same principles used for circular dependen-
cies between kernel components: Cell and TakeCell. For
example:

struct ListLink<T>(Cell<Option<&T>>);
struct BufferHead {

state: BufferState,

next: &ListLink<BufferHead>,

prev: &ListLink<BufferHead>,

page: &Page,

4.4 Multicore

For sake of simplicity and brevity, this paper has examined
using Rust in a single-threaded setting. Supporting multicore
systems requires managing concurrency within the kernel.
Rust was originally designed for parallel systems. As a result,
it has language mechanisms that allow the programmer to
safely manage concurrency. For example, Sync specifies that
a structure can safely be shared across threads and Channels,
a mechanism to pass data across threads, only admits Sync
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types. A multicore Rust kernel would use such mechanisms
to maintain safety of shared data across cores.

5 FUTURE WORK

Our work so far discusses kernel mechanisms and drivers
pertinent to a kernel for low-power uniprocessor applica-
tions such as USB applications and DMA. We believe other
operating systems components, such as file systems or video
buffers would use similar techniques, though actual imple-
mentation efforts will likely uncover more challenges. In
particular, while we show that in-memory data structures
like linked lists and trees can be modeled safely in Rust, fu-
ture work should explore how to do so for data structures
on disk or in hardware (e.g. the page table).

Moreover, we did not evaluate our design in a multi-processor
setting. Systems in other type-safe languages, like Singular-
ity, have successfully modeled concurrent computing in the
language. Future work should explore how to avoid growing
the trusted computing base in service of concurrency.

Finally, the ability to write a low-overhead kernel in a
type-safe language gives way to the potential for novel ap-
plications in security and concurrency. While there has been
extensive research in both areas, they have seldom been ap-
plied to kernels. In particular, we believe a promising area
of future work is Dynamic Information Flow Control.

Information flow control (IFC) [20] is a security mecha-
nism that enforces non-interference by labeling inputs and
outputs with security labels, and tracks the propagation of
labels throughout the system. Typically, systems built on IFC
either use static labels [16, 19], which must be specified at
compile-time, or minimize resource consumption by sacrific-
ing granularity [7, 25]. Recently, promising work [5, 21, 22]
has leveraged purity in functional languages like Haskell to
get the best of both worlds: dynamic IFC labels with minimal
memory overhead.

Enforcing dynamic information flow control in a Rust ker-
nel is an exciting prospect. However, while Balasubramanian
et al [2] briefly proposed a static IFC language based on Rust,
it is not yet clear if such implementations would be sound,
and even less clear if linear types are sufficient to enforce dy-
namic IFC in lieu of purity or an effects system. Future work
should explore whether these primitives can be enforced
at the language level using Rust and, if so, how it impacts
kernel design.

6 CONCLUSION

Decades of research have attempted to add safety mecha-
nisms to operating system kernels, but this effort has failed in
most practical systems. Language-only techniques can mit-
igate the performance and granularity issues arising from
hardware enforced memory isolation. Moreover, using a type-
safe language with no garbage collector or other runtime
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services, such as Rust, avoids what would otherwise be one
of the largest sections of trusted code base. While previous
efforts to use such languages for kernel development have
concluded that changes to the language would be required,
we find that the language is sufficient and only a small set of
unsafe abstractions are necessary to form common kernel
building blocks, hopefully enabling the next generation of
safe operating systems.
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