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Abstract
As we show in this paper, I/O has become the limiting factor

in scaling down size and power toward the goal of invisible
computing. Achieving this goal will require composing op-
timized and specialized—yet reusable—components with an
interconnect that permits tiny, ultra-low power systems. In
contrast to today’s interconnects which are limited by power-
hungry pull-ups or high-overhead chip-select lines, our ap-
proach provides a superset of common bus features but at
lower power, with fixed area and pin count, using fully synthe-
sizable logic, and with surprisingly low protocol overhead.

We present MBus, a new 4-pin, 22.6 pJ/bit/chip chip-to-
chip interconnect made of two “shoot-through” rings. MBus
facilitates ultra-low power system operation by implementing
automatic power-gating of each chip in the system, easing the
integration of active, inactive, and activating circuits on a sin-
gle die. In addition, we introduce a new bus primitive: power
oblivious communication, which guarantees message recep-
tion regardless of the recipient’s power state when a message
is sent. This disentangles power management from communi-
cation, greatly simplifying the creation of viable, modular, and
heterogeneous systems that operate on the order of nanowatts.

To evaluate the viability, power, performance, overhead,
and scalability of our design, we build both hardware and
software implementations of MBus and show its seamless
operation across two FPGAs and twelve custom chips from
three different semiconductor processes. A three-chip, 2.2 mm3

MBus system draws 8 nW of total system standby power and
uses only 22.6 pJ/bit/chip for communication. This is the
lowest power for any system bus with MBus’s feature set.
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Figure 1: Recent micro-scale systems. From left to right Pister’s
Smart Dust [37], the 1cc computer [21], “Smart Dew” [31], and our
system with MBus show the feasibility of micro-scale systems, the
techniques, such as 3D-stacking, employed to realize their size, and
the volume and surface area constraints that lead to their extremely
limited energy storage, energy harvesting, and I/O capabilities.

1. Introduction
For nearly three decades, most microcontrollers have come
with the same peripheral interfaces: SPI, I2C, and UART.
In this paper, we argue that embedded microcontroller tech-
nology has now progressed in terms of energy consumption
and miniaturization to the point where existing interfaces no
longer meet the needs of these emerging systems. We show
fundamental drawbacks in the area requirements and energy
consumption of all existing embedded interfaces that demand
the design of a new interface if modular, embedded hardware
is to scale beyond today’s centimeter-scale devices.

This paper focuses on embedded systems and the greater
ecosystem of application-driven hardware. These are sys-
tems that require assembly-time modularity. They compose
sensing, computation, communication, and other novel func-
tions from a collection of hardware building blocks to realize
new application-specific devices. The burgeoning “Internet of
Things” is a product of this ecosystem.

Traditional system design has scaled as small as centimeter-
sized “wearable” devices. The research community has pushed
the envelope further, exploring an array of “micro-scale”—
ultra-low power and millimeter-sized—building blocks in-
cluding processors [8, 37], radios [4, 7, 26], other long-range
communication technologies [6], ADCs [28], regulators [33],
timers [15, 16], and sensing frontends [9, 17]. However, few
of these components have been integrated into complete sys-
tems. Some projects, like those shown in Figure 1, have built
complete systems, but these usually have been monolithic,
similar to early computers, designed with tight integration
using custom interfaces [21, 29, 30, 31, 36].
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We claim that introducing modularity and reusability to
micro-scale systems will more rapidly yield the next genera-
tion of intelligent devices. Our aim is to facilitate an ecosystem
of micro-scale embedded systems. We have created many of
the building blocks of this ecosystem—processors, sensors,
storage, and communication—but find that the greatest imped-
iment to working, modular, micro-scale systems is no longer
the building blocks themselves, but the resources demanded
by I/O, the glue that binds them together.

To address this problem, we break from conventional in-
terconnect buses that employ power-hungry pull-ups in open-
collector configurations or I/O-expensive chip-select lines. We
propose MBus, a pair of “shoot-through” rings—one CLK and
one DATA—and a clean-slate bus design for the emerging class
of micro-scale systems. We realize a design with features
that are a superset of today’s interconnects but at lower power
(22.6 pJ/bit/chip), with fixed area and pin count (4), using fully
synthesizable logic, with minimal protocol overhead (19−43
cycles), and no local clock generation.

The MBus design transparently supports a number of energy
conservation mechanisms that are required for ultra-low power
operation, but which raise additional system-level challenges.
For example, to minimize static leakage, systems power-gate
sub-circuits or whole chips when they are not in use. But
this requires one subsystem to wake up another subsystem
before communications can occur, often utilizing a custom
method or protocol, like the wakeup sequence in Lee’s I2C
variant [14]. In practice, these schemes require every sender
to either know the power state of every recipient in advance or
to send a wakeup sequence before every message. This design
also requires that each chip have the ability to self-start: to
stably go from the initial application of power to a start state
in a glitch-free manner with no external clock or reset signal.
Requiring such wakeup circuitry on every chip adds design
overhead to every chip in a micro-scale system.

MBus solves the wakeup problem by providing the abstrac-
tion of an always-on recipient: a sender may send a message
to any recipient, regardless of the recipient’s power state, and
the recipient will receive the message. MBus enables this
“power oblivious communication” abstraction by taking on the
power-management burden for each chip, allowing MBus to
wake the chip when necessary. This bus-provided wakeup
eliminates the need for custom wakeup circuitry, often derived
from semiconductor process-specific circuits such as delay
chains, simplifying the design of the entire chip.

We analyze the MBus protocol and several physical im-
plementations to show that it is an efficient and effective
bus for micro-scale systems. Its message length-independent
overhead supports a wider range of messages, from bytes
to hundreds of kilobytes, efficiently; its ring topology,
with only FETs driving gates, results in an energy-efficient
22.6 pJ/bit/chip measured on real hardware; and its optional,
lightweight enumeration provides an area-free efficient multi-
plexing of a limited address space. The power-oblivious prin-

ciple enables the seamless integration of traditional and ultra-
constrained modules. This allows for re-use across classes of
technology and provides current systems access to efficient,
micro-scale building blocks. We close with design caveats of
MBus and a discussion of future directions for the protocol.

2. Related Work and the Case for a New Bus

In this section, we show why existing bus protocols like I2C,
CAN, SPI, and I2S are not viable system interconnects for
modular, resource-constrained systems due to their energy use,
protocol overhead, pin count, and system design requirements.

2.1. I2C, 1-Wire, CAN, and Other Open-Collector Buses

Many interconnects are built on an open-collector or open-
drain design (e.g. I2C [23], SMBUS [1], and CAN [11]). This
circuit construct turns each bus line into a wired-AND; one or
many devices can drive a 0 on the bus, but if nothing actively
drives low, then pull-up resistors pull each line high. The
advantages of this approach are decentralized arbitration and
multi-tiered priority. The pull-up resistors, however, are not
energy efficient and result in designs that have up to three
orders of magnitude worse energy per bit than MBus.

To illustrate, consider an idealized I2C configuration run-
ning at 1.2 V that we try to optimize for energy consumption.
I2C typically requires the pull-up resistor be sized to accom-
modate 400 pF of total bus capacitance, but let us relax that to
50 pF for micro-scale systems; fast mode I2C has a 400 kHz
clock and must reach 80% VDD in 300 ns, but let us relax that
(eliminate setup and hold time) to the full half-cycle (1.25 µs).
This relaxed I2C bus requires a pull-up resistor no greater than
15.5 kΩ. To generate the bus clock, this resistor is shorted
to ground for a half period, dumping the charge in the bus
wires, pads, and FET gates (23 pJ) and dissipating power in
the resistor (116 pJ). The clock line then floats for a half cycle
and the resistor pulls it high (35 pJ). Thus, generating the clock
alone draws 69.6 µW. Eliminating the switching power – the
23 pJ/bit charging and discharging of the wire, pad, and gate
capacitance – requires complex adiabatic clocks, outside the
scope of our design [27, 38]. MBus finds its energy gains by
eliminating the 151 pJ/bit lost to the pull-up resistor.

2.2. I2C Variations

One conceivable idea that we briefly explore for reducing the
impact of the pull-up might be to “unbalance” the clock as
shown in Figure 2. This would allow the designer to nearly
double the size of the pull-up resistor (halving the power draw)
while maintaining the same bus clock period and minimizing
the impact of the SCL line on energy usage. Unfortunately,
this concept does not reduce the energy consumed by the pull-
up while pulling up, nor does it reduce the energy consumed
by the data line when transmitting 0’s. Unbalanced clocks
would also require local timing modifications, costly in energy
and complexity, ruling out this possibility.
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Lee et al. reduce I2C power draw by designing an “I2C-
like” bus that replaces the pull-up resistor with logic that
actively pulls the bus high and a low-energy “bus keeper”
circuit that preserves the last value [14] (similar to I2C Ultra
Fast-mode [23]). While this approach eliminates the pull-up, it
does so at the cost of requiring a local clock running 5× faster
than the bus clock, the energy inefficiency seen in Figure 2.
We cannot see a means for designing an I2C or I2C-like bus
without either a pull-up or a fast-running internal clock. While
the internal clock is not as energy-intensive—Lee’s system is
able to reduce bus energy to 88 pJ/bit (4 times that of MBus)—,
Lee’s design also requires hand-tuned, process-specific ratioed
logic; requiring manual tuning of every chip runs counter to
the goals of a general-purpose bus.

Pannuto found that while Lee’s I2C variant is designed with
commercial interoperability in mind, in practice actual inter-
operation required an FPGA to translate between I2C and the
“I2C-like” bus [24]. MBus eschews the “partial compatibil-
ity” that I2C-like buses provide and uses the clean break to
reconsider the primitives provided by the system interface,
allowing the addition of features such as power oblivious
communication, broadcast messages, and efficient transaction-
level acknowledgments.

2.3. SPI, I2S, Microwire, and Other Single-Ended Buses

As single-ended buses, SPI and its derivatives do not suffer
from the power challenges faced by open-collectors and have
little to no protocol overhead. SPI, however, requires a unique
chip-select line for every slave device. In a modular system
with a variable (and unknown until system design time) number
of components, it is difficult to choose the “right” number of
chip select lines a priori—too few impede modularity and
too many violate the area constraints of micro-scale systems.
Additionally, SPI requires a single master that coordinates
and controls access to all slave devices, and it requires all
communication between slave devices to go through the master
node. This more than doubles the communication cost for
slave-to-slave transmissions: every message is sent twice plus
the energy of running the central controller. A further subtle,
yet critical, implication of a single-master design is that all
communication is master-initiated. For a sensor to signal a

microcontroller (i.e. an interrupt), it requires an additional I/O
line, a resource that is unavailable to micro-scale systems.

Alternative configurations such as daisy-chained SPI can
eliminate the chip-select overhead but do not solve the multi-
master/interrupt issue and require the addition of a protocol
layer to establish message validity. As a system-wide shift reg-
ister, a daisy-chain configuration adds overhead proportional
to both the number of devices and the size of the buffer in each
device. SPI and its derivatives are fundamentally incompatible
with size-constrained microsystems.

2.4. Bus Designs from Other Disciplines

The original token ring protocol requires that empty frames
are continuously passed so that nodes can grab the token when
they need it. Low-power systems rely on low duty cycles to
remain efficient. Using tokens in place of arbitration either
requires occasional empty frames to pass the token, with an
inherent latency/energy tradeoff, or a sacrifice of multi-master
capability.

Some of the new network-on-chip (NoC) protocols that have
been developed, such as Nehalem’s QuickPath [12], include
power-aware features like MBus. These buses seek to move
large amounts of data often via wide parallel buses, within a
siloed system rather than compose independently designed,
modular components.

Recently, work in energy-efficient, short-reach data links
has lead to energy performance as low as 0.54 pJ/bit [25].
These designs target high-performance computing applica-
tions, however, utilizing complex transmit and receive cir-
cuitry with high-speed clocks [18] and add requirements such
as a common substrate with carefully carved channels [25].
As a platform bus, MBus aims to support a wider diversity of
packages and physical interconnection technologies. While
some components, such as an efficient charge-pump design,
could be adopted, we leave their integration to future work.

2.5. Power Savings Create Communication Problems

Ultra-constrained systems need to aggressively conserve
power. Devices that are left on or in standby allow com-
munication to occur on-demand. Ultra-low power systems,
however, realize their power goals in part through aggressive
duty-cycling. A power-gated node must be awakened before
it can communicate, presenting interoperability (how to wake
a node) and run-time (when to wake a node) challenges.

Lee et al. identify this wakeup issue and modify their pro-
tocol to include a wakeup signal: an I2C start bit followed
shortly by a stop bit. This requires the sender to know the
receiver’s power state in advance or to unconditionally send
the wakeup sequence before every message. Due to imple-
mentation choices, the minimum time between the start and
stop bits of the wakeup sequence and the time until the chip is
awake after the stop bit is received varies from chip to chip,
requiring hand-tuning and conservative estimates. This design
also requires a self-starting power-on circuit in each chip.



I2C SPI UART Lee-I2C MBus
Critical
I/O Pads (n nodes) 2/4† 3 + n 2 × n 2/4† 4
Standby Power Low Low Low Low Low
Active Power High Low Low Med Low
Synthesizable Yes Yes Yes No Yes
Global Uniq Addresses 128 — — 128 224

Multi-Master (Interrupt) Yes No No Yes Yes
Desirable
Broadcast Messages No Option No No Yes
Data-Independent Yes Yes Yes Yes Yes
Power Aware No No No No Yes
Hardware ACKs Yes No No Yes Yes
Bits Overhead (n bytes) 10 + n 2‡ (2-3)§× n 10 + n 19, 43*

† When wirebonding, a shared bus requires two pads/chip (or a much larger shared pad/trace)
‡ Asserting and de-asserting the chip-select line
§ Depending on the stop condition; assumes 8-bit frames and no parity
* Depends on whether short (more common) or long addressing is in use

Table 1: Feature Comparison Matrix. Population-independent
area, ultra-low power operation, synthesizability, an area-free global
namespace, and interrupt support are fundamental requirements
for a micro-scale interconnect. Standby power is on the order of
100’s of pW and active power ranges from 10’s of µW to 10’s of nW.
Only MBus satisfies all of our required features.

In contrast, MBus takes over the power management of
nodes, freeing designers from the burden of building complex
self-start circuits. MBus guarantees delivery of messages, inde-
pendent of the power state when a message is sent, eliminating
requirements for distributed power state management.

3. Requirements for an Ultra-Constrained Bus

In this section, we summarize the requirements we have iden-
tified for the system interconnect of ultra-constrained systems
based on our experience with several generations of building
such devices. MBus is the first interconnect design that meets
all of the requirements. Table 1 summarizes these require-
ments and compares MBus with popular current interchip
buses and a recent research bus, Lee’s I2C variant [14].

Synthesizable. To facilitate widespread adoption, we re-
quire a process-agnostic solution, a block of “pure” HDL with
no process-specific custom macros. Lee’s I2C variant requires
process-specific tuning of custom ratioed logic, which adds
cost, complexity, and risk to every implementation.

Low Wire Count. With sub-millimeter scale systems, the
area cost required to place bonding pads (35–65 µm wide) on
one edge or around the perimeter of a chip limits the ability
of the system to scale. While advancements such as through-
silicon vias (TSVs) help, many popular processes do not sup-
port them (e.g. IBM130 or TSMC65).

Address Space. A bus must provide a way of addressing
each element, for example with hardware support (e.g. SPI
chip-selects) or explicit addresses (e.g. I2C). If addresses are
used, they must both support a large number of possible de-
vices (e.g. 220) and minimize overhead on each transmission.

Low Standby Power. Resource-constrained systems spend
the majority of their time in standby so standby inefficiencies
are magnified. Existing interconnects are well suited to this,
so any new bus must draw less than 100 pW to be competitive.

Low Active Power. Micro-scale systems have extremely
constrained power budgets. Our most constrained system
is powered by a 0.5 µAh battery and targets a total system
active power budget of < 40 µW (and idle power of 20 nW).
For reference, recall that the I2C clock alone uses 69.6 µW.
While any absolute number will be system-dependent, to allow
Amdahl-balanced system design, we target an upper limit of
20 µW total active power draw for the system interconnect.

Data-Independent Behavior. Protocols that use dedicated
symbols to communicate special cases (such as an end-of-
message indicator) require byte stuffing, which in pathological
cases can double the length of a message. This affects the
ability to reason about protocol performance both in energy
and time, and in real-time systems can lead to violations of
timing requirements or require artificially high provisioning.

Fault Tolerance. It must be impossible for the bus to enter
a “locked-up” state due to any transient faults.

Interrupts / Multi-Master. To facilitate a diverse and un-
predictable set of devices and system applications, any device
must be able to initiate a transmission to any other device at
any time. This requires either an efficient, non-polling based
interrupt mechanism or a true multi-master design.

Efficient Acknowledgments. Many applications require re-
liable message transport. This feature may be directly sup-
ported by the bus protocol in hardware, or as an optional
software feature if it can be made sufficiently low-overhead.

Power-Aware. Unlike deep sleep, which still loses energy
to static leakage, a power-gated circuit loses all state. Ultra-
constrained systems need to cold boot and later shut down
sub-circuits without affecting active areas. Interfaces between
power domains must be isolated, tied to a fixed value by
an always-on logic gate, so that floating signals do not con-
fuse active logic. To power on a power-gated circuit reliably
and without introducing glitches, four successive edges, the
wakeup sequence, must be produced:
1. Release Power Gate: Supply power to the circuit that is

being activated
2. Release Clock: (Optional) After a clock generator is pow-

ered on, it requires time to stabilize before driving logic
3. Release Isolation: Outputs of a power-gated block float

when off and must be isolated until they are stable
4. Release Reset: Once stable, the circuit may leave the reset

state and begin interacting with the rest of the system
This sequence is fundamental to powering on sub-circuits.

Aggressively low power designs have no clock sources in
their lowest-power state and no means to generate these signals.
In current systems, every design requires a custom “wakeup”
circuit to generate these edges, adding cost and complexity.
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Figure 3: High-level behavior of MBus. A transaction begins
when one or more nodes elect to transmit by starting an arbitration
phase (4.3). The winner then transmits a destination address (4.6,
4.7), sends payload data (4.8), and interjects to end the transac-
tion (4.9). Black arrows are synchronous, transitions that match
MBus CLK edges, while red arrows are asynchronous. By leverag-
ing the interjection primitive (4.9), MBus transmitters can reliably
signal the end of message without requiring an embedded length or
an out-of-band—extra wire—signal. Not shown are arrows from any
state to control due to interjections and from control back to idle.

We argue that these low-level details should be hidden from the
application developer. The wakeup sequence provides a clean
interface to power on a system and the system interconnect
should provide a clean abstraction for sending messages, i.e.
one that ensures receipt independent of the target device type
or immediate power state.

Interoperability. Not all systems may be severely resource
or energy constrained, yet they may still wish to use chips
designed for ultra-low power applications. Any interconnect
must bridge the gap between power-conscious and power-
oblivious—no notion of power-gating and no specialized con-
structs to support it—devices to avoid fracturing the compo-
nent ecosystem and to enable reuse across all device classes.

4. MBus Design
In this section we describe the MBus design. Working from
the constraints identified in Section 3, we build up MBus,
discussing key design decisions and trade-offs along the way.
Figure 3 presents an overview of the MBus protocol by con-
sidering the possible states for nodes during a transaction.

4.1. MBus Topology: Rings and Selectively Sharing Wires

To meet the wire count requirement, the bus topology must be
independent of the number of nodes, i.e. adding another node
cannot require adding a new wire. As many nodes thus share
the same wires, MBus requires a scheme to avoid conflicts,
driving the same line high and low. Some form of token-
passing or leader-based protocol violates the efficient interrupt
requirement, requiring the leader to poll to find the interrupter.
MBus prevents conflicts by using two rings, CLK and DATA, as
shown in Figure 4. To minimize active power, MBus clocks
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Figure 4: MBus Physical Topology. An MBus system consists of
a mediator node and one or more member nodes connected in two
“shoot-through” rings, one CLK and one DATA. The ring topology
adapts to many system synthesis methods, including stepped 3D-
stacking with wirebonding (a) and TSVs (b).

all bus logic off of the bus clock itself. This obviates the need
for a local oscillator on each node. With no local clock, the
rings are “shoot-through”: signals pass through only a minimal
amount of combinational logic from one node to the next.

4.2. Clock Generation and Bus Mediation

MBus introduces one special node, the mediator. The media-
tor is responsible for generating the MBus clock and resolving
arbitration. Every MBus system must have exactly one medi-
ator, either attached to a core device (e.g. a microcontroller
device) or as a standalone component (similar to the pull-up
resistors in I2C). For ultra-low power designs, MBus power-
gates all but the forwarding drivers (Wire Controller) and a
minimalist wakeup frontend (Sleep Controller). The mediator
must therefore be capable of self-starting. In an ultra-low
power design, something must have the capability to self-start;
the mediator allows that self-start requirement to be contained
within a single, reusable component.

4.3. Arbitration by Mediating Shoot-Through Rings

In the idle state all nodes forward high CLK and DATA signals
around the rings. A node requests the bus by breaking the
chain and driving its DATAOUT low. This propagates around the
DATA ring until it reaches the mediator, which does not forward
DATA during arbitration. The falling edge on DATAIN triggers
the mediator self-start which begins toggling CLK as soon as it
is active. At the first rising edge of CLK, any arbitrating nodes
sample their DATAIN line. If DATAIN is high, the node has won
arbitration, otherwise it has lost. This arbitration scheme in-
troduces a topologically-dependent priority on MBus nodes.
To afford physically low-priority nodes an opportunity to send
low-latency messages, MBus adds a priority arbitration cycle
after arbitration. The priority arbitration scheme is similar, ex-
cept it is the arbitration winner that does not forward DATA and
nodes pull DATAOUT high to issue a priority request. Figure 5
shows a waveform of arbitration and priority arbitration.
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4.4. Transparent and Efficient Hierarchical Wakeup

For maximum power efficiency, MBus on a power-gated node
leaves only a minimalist, highly-optimized frontend on con-
tinuously. To receive an MBus transmission, however, the
power-gated node’s bus controller must first be activated. The
key insight that enables MBus’s power-oblivious properties
is that a power-gated node can use the edges on the CLK line
from arbitration as the wakeup sequence (described by the
Power Aware requirement of Section 3) to wake its bus con-
troller. Because arbitration occurs before every message, all
bus controllers in the ring are active by the addressing phase
and can determine whether the message is destined for this
node. MBus does not wake the rest of the node until an address
match. This ensures that only the destination node is powered
on by the receipt of a message. This design allows any node to
transmit to any other node at any time while ensuring that the
receiving node and only the receiving node will be powered
on to receive the message.

4.5. Supporting Intra-Node Wakeups

Partially power-gated nodes will transparently wake up to re-
ceive messages, but they may also wish to voluntarily wake
themselves, usually in response to a locally generated event
from, say, a timer or sensor. For instance, a node with an
always-on analog circuit (e.g. an ultra-low power motion de-
tector embedded in an imager, as described in Section 6.3.2)
may wish to wake the rest of the node to take a picture or send
an alert message. The always-on MBus frontend provides a
simple interrupt port that the component can assert. Upon
interrupt request, the frontend will generate a null message, as
shown in Figure 6. This null message causes the mediator to
generate the clock edges needed to wake the rest of the node,
such as the control circuitry, which can handle the interrupt.
With this design, a power-conscious node can leverage all of
its power-saving faculties without requiring support from any
other system component, simultaneously maximizing interop-
erability and efficiency.
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(a) Interjection timing with successful TX and ACK.

1. After the transmitter sends all of its data
it requests interjection by not forward-
ing CLK.

2. The mediator detects that a node has
stopped forwarding CLK.

3. The mediator stops toggling CLK and
begins toggling DATA – the interjection
sequence.

4. After interjection, the mediator begins
clocking again. Node 1 discards the
extra bits because they are not byte-
aligned.

5. The transmitter signals a complete mes-
sage by driving Control Bit 0 high.

6. The receiver ACK’s the message by
driving Control Bit 1 low.

7. After control, the mediator stops for-
warding DATA, driving it high, and re-
turning the bus to idle.

(b) Interjection Events.

Figure 7: MBus Interjection and Control. The MBus interjection sequence provides a reliable in-band reset signal. Any node may
request that the mediator interject the bus by holding CLKOUT high. The mediator detects this and generates an interjection by toggling DATA
while holding CLK high. An interjection is always followed by a two-cycle control sequence that defines why the interjection occurred.

4.6. Prefixes, FU-IDs, and Broadcast Messages

MBus uses an addressing scheme to direct transmissions and
divides addresses into two components, a prefix and a func-
tional unit ID (FU-ID). A prefix uniquely addresses a physical
MBus interface (one of the actual chips in the system), while
FU-IDs are used to address chip sub-components. FU-IDs
are 4-bits, allowing for up to 16 sub-components behind each
physical MBus frontend. MBus reserves prefix 0 for broadcast
messages. On a shared bus, broadcast messages are cheap to
implement in hardware but expensive (linear in system size) to
emulate in software, motivating hardware broadcast support.
MBus repurposes the FU-ID of broadcast messages as broad-
cast channel identifiers, allowing nodes to listen to only the
broadcast messages they support or are interested in.

4.7. Prefix Assignment and (Optional) Enumeration

To retain the efficiency afforded by short addresses while al-
lowing for a diverse ecosystem of unique components, MBus
uses run-time enumeration to assign 4-bit short prefixes. Enu-
meration is a series of broadcast messages containing short
prefixes that can be sent by any node (although in practice most
likely by a microcontroller). All unassigned nodes attempt to
reply with an identification message and the arbitration win-
ner is assigned the enumerated short prefix. A result of this
enumeration protocol is that a node’s short prefix encodes its
topological priority. Enumeration is performed once, when
the system is first powered. As an optimization, devices may
assign themselves a static short prefix, akin to I2C addressing,
so if there are no conflicts enumeration may be skipped.

Every chip design is assigned a unique, 20-bit full prefix.
Full prefixes allow nodes to refer to one another with static
addresses at the cost of 16 bits of additional overhead per
message. The short prefix 0xF is reserved to indicate full ad-
dresses, leaving MBus with 14 usable short prefixes per system.
Chips may be addressed using either short or full addresses
interchangeably. It is sometimes advantageous for a system
to have two copies of the same chip (e.g. memory), which
requires short prefixes and enumeration to disambiguate.

4.8. MBus Data Transmission and Acknowledgments

MBus transmitters drive data on the falling edge of CLK and
receivers latch data on the rising edge of CLK. While standard
flops can only be clocked on one edge (rising or falling), only
the internal data FIFO needs to be clocked on the falling edge,
thus this does not violate the synthesizability requirement.
This design is modeled after the circuit shown by Kuo et. al
in [13], which allows for identical setup and hold margins,
easing interoperability when driving unknown loads.

At the end of a message, the receiver either ACKs or NAKs
the entire message. In MBus, any node may terminate any
message at any time, even a forwarder. The transmitter may
end the message when it is finished, or the receiver may inter-
ject mid-message to indicate error, e.g. buffer overrun. Thus,
by not interjecting, a receiver implicitly ACKs every byte. This
is less powerful than I2C ACKs, which can detect a dead re-
ceiver after the first byte, but is more efficient during error-free
operation and allows MBus to scale to long (multi-kilobyte)
messages with a fixed, length-independent overhead.



4.9. In-line Interjections End Messages, Provide Reliable
Reset, and Enable Responsive Messaging

At any point, the bus may be interrupted by an MBus in-
terjection. In normal MBus operation, DATA never toggles
meaningfully without a CLK edge. This allows us to design
a reliable, independent interjection-detection module, essen-
tially a saturating counter clocked by DATA and reset by CLK.
The interjection signal acts as a reset signal to the bus con-
troller, clearing its current state and placing it in control mode.
MBus control is two cycles long and is used to express why the
bus was interjected, either an end-of-message that is ACK’d
or NAK’d or to express some type of error. Figure 7 shows
the end of an MBus transaction sent from Node 2 to Node 1
that is ACK’d. Notice that the MBus interjection request
mechanism, holding CLK high, results in nodes observing a
varying number of clock edges. MBus requires that messages
be byte-aligned to resolve this potential ambiguity, potentially
requiring a small amount (up to 7 bits) of padding to be added
to MBus messages.

MBus interjections are used both for extreme cases, such
as rescuing a hung bus or indicating receiver error, and as a
regular end-of-message signal. Any node may generate an in-
terjection at any time. This allows for unambiguous signalling
of control functions that can resynchronize a bus without re-
quiring out-of-band signals like chip-selects or a reset line.
This further allows a node with a latency-sensitive message to
interrupt an active transaction, enabling responsiveness across
a diverse array of workloads not possible with current buses.

5. Implementation
Figure 8 shows the complete MBus Verilog design. For non-
power-conscious designs, only the Bus Controller is required.
To support self and system power-gating, the additional Sleep
Controller, Wire Controller, and optional Interrupt Controller
are added. The Layer Controller is a generic module acting
as a stand-in for the rest of the node. While most nodes will
likely have a local oscillator, it is possible to interface with the
Bus Controller using only edges harvested from the bus clock.

Table 2 shows the cost in area for each of the MBus compo-
nents (excluding I/O pads) when synthesized for an industrial
180 nm process, with comparisons to SPI, I2C, and Lee’s I2C
variant. MBus imposes an area cost penalty, but offsets this
with its additional features.

We implement MBus in twelve chips in three different tech-
nologies (65, 130, and 180 nm CMOS) and two FPGA fabrics
(Actel SmartFusion [3] and Microsemi IGLOO nano [19]) and
find that all interoperate without error and without tuning.

6. Evaluation
To evaluate MBus, we first evaluate the protocol, then perform
an in-depth analysis on its energy performance. Next we build
and analyze two representative micro-scale systems. Finally,
we consider the scalability and interoperability of MBus.
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Figure 8: MBus Implementation. We implement MBus as a
series of composable Verilog modules. The module coloring repre-
sents the three hierarchical power domains: green modules (Sleep,
Wire, and Interrupt Controllers) are always powered on, red modules
(Bus Controller) are powered during MBus transactions, and blue
modules (Layer Controller, Local Clock) are powered only when the
node is active. Critically, MBus itself requires no local oscillator. The
generic layer controller provides a simple register/memory interface
for a node, but its design is not specific to MBus. The isolate (ISO)
signals ensure that floating signals from power-gated blocks remain
at stable defaults. Systems that do not perform power-gating omit
these isolation gates and all of the green blocks.

Module Verilog SLOC Gates Flip-Flops Area in 180 nm
Bus Controller 947 1314 207 27,376 µm2

Optional
Sleep Controller 130 25 4 3,150 µm2

Wire Controller 50 7 0 882 µm2

Interrupt Controller 58 21 3 2,646 µm2

Total 1185 1367 214 37,200 µm2§

Other Buses:
SPI Master† 516 1004 229 37,068 µm2

I2C ‡ 720 396 153 19,813 µm2

Lee I2C [14] 897 908 278 33,703 µm2

§ Includes a small amount of additional integration overhead area
† SPI Master from OpenCores [32] synthesized for our 180 nm process
‡ I2C Master from OpenCores [10] synthesized for our 180 nm process

Table 2: Size of MBus Components. Non power-gated designs
require only the Bus Controller. The MBus values are from the
temperature sensor chip in Figure 12. To support its additional
features and lower power, MBus incurs a modest increase in area.

6.1. Protocol Evaluation

Topology. Because MBus is a ring, as the number of nodes
increases, so does the propagation delay around the ring. The
MBus specification defines a maximum node-to-node delay
of 10 ns, which is achieved by all of our designs. Figure 9 ex-
plores how node count affects the bus clock and finds that a 14-
node MBus system can run at up to 7.1 MHz. I2C clock speed
ranges from 100 kHz (Standard) to 5 MHz (Ultra Fast) [23].
Some special-purpose SPI implementations reach speeds as
high as 100 MHz, though most low-power microcontrollers
have an upper limit of 16 MHz for the I/O clock [5, 34].
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Figure 10: Bus Overhead. MBus message overhead is indepen-
dent of message length. MBus short-addressed messages become
more efficient than 2-mark UART after 7 bytes and more efficient
than I2C and 1-mark UART after 9 bytes. MBus scales efficiently to
messages such as 28.8 kB images (Section 6.3.2) or longer.

Overhead. In addition to transmitting data, MBus transac-
tions require arbitration (3 cycles), addressing (8 or 32 cycles),
interjection (5 cycles), and control (3 cycles), an overhead of
19 or 43 cycles depending on the addressing scheme. Figure 10
compares MBus overhead to other common buses and finds
that MBus’s length-independent overhead is more efficient
after 9 byte payloads than length-dependent protocols, without
incurring significantly greater overhead for shorter messages.

6.2. Power

Simulation. To capture a detailed estimate of the cost of
running MBus, we run our implementation through Synopsis
PrimeTime. Our model is post-APR and uses standard wire
models. We choose a conservative pad model, estimating 2 pF
per pad. Our simulation estimates that MBus draws 5.6 pW per
chip in idle and consumes 3.5 pJ/bit/chip while transmitting.
We estimate the energy of a single MBus message as:

Emessage = [3.5pJ∗ ({19 or 43}+8∗nbytes)]∗nchips

Energy per bit
Member+Mediator Node sending 27.5 pJ/bit

Member Node receiving 22.7 pJ/bit
Member Node forwarding 17.6 pJ/bit

Average 22.6 pJ/bit

Table 3: Measured MBus Power Draw. Using differential sys-
tem states, we measure an estimate of the power draw for MBus.
Forwarding nodes reduce switching activity by not clocking flops
in their receive buffer. The mediator is integrated as a block in our
processor and cannot be isolated.

Measurement. We perform empirical power measurements
on a debug (non-stacked) version of the temperature sensor
shown in Figure 12 and evaluated in Section 6.3.1. Although
we cannot directly measure the power draw of MBus in our
fabricated chips, we can measure the draw of each chip in
the system in different states. The mediator is integrated as a
block on our processor chip and cannot be disentangled from
the rest of that chip’s power draw. To get stable measurements,
we place the processor in a continuous loop sending invalid
commands to the sensor node, which ignores them. As only
the processor can be configured to send continuous messages,
we can report only the combined mediator and transmit energy
consumption. The results of our measurements are summa-
rized in Table 3. The simulation number is only the energy
consumed by MBus directly. We attribute the ~6.5× increase
over simulation to overhead such as internal memory buses
and other integrated components that could not be isolated.

We have no means to directly or indirectly measure the
power draw of MBus when idle. The total idle power draw
of the temperature system is 8 nW, three orders of magnitude
above the expected static leakage of MBus (5.6 pW), and
comparable with the idle system power of the prior state-of-
the-art. Thus, we conclude that MBus contributes negligible
power to the idle state.

Comparison to I2C. The biggest inefficiency in I2C stems
from overprovisioning. Since the total bus capacitance is
unknown, a power-inefficient, smaller value resistor must be
chosen to guarantee timing constraints are met. We imagine
an “Oracle I2C”, in which the exact bus capacitance is known
and an ideally large resistor is selected. To further improve
Oracle I2C power performance, we allow the rise time to take
the entire half clock period (zero setup and hold time) and
treat 80% VDD as logical 1. We model Oracle I2C using
the same simulation parameters as MBus (1.2 V, 2 pF/pad,
0.25 pF/wire). We compare the performance of our MBus
simulation, an extrapolation of our measured MBus values,
Oracle I2C simulation, and standard I2C in Figure 11. Both
simulated and measured MBus outperform Oracle I2C for all
but the shortest (1−2 byte) messages.
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Figure 11: Energy Comparisons. In (a) we compare the power
draw of various bus configurations as clock frequency and node
population increase. We find that both our simulated and measured
MBus outperforms the simulated Oracle I2C, which itself outper-
forms standard I2C. In (b) we examine MBus overhead by comput-
ing the energy per bit for each bit of goodput, actual data bits that
amortize protocol overhead. Our simulated MBus outperforms the
simulated Oracle I2C for all payload lengths. Our measured MBus
reveals that MBus efficiency suffers for short (1–2 byte) messages
and that systems should attempt to coalesce messages if possi-
ble. In both figures, the measured values are based on empirical
measurements of our 3-node temperature sensor.

6.3. Microbenchmarks

We next examine two systems, representative of typical em-
bedded workloads, and demonstrate the importance of multi-
master capability, efficient handling of large messages, and
power-conscious design.
6.3.1. Sense and Send. Figure 12 shows our temperature
sensor. This system is an archetypal “sense and send” design.
The environment is periodically sampled and the reading is
communicated from the sensor. In our system, the processor
node periodically requests a temperature reading from the
sensor node. In the request (4 bytes), the sensor node can
be instructed to send the response (8 bytes) directly to the
radio node, which transmits the message. These requests are
infrequent (every 15 s) and short in duration, leading to a bus
utilization of only 0.0022% at 400 kHz.

1.5 mm

︸ ︷︷ ︸
2.6 mm

Figure 12: Temperature Sensing System. A system we de-
signed consisting of a 2 µAH battery, a 900 MHz near-field radio,
an ARM Cortex M0 processor, and an ultra-low power temperature
sensor, interconnected using MBus.

(a) Integrated System (b) Captured Image

Figure 13: Motion Detection and Imaging System.
(a) Our imager made of a 900 MHz near-field radio, a 5 µAH battery,
an ARM Cortex M0, and a 160×160 pixel, 9-bit graysacle imager
with ultra-low power motion detection all connected using MBus.
(b) A full-resolution (28.8 kB) image that was transferred by MBus.

While transmitting the message directly from the sensor
to the radio does reduce total bus utilization by 40%, that
resource is not contested in this case. Power, however, is
always a concern. In this three-chip stack we have one sender,
one receiver, and one forwarder; sending an 8 byte message
requires

(64 bits+19 bits)× (27.45
pJ/bit

TX
+22.71

pJ/bit

RX
+17.55

pJ/bit

FWD
)

= 5.6 nJ; sending it twice would require 11.2 nJ. Further en-
ergy savings come from not powering on the processor. Our
processor uses ~20 pJ/cycle and requires ~50 cycles to handle an
interrupt and copy an 8 byte message to be sent again, using

50 cycles×20
pJ

cycle

= 1 nJ. To estimate the energy cost of an entire sense and
send sequence, we place the system in a continuous loop and
measure the average power draw and sample rate. We find
that each sense and send event requires about 100 nJ of energy.
By supporting any-to-any communication, MBus reduces the
energy consumption of each sense and send event by 6.6 nJ
(~7%). Using the crude battery capacity of approximation
of 2 µAh×3.8 V = 27.4 mJ, for a 15 s sample interval this
increases node lifetime by 71 hours, from ~44.5 to ~47.5 days.
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MBus can only support a finite number of transactions across all
member nodes. The peak transaction rate depends on the transac-
tion size and bus clock speed.

6.3.2. Monitor and Alert Our second system, the motion-
activated camera seen in Figure 13, exemplifies a typical mon-
itor, filter, and alert system, and it demonstrates the need and
efficacy of MBus’s power faculties and efficient handling of
large messages. During ultra-low power motion detection, the
imager power-gates nearly all of its logic to minimize leakage.
When motion is detected, the motion detector simply needs
to assert one wire for MBus to wake the chip. By decoupling
power management, the motion detector may act as a simple,
standalone circuit or as a trigger to enter the more power-
hungry image capture state whenever motion is detected.

The imager itself is a 160×160 pixel CMOS camera with
9-bit single-channel (grayscale) resolution. A full resolution
image is 28.8 kB. Our implemented MBus clock is run-time
tunable from 10 kHz to up to 6.67 MHz (default is 400 kHz).
Transferred as a single message, a full resolution image could
take from 4.2 ms (238 fps) to 2.9 s (0.3 fps) depending on clock
speed. Like most CMOS imagers, however, our camera reads
pixels out one row at a time. To better cooperate with other
possible bus users, the camera sends each row as a separate
message, with small delays in-between while the next row
is read out. Recall the correlation from Figure 10 between
MBus message length and efficiency. By sending 160 180-
byte messages instead of one 28.8 kB message, the image
transmission incurs an additional 3,021 bits or 1.31% of over-
head. By comparison, I2C would incur 28,810 bits (12.5%) of
overhead transmitting the whole image and 30,400 bits of over-
head (13.2%) if sent row-by-row. MBus’s message-oriented
acknowledgment protocol results in a 90−99% reduction in
overhead compared to a byte-oriented approach.

6.4. Many-Node Systems

Both of our microbenchmarks are fundamentally one-sensor
systems. One possible concern of the MBus design is how
well it will scale to a greater number of connected nodes and
what the impact on lower priority nodes will be. A large and
shared bus, ring, or interconnect topology, is not uncommon
in an embedded design. Most microcontrollers have only one
or two I2C and/or SPI interfaces. I2C also has a fixed priority
scheme, based on the target address instead of the physical

location of the sender. SPI is more flexible, allowing the
central controller to select a priority scheme dynamically, at
the cost of requiring a central controller to do so. The more
important metric is not node count, rather it is the desired
transaction rate – barring protocol overhead, for any bus two
nodes sending messages at 1 Hz yields the same utilization as
one node sending at 2 Hz. Figure 14 considers possible rates
of MBus transactions as a function of message length. For
brief periods of burst transactions that exceed the saturation
rate, MBus provides both physical and logical mechanisms to
enable system designers to federate bus access.

6.5. Interoperability

A key design goal was to facilitate interoperability indepen-
dent of the technology used to fabricate MBus without re-
quiring any tuning or tweaking. As a series of singled-ended
connections—totem-pole FETs driving gates—the MBus de-
sign is well-suited to meet this constraint. As evidence of this
claim, our systems integrate chips from 65, 130, and 180 nm
processes from two different fabs. We also verify operation
with debug interfaces from an NI board [22] and a Microsemi
IGLOO nano FPGA [20]. Newer MBus chips add built-in
level converters for I/O pins, however all of the chips tested
in this work operated at 1.2 V. In over 1,000 hours of system
testing, we are yet to encounter any MBus-related issues.

6.6. Bitbanging MBus.

To investigate MBus viability on existing microcontrollers
without a dedicated MBus interface, we implement MBus
in C. Our implementation is general and requires only four
GPIO pins (two must have edge-triggered interrupt support).
To estimate the overhead of bitbanging MBus, we target an
MSP430 [34] using msp430-gcc-4.6.3 [35] and find that
our worst case path is 20 instructions (65 cycles including
interrupt entry and exit) to drive an output in response to an
edge. With an 8 MHz system clock speed, the MSP430 can
support up to a 120 kHz MBus clock. For a comparison, we
compile1 Wikipedia’s I2C bitbang implementation and find it
has similar overhead with a longest path of 21 instructions [2].

7. Discussion
We elide many small details and corner cases in this paper that
will be covered in the MBus Specification. In this section we
discuss some of the potential concerns as well as some ideas
for future directions for MBus.

Topological Priority, Fairness, and Progress. Currently,
the mediator always has top priority. One could imagine a
mutable priority scheme, however, where the node assigned to
not forward during arbitration is assigned dynamically, e.g. by
a broadcast configuration message. Mutable priority would re-
quire adding state to the always-on Wire Controller, however.

1 All of the stub functions (e.g. read_SCL()) were converted into direct
memory accesses assuming a single memory operation MMIO interface.



MBus does not guarantee fairness (nor does I2C). Making
arbitration fair a priori is difficult (how should ties be broken?)
and in many cases, system designers may prefer prioritization
over fairness, e.g. the automotive CAN bus, in which braking
has higher priority than windshield wipers. If mutable priority
is available, one fair scheme could automatically rotate priority
on every message.

MBus expressly does not introduce any form of time-based
backoff scheme. MBus is designed to support nodes with no
sense of local time and any formal backoff scheme would
violate this. To ensure progress, as a matter of policy MBus
requires that a node that wins arbitration be permitted to send
at least four bytes before being interrupted. Our Bus Controller
implementation enforces this policy.

Long Messages and Latency. MBus permits arbitrary
length messages. While this is useful for sending long mes-
sages efficiently, it also has the effect of locking the bus for a
long time, which may harm responsiveness. While the design
of MBus lends itself well to resuming an interrupted transmis-
sion (both TX and RX nodes know how far through a message
they were), it is not possible to indicate to other nodes on
the bus which messages are interrupt-friendly. One idea is
to leverage one or more functional units as well-known re-
sumable message destinations to indicate to all nodes that this
message may be opportunistically interrupted. However, re-
sumable messages comes with other challenges – nodes must
have buffer(s) for multiple in-flight transactions and preserve
state across transactions, complicating bus controller design.

Runaway Messages. Since MBus messages have un-
bounded length, a transmitter in a bad state could lock the
bus by transmitting forever. To address this, the mediator
includes a counter that imposes a maximum message length
on the local system. MBus requires a minimum maximum
length of 1 kB. This value is set via a broadcast message on the
configuration channel, allowing all interested nodes to track it
(along with other MBus configuration, such as clock speed).

Increasing Bandwidth. As a ring with a (small) number
of gates between IN and OUT at each node, the upper bound
for clock speed is limited. However, the design is amenable
to additional DATA lines. While this increases I/O cost, each
additional DATA line doubles the MBus payload throughput.
Figure 15 examines the goodput, actual data transmitted, of
parallel MBus if data transmission is parallelized but other
protocol elements are unchanged. A hybrid ring of traditional
and parallel MBus nodes can be imagined, with the DATA0

line touching every node and the additional data lines forming
a smaller ring of only parallel-capable MBus nodes. When
transmitting, the bus controller could stripe data across as
many DATA lines as the target node has available. This parallel
MBus design is backward compatible with traditional MBus
and can even use the same, unmodified mediator.
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Figure 15: Parallel MBus Goodput. To increase bandwidth with-
out increasing clock speed, parallel DATA lines could be used. For
very short messages, MBus protocol overhead dominates goodput.
As protocol overhead is independent of message length, goodput
improves as the message length grows.

8. Conclusion

Despite the advantages of reusable and flexible design that
modular components have provided for intermediate comput-
ing classes, recent micro-components have not been designed
with reusability in mind. We investigate this phenomenon
and claim that one cause is the absence of a suitable chip
interconnect technology to integrate these components into
a complete system—one that respects their ultra-low power
constraints, need for configuration flexibility, and limited sil-
icon area. To address this need, we design, implement, and
evaluate MBus, a new chip-to-chip interconnect for micro-
scale systems. MBus both fills a void for micro-scale systems
and bridges the adoption gap with existing technology by sup-
porting seamless interoperation between power-conscious and
power-oblivious devices. Implemented on a dozen micro-scale
chips, MBus demonstrates a viable chip interconnect design
point for next generation nano-power systems.
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