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ABSTRACT

We explore the indoor positioning problem with unmodified smart-
phones and slightly-modified commercial LED luminaires. The
luminaires—modified to allow rapid, on-off keying—transmit their
identifiers and/or locations encoded in human-imperceptible optical
pulses. A camera-equipped smartphone, using just a single image
frame capture, can detect the presence of the luminaires in the image,
decode their transmitted identifiers and/or locations, and determine
the smartphone’s location and orientation relative to the luminaires.
Continuous image capture and processing enables continuous posi-
tion updates. The key insights underlying this work are (i) the driver
circuits of emerging LED lighting systems can be easily modified
to transmit data through on-off keying; (ii) the rolling shutter effect
of CMOS imagers can be leveraged to receive many bits of data
encoded in the optical transmissions with just a single frame cap-
ture, (iii) a camera is intrinsically an angle-of-arrival sensor, so the
projection of multiple nearby light sources with known positions
onto a camera’s image plane can be framed as an instance of a
sufficiently-constrained angle-of-arrival localization problem, and
(iv) this problem can be solved with optimization techniques. We
explore the feasibility of the design through an analytical model,
demonstrate the viability of the design through a prototype system,
discuss the challenges to a practical deployment including usability
and scalability, and demonstrate decimeter-level accuracy in both
carefully controlled and more realistic human mobility scenarios.
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1. INTRODUCTION
Accurate indoor positioning can enable a wide range of location-

based services across many sectors. Retailers, supermarkets, and
shopping malls, for example, are interested in indoor positioning
because it can provide improved navigation which helps avoid un-
realized sales when customers cannot find items they seek, and it
increases revenues from incremental sales from targeted advertis-
ing [11]. Indeed, the desire to deploy indoor location-based services
is one reason that the overall demand for mobile indoor positioning
in the retail sector is projected to grow to $5 billion by 2018 [7].
However, despite the strong demand forecast, indoor positioning
remains a “grand challenge,” and no existing system offers accurate
location and orientation using unmodified smartphones [13].

WiFi and other RF-based approaches deliver accuracies mea-
sured in meters and no orientation information, making them a poor
fit for many applications like retail navigation and shelf-level adver-
tising [2, 5, 31]. Visible light-based approaches have shown some
promise for indoor positioning, but recent systems offer landmarks
with approximate room-level semantic localization [21], depend on
custom hardware and received signal strength (RSS) techniques that
are difficult to calibrate, or require phone attachments and user-in-
the-loop gestures [13]. These limitations make deploying indoor
positioning systems in “bring-your-own-device” environments, like
retail, difficult. Section 2 discusses these challenges in more de-
tail noting, among other things, that visible light positioning (VLP)
systems have demonstrated better performance than RF-based ones.

Motivated by a recent claim that “the most promising method
for the new VLP systems is angle of arrival” [1], we propose a
new approach to accurate indoor positioning that leverages trends
in solid-state lighting, camera-enabled smartphones, and retailer-
specific mobile applications. Our design consists of visible light bea-
cons, smartphones, and a cloud/cloudlet server that work together to
determine a phone’s location and orientation, and support location-
based services. Each beacon consists of a programmable oscillator
or microcontroller that controls one or more LEDs in a luminaire.
A beacon’s identity is encoded in the modulation frequency (or
Manchester-encoded data stream) and optically broadcast by the
luminaire. The smartphone’s camera takes pictures periodically and
these pictures are processed to determine if they contain any beacons
by testing for energy in a target spectrum of the columnar FFT of the
image. If beacons are present, the images are decoded to determine
the beacon location and identity. Once beacon identities and coor-
dinates are determined, an angle-of-arrival localization algorithm
determines the phone’s absolute position and orientation in the local
coordinate system. Section 3 presents an overview of our proposed
approach, including the system components, their interactions, and
the data processing pipeline that yields location and orientation from
a single image of the lights and access to a lookup table.



Our angle-of-arrival positioning principle assumes that three
or more beacons (ideally at least four) with known 3-D coordi-
nates have been detected and located in an image captured by a
smartphone. We assume that these landmarks are visible and distin-
guishable from each other. This is usually the case when the camera
is in focus since unoccluded beacons that are separated in space
uniquely project onto the camera imager at distinct points. Assum-
ing that the camera geometry is known and the pixels onto which
the beacons are projected is determined, we estimate the position
and orientation of the smartphone with respect to the beacons’ co-
ordinate system through the geometry of similar triangles, using a
variation on the well-known bearings-only robot localization and
mapping problem [10]. Section 4 describes the details of estimating
position and orientation, and dealing with noisy measurements.

So far, we have assumed that our positioning algorithm is given
the identities and locations of beacons within an overhead scene
image, but we have not discussed how are these extracted from an
image of modulated LEDs. Recall that the beacons are modulated
with a square wave or transmit Manchester-encoded data (at frequen-
cies above 1 kHz to avoid direct or indirect flicker [26]). When a
smartphone passes under a beacon, the beacon’s transmissions are
projected onto the camera. Although the beacon frequency far ex-
ceeds the camera’s frame rate, the transmissions are still decodable
due to the rolling shutter effect [9]. CMOS imagers that employ a
rolling shutter expose one or more columns at once, and scan just
one column at a time. When an OOK-modulated light source illu-
minates the camera, distinct light and dark bands appear in images.
The width of the bands depend on the scan time, and crucially, on
the frequency of the light. We employ an image processing pipeline,
as described in Section 5, to determine the extent of the beacons,
estimate their centroids, and extract their embedded frequencies,
which yields the inputs needed for positioning.

To evaluate the viability and performance of this approach, we
implement the proposed system using both custom and slightly-
modified commercial LED luminaires, a Nokia Lumia 1020 smart-
phone, and an image processing pipeline implemented using OpenCV,
as described in Section 6. We deploy our proof-of-concept system in
a university lab and find that under controlled settings with the smart-
phone positioned under the luminaires, we achieve decimeter-level
location and roughly 3◦ orientation error under lights when four
or five beacons are visible. With fewer than four visible beacons,
or when errors are introduced in the beacon positions, we find that
localization errors increase substantially. Fortunately, in realistic us-
age conditions—a person carrying a smartphone beneath overhead
lights—we observe decimeter position and single-digit orientation
errors. Although difficult to directly compare different systems, we
adopt the parameters proposed by Epsilon [13] and compare the
performance of our system to the results reported in prior work in
Table 1. These results, and others benchmarking the performance of
the VLC channel, are presented in Section 7.

Our proposed system, while promising, also has a number of
limitations. It requires a high density of overhead lights with known
positions, and nearby beacons to have accurate relative positions.
Adequate performance requires high-resolution cameras which have
only recently become available on smartphones. We currently up-
load entire images to the cloud/cloudlet server for processing, which
incurs a significant time and energy cost that is difficult to accu-
rately characterize. However, we show simple smartphone-based
algorithms that can filter images locally, or crop only the promising
parts of an image, reducing transfer costs or even enabling local
processing. Section 8 discusses these and other issues, and suggests
that it may soon be possible to achieve accurate indoor positioning
using unmodified smartphones in realistic retail settings.

Param EZ Radar Horus Epsilon Luxapose

Reference [5] [2] [31] [13] [this]

Position 2-7 m 3-5 m ∼1 m ∼0.4 m ∼0.1 m

Orientation n/a n/a n/a n/a 3◦

Method Model FP FP Model AoA

Database Yes Yes Yes No Yes

Overhead Low WD WD DC DC

Table 1: Comparison with prior WiFi- and VLC-based localization
systems. FP, WD, AoA, and DC are FingerPrinting, War-Driving,
Angle-of-Arrival, and Device Configuration, respectively. These are
the reported figures from the cited works.

2. RELATED WORK
There are three areas of related work: RF localization, visible

light communications, and visible light positioning.
RF-Based Localization. The majority of indoor localization

research is RF-based, including WiFi [2, 5, 15, 27], Motes [14], and
FM radio [4], although some have explored magnetic fingerprinting
as well [6]. All of these approaches achieve meter-level accuracy,
and no orientation, often through RF received signal strength from
multiple beacons, or with location fingerprinting [4, 6,14, 29]. Some
employ antenna arrays and track RF phase to achieve sub-meter
accuracy, but at the cost of substantial hardware modifications [27].
In contrast, we offer decimeter-level accuracy at the 90th-percentile
under typical overhead lighting conditions, provide orientation, use
camera-based localization, require no hardware modifications on
the phone and minor modifications to the lighting infrastructure.

Visible Light Communications. A decade of VLC research
primarily has focused on high-speed data transfer using specialized
transmitters and receivers that support OOK, QAM, or DMT/OFDM
modulation [12], or the recently standardized IEEE 802.15.7 [22].
However, smartphones typically employ CdS photocells with wide
dynamic range but insufficient bandwidth for typical VLC [21].
In addition, CdS photocells cannot determine angle-of-arrival, and
while smartphone cameras can, they cannot support most VLC tech-
niques due to their limited frame rates. Recent research has shown
that by exploiting the rolling shutter effect of CMOS cameras, it is
possible to receive OOK data at close range, from a single transmit-
ter, with low background noise [9]. We also use the same effect but
operate at 2-3 meter range from typical luminaires, support multiple
concurrent transmitters, and operate with ambient lighting levels.

Visible Light-Based Localization. Visible light positioning us-
ing one [19,30,32] or more [20,28] image sensors has been studied in
simulation. In contrast, we explore the performance of a real system
using a CMOS camera present in a commercial smartphone, address
many practical concerns like dimming and flicker, and employ robust
decoding and localization methods that work in practice. Several
visible light positioning systems have been implemented [13,21,24].
ALTAIR uses ceiling-mounted cameras, body-worn IR LED tags,
and a server that instructs tags to beacon sequentially, captures im-
ages from the cameras, and performs triangulation to estimate po-
sition [24]. Epsilon uses LED beacons and a custom light sensor
that plugs into a smartphone’s audio port, and sometimes requires
users to perform gestures [13]. The LEDs transmit data using BFSK
and avoid persistent collisions by random channel hopping. The
system offers half-meter accuracy. In contrast, we require no custom
hardware on the phone, can support a high density of lights without
coordination, require no special gestures, provide orientation, and
typically offer better performance. Landmarks provides semantic
(e.g. room-level) localization using rolling shutter-based VLC [21],
but neither accurate position nor orientation, like our system does.
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Figure 1: Luxapose indoor positioning system architecture and
roadmap to the paper. The system consists of visible light beacons,
mobile phones, and a cloud/cloudlet server. Beacons transmit their
identities or coordinates using human-imperceptible visible light. A
phone receives these transmissions using its camera and recruits a
combination of local and cloud resources to determine its precise
location and orientation relative to the beacons’ coordinate system
using an angle-of-arrival localization algorithm, thereby enabling
location-based services.

3. SYSTEM OVERVIEW
The Luxapose indoor positioning system consists of visible

light beacons, smartphones, and a cloud/cloudlet server, as Figure 1
shows. These elements work together to determine a smartphone’s
location and orientation, and support location-based services. Each
beacon consists of a programmable oscillator or microcontroller that
modulates one or more LED lights in a light fixture to broadcast the
beacon’s identity and/or coordinates. The front-facing camera in a
hand-held smartphone takes pictures periodically. These pictures are
processed to determine if they contain LED beacons by testing for
the presence of certain frequencies. If beacons are likely present, the
images are decoded to both determine the beacon locations in the
image itself and to also extract data encoded in the beacons’ mod-
ulated transmissions. A lookup table may be consulted to convert
beacon identities into corresponding coordinates if these data are not
transmitted. Once beacon identities and coordinates are determined,
an angle-of-arrival localization algorithm determines the phone’s
position and orientation in the venue’s coordinate system. This data
can then be used for a range of location-based services. Cloud or
cloudlet resources may be used to assist with image processing,
coordinate lookup, database lookups, indoor navigation, dynamic
advertisements, or other services that require distributed resources.

4. POSITIONING PRINCIPLES
Our goal is to estimate the location and orientation of a smart-

phone assuming that we know bearings to three or more point-
sources (interchangeably called beacons, landmarks, and transmit-

ters) with known 3-D coordinates. We assume the landmarks are
visible and distinguishable from each other using a smartphone’s
built-in camera (or receiver). The camera is in focus so these point
sources uniquely project onto the camera imager at distinct pixel
locations. Assuming that the camera geometry (e.g. pixel size, fo-
cal length, etc.) is known and the pixels onto which the landmarks
are projected can be determined, we seek to estimate the position
and orientation of the mobile device with respect to the landmarks’
coordinate system. This problem is a variation on the well-known
bearings-only robot localization and mapping problem [10].
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Figure 2: Optical AoA localization. When the scene is in focus, trans-
mitters are distinctly projected onto the image plane. Knowing the
transmitters’ locations Tj(xj , yj , zj)T in a global reference frame,
and their image ij(aj , bj , Zf )R in the receiver’s reference frame,
allows us to estimate the receiver’s global location and orientation.

4.1 Optical Angle-of-Arrival Localization
Luxapose uses optical angle-of-arrival (AoA) localization prin-

ciples based on an ideal camera with a biconvex lens. An important
property of a simple biconvex lens is that a ray of light that passes
through the center of the lens is not refracted, as shown in Figure 2.
Thus, a transmitter, the center of the lens, and the projection of trans-
mitter onto the camera imager plane form a straight line. Assume
that transmitter T0, with coordinates (x0, y0, z0)T in the transmit-
ters’ global frame of reference, has an image i0, with coordinates
(a0, b0, Zf )R in the receiver’s frame of reference (with the origin
located at the center of the lens). T0’s position falls on the line
that passes through (0, 0, 0)R and (a0, b0, Zf )R, where Zf is the
distance from lens to imager in pixels. By the geometry of similar
triangles, we can define an unknown scaling factor K0 for transmit-
ter T0, and describe T0’s location (u0, v0, w0)R in the receiver’s
frame of reference as:

u0 = K0 × a0

v0 = K0 × b0

w0 = K0 × Zf

Our positioning algorithm assumes that transmitter locations
are known. This allows us to express the pairwise distance be-
tween transmitters in both the transmitters’ and receiver’s frames
of reference. Equating the expressions in the two different domains
yields a set of quadratic equations in which the only remaining
unknowns are the scaling factors K0, K1, . . . , Kn. For example, as-
sume three transmitters T0, T1, and T2 are at locations (x0, y0, z0)T ,
(x1, y1, z1)T , and (x2, y2, z2)T , respectively. The pairwise distance
squared between T0 and T1, denoted d20,1, can be expressed in both
domains, and equated as follows:

d20,1 = (u0 − u1)
2 + (v0 − v1)
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2 + (K0b0 −K1b1)

2 + Z2
f (K0 −K1)

2

= K2
0

∣

∣

∣

−−→
Oi0

∣

∣

∣

2

+K2
1

∣

∣

∣

−−→
Oi1

∣

∣

∣

2

− 2K0K1(
−−→
Oi0 ·

−−→
Oi1)

= (x0 − x1)
2 + (y0 − y1)

2 + (z0 − z1)
2,

where
−−→
Oi0 and

−−→
Oi1 are the vectors from the center of the lens to

image i0 (a0, b0, Zf ) and i1 (a1, b1, Zf ), respectively. The only
unknowns are K0 and K1. Three transmitters would yield three
quadratic equations in three unknown variables, allowing us to find
K0, K1, and K2, and compute the transmitters’ locations in the
receiver’s frame of reference.
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4.2 Estimating Receiver Position
In the previous section, we show how the transmitters’ locations

in the receiver’s frame of reference can be calculated. In practice,
imperfections in the optics and inaccuracies in estimating the trans-
mitters’ image locations make closed-form solutions unrealistic. To
address these issues, and to leverage additional transmitters beyond
the minimum needed, we frame position estimation as an optimiza-
tion problem that seeks the minimum mean square error (MMSE)
over a set of scaling factors, as follows:
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where N is the number of transmitters projected onto the image,
resulting in

(

N
2

)

equations.
Once all the scaling factors are estimated, the transmitters’ loca-

tions can be determined in the receiver’s frame of reference, and the
distances between the receiver and transmitters can be calculated.
The relationship between two domains can be expressed as follows:
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where R is a 3-by-3 rotation matrix and T is a 3-by-1 translation
matrix.

The elements of T (Tx, Ty, Tz) represent the receiver’s location
in the transmitters’ frame of reference. We determine the translation
matrix based on geometric relationships. Since scaling factors are
now known, equivalent distances in both domains allow us to obtain
the receiver’s location in the transmitters’ coordinate system:

(Tx −xm)2 +(Ty − ym)2 +(Tz − zm)2 = K2
m(a2

m + b2m +Z2
f ),

where (xm, ym, zm) are the coordinates of the m-th transmitter in
the transmitters’ frame of reference, and (am, bm) is the projection
of the m-th transmitter onto the image plane. Finally, we estimate
the receiver’s location by finding the set (Tx, Ty, Tz) that minimizes:

N
∑

m=1

{(Tx − xm)2 + (Ty − ym)2 + (Tz − zm)2 −K2
m(a2

m + b2m + Z2
f )}

2

4.3 Estimating Receiver Orientation
Once the translation matrix T is known, we can find the rotation

matrix R by individually finding each element in it. The 3-by-3
rotation matrix R is represented using three column vectors, −→r1 ,

−→r2 ,
and −→r3 , as follows:

R =
[

−→r1
−→r2

−→r3
]

,

where the column vectors −→r1 , −→r2 and −→r3 are the components of the
unit vectors x̂′, ŷ′, and ẑ′, respectively, projected onto the x, y, and
z axes in the transmitters’ frame of reference. Figure 3 illustrates the
relationships between these various vectors. Once the orientation
of the receiver is known, determining its bearing requires adjusting
for portrait or landscape mode usage, and computing the projection
onto the xy-plane.

5. CAMCOM PHOTOGRAMMETRY
Our positioning scheme requires that we identify the points in a

camera image, (ai, bi, Zf ), onto which each landmark i ∈ 1 . . . N
with known coordinates, (xi, yi, zi), are projected, and map between
the two domains. This requires us to: (i) identify landmarks in an
image, (ii) label each landmark with an identity, and (iii) map that
identity to the landmark’s global coordinates. To help with this
process, we modify overhead LED luminaires so that they beacon
optically—by rapidly switching on and off—in a manner that is
imperceptible to humans but detectable by a smartphone camera.

We label each landmark by either modulating the landmark’s
LED at a fixed frequency or by transmitting Manchester-encoded
data in the landmark’s transmissions (an approach called camera
communications, or CamCom, that enables low data rate, unidirec-
tional message broadcasts from LEDs to image sensors), as Sec-
tion 5.1 describes. We detect the presence and estimate the centroids
and extent of landmarks in an image using the image processing
pipeline described in Section 5.2. Once the landmarks are found, we
determine their identities by decoding data embedded in the image,
which either contains an index to, or the actual value of, a landmark’s
coordinates, as described in Section 5.3. Finally, we estimate the
capacity of the CamCom channel we employ in Section 5.4.

5.1 Encoding Data in Landmark Beacons
Our system employs a unidirectional communications channel

that uses an LED as a transmitter and a smartphone camera as a
receiver. We encode data by modulating signals on the LED trans-
mitter. As our LEDs are used to illuminate the environment, it is
important that our system generates neither direct nor indirect flicker
(the stroboscopic effect). The Lighting Research Center found that
for any duty cycle, a luminaire with a flicker rate over 1 kHz was ac-
ceptable to room occupants, who could perceive neither effect [26].

5.1.1 Camera Communications Channel

When capturing an image, most CMOS imagers expose one or
more columns of pixels, but read out only one column at a time,
sweeping across the image at a fixed scan rate to create a rolling

shutter, as shown in Figure 4a. When a rapidly modulated LED is
captured with a CMOS imager, the result is a banding effect in the
image in which some columns capture the LED when it is on and
others when it is off. This effect is neither visible to the naked eye,
nor in a photograph that uses an auto-exposure setting, as shown
in Figure 4b. However, the rolling shutter effect is visible when an
image is captured using a short exposure time, as seen in Figure 4c.

In the Luxapose design, each LED transmits a single frequency
(from roughly 25-30 choices) as Figure 4c shows, allowing different
LEDs or LED constellations to be distinctly identified. To expand
the capacity of this channel, we also explore Manchester encoded
data transmission, which is appealing both for its simplicity and its
absence of a DC-component, which supports our data-independent
brightness constraint. Figure 4d shows an image captured by an
unmodified Lumia 1020 phone 1 m away from a commercial 6 inch
can light. Our goal is to illustrate the basic viability of sending
information over our VLC channel, but leave to future work the
problem of determining the optimal channel coding.
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back camera. The images shown are a 600× 600 pixel crop focusing on the transmitter, yielding a transmitter image with about a 450 pixel
diameter. The ambient lighting conditions are held constant across all images, demonstrating the importance of exposure control for CamCom.

5.1.2 Camera Control

Cameras export many properties that affect how they capture
images. The two most significant for the receiver in our CamCom
channel are exposure time and film speed.

Exposure Control. Exposure time determines how long each
pixel collects photons. During exposure, a pixel’s charge accumu-
lates as light strikes, until the pixel saturates. We seek to maximize
the relative amplitude between the on and off bands in the captured
image. Figure 5 shows the relative amplitude across a range of ex-
posure values. We find that independent of film speed (ISO setting),
the best performance is achieved with the shortest exposure time.
The direct ray of light from the transmitter is strong and requires less
than an on-period of the transmitted signal to saturate a pixel. For a
1 kHz signal (0.5 ms on, 0.5 ms off), an exposure time of longer than
0.5 ms (1/2000 s) guarantees that each pixel will be at least partially
exposed to an on period, which would reduce possible contrast and
result in poorer discrimination between light and dark bands.

Film Speed. Film speed (ISO setting) determines the sensitivity
or gain of the image sensor. Loosely, it is a measure of how many
photons are required to saturate a pixel. A faster film speed (higher
ISO) increases the gain of the pixel sense circuitry, causing each
pixel to saturate with fewer photons. If the received signal has a low
amplitude (far from the transmitter or low transmit power), a faster
film speed could help enhance the image contrast and potentially
enlarge the decoding area. It also introduces the possibility of am-
plifying unwanted reflections above the noise floor, however. As
Figure 5 shows, a higher film speed increases the importance of a
shorter exposure time for high contrast images. We prefer smaller
ISO values due to the proximity and brightness of indoor lights.

5.2 Finding Landmarks in an Image
Independent of any modulated data, the first step is to find the

centroid and size of each transmitter on the captured image. We
present one method in Figures 6a to 6e for identifying disjoint, circu-
lar transmitters (e.g. individual light fixtures). We convert the image
to grayscale, blur it, and pass it through a binary OTSU filter [18].
We find contours for each blob [25] and then find the minimum
enclosing circle (or other shape) for each contour. After finding each
of the transmitters, we examine each subregion of the image inde-
pendently to decode data from each light. We discuss approaches
for processing other fixture types, such as Figure 18, in Section 8.
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darkest pixels in an image. The longer the exposure, the higher the
probability that a pixel accumulates charge while another saturates,
reducing the resulting contrast between the light and dark bands. As
film speed (ISO) increases, a fewer number of photons are required
to saturate each pixel. Hence, we minimize the exposure time and
film speed to maximize the contrast ratio, improving SNR.

5.3 Decoding Data in Images
Once the centroid and extent of any landmarks are found in

an image, the next step is to extract the data encoded in beacon
transmissions in these regions using one of four methods.

Decoding Pure Tones – Method One. Our first method of fre-
quency decoding samples the center row of pixels across an image
subregion and takes an FFT of that vector. While this approach de-
codes accurately, we find that it is not very precise, requiring roughly
200 Hz of separation between adjacent frequencies to reliably de-
code. We find in our evaluation, however, that this approach decodes
more quickly and over longer distances than method two, creating a
tradeoff space, and potential optimization opportunities.

Decoding Pure Tones – Method Two. Figures 6g to 6j show
our second method, an image processing approach. We first apply
a vertical blur to the subregion and then use an OTSU filter to get
threshold values to pass into the Canny edge detection algorithm [3].
Note the extreme pixelation seen on the edges drawn in Figure 6i;
these edges are only 1 pixel wide. The transmitter captured in this
subregion has a radius of only 35 pixels. To manage this quantization,
we exploit the noisy nature of the detected vertical edge and compute
the weighted average of the edge location estimate across each row,
yielding a subpixel estimation of the column containing the edge.



(a) Original (Cropped) (b) Blurred (c) Binary OTSU [18] (d) Contours [25] (e) Result: Centers

(f) Subregion (131×131 px) (g) Vertical Blur (h) ToZero OTSU [18] (i) Canny Edges [3] (j) Result: Frequency

Figure 6: Image processing pipeline. The top row of images illustrate our landmark detection algorithm. The bottom row of images illustrate
our image processing pipeline for frequency recovery. These images are edited to move the transmitters closer together for presentation.

Near the transmitter center, erroneous edges are sometimes iden-
tified if the intensity of an on band changes too quickly. We majority
vote across three rows of the subregion (the three rows equally parti-
tion the subregion) to decide if each interval is light or dark. If an
edge creates two successive light intervals, it is considered an error
and removed. Using these precise edge estimates and the known
scan rate, we convert the interval distance in pixels to the transmitted
frequency with a precision of about 50 Hz., offering roughly 120
channels (6 kHz/50 Hz). In addition to the extra edge detection and
removal we also attempt to detect and insert missing edges. We
compute the interval values between each pair of edges and look for
intervals that are statistical outliers. If the projected frequency from
the non-outlying edges divides cleanly into the outlier interval, then
we have likely identified a missing edge, and so we add it.

Decoding Manchester Data. To decode Manchester data, we
use a more signal processing-oriented approach. Like the FFT for
tone, we operate on only the center row of pixels from the subre-
gion. We use a matched filter with a known pattern (a preamble)
at different frequencies and search for the maximum correlation.
When found, the maximum correlation also reveals the preamble
location. The frequency of the matched filter is determined by the
number of pixels per symbol. It can be calculated as Fs

2×n
, where

Fs is the sampling rate of the camera and n is an integer. As the
frequency increases, n decreases, and the quantization effect grows.
For example, Fs on the Lumia 1020 is 47.54 kHz, so an n value of
5 matches a 4.75 kHz signal. Using the best discrete matched filter,
we search for the highest correlation value anywhere along the real
pixel x-axis, allowing for a subpixel estimation of symbol location,
repeating this process for each symbol.

Decoding Hybrid Transmissions. To balance the reliability of
detecting pure tones with the advantages of Manchester encoded
data, we explore a hybrid approach, alternating the transmission of
a pure tone and Manchester encoded data, as Figure 4e shows. By
combining frequency and data transmission, we decouple localiza-
tion from communication. When a receiver is near a transmitter, it
can take advantage of the available data channel, but it can also de-
code the frequency information of lights that are far away, increasing
the probability of a successful localization.

5.4 Estimating Channel Capacity
The size of the transmitter and its distance from the receiver

dictate the area that the transmitter projects onto the imager plane.
The bandwidth for a specific transmitter is determined by its image
length (in pixels) along the CMOS scan direction. Assuming a
circular transmitter with diameter A m, its length on the image
sensor is A× f/h pixels, where f is the focal length of the camera
and h is the height from the transmitter to the receiver. The field of
view (FoV) of a camera can be expressed as α = 2× arctan( X

2×f
),

where X is the length of the image sensor along the direction of the
FoV. Combining these, the length of the projected transmitter can
be expressed as A×X

h×2×tan(FoV/2)
.

As an example, in a typical retail setting, A is 0.3~0.5 m and
h is 3~5 m. The Glass camera (X = 2528 px, 14.7° FoV) has a
“bandwidth” of 588~1633 px. The higher-resolution Lumia 1020
camera (X = 5360 px, 37.4° FoV) bandwidth is actually lower,
475~1320 px, as the wider FoV maps a much larger scene area to
the fixed-size imager as the distance increases. This result shows
that increasing resolution alone may not increase effective channel
capacity without paying attention to other camera properties.

6. IMPLEMENTATION DETAILS
To evaluate the viability and performance of the Luxapose de-

sign, we implement a prototype system using a variety of LED
luminaires, an unmodified smartphone, and a Python-based cloudlet
(all available at https://github.com/lab11/vlc-localization/).

6.1 LED Landmarks
We construct landmarks by modifying commercial LED lumi-

naires, including can, tube, and task lamps, as shown in Figure 7a,
but full-custom designs are also possible. Figure 7b shows the mod-
ifications, which include cutting (×) and intercepting a wire, and
wiring in a control unit that includes a voltage regulator (VR) and a
microcontroller (MCU) or programmable oscillator (OSC) control-
ling a single FET switch. We implement two control units, as shown
in Figure 7c, for low- and high-voltage LED driver circuits, using a
voltage-controlled oscillator with 16 frequency settings.



(a) LED landmarks: can, tube, task, and custom beacons.
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Figure 7: LED landmarks. (a) Commercial and custom LED beacons.
(b) A commercial luminaire is modified by inserting a control unit.
(c) Two custom control units with 16 programmable tones. The units
draw 5 mA and cost ~$3 each in quantities of 1,000, suggesting they
could be integrated into commercial luminaires.

6.2 Smartphone Receiver
We use the Nokia Lumia 1020 to implement the Luxapose re-

ceiver design. The Lumia’s resolution—7712×5360 pixels—is the
highest among many popular phones, allowing us the greatest exper-
imental flexibility. The deciding factor, however, is not the hardware
capability of the smartphone, but rather its OS support and camera
API that expose control of resolution, exposure time, and film speed.
Neither Apple’s iOS nor Google’s Android currently provide the
needed camera control, but we believe they are forthcoming. Only
Windows Phone 8, which runs on the Lumia, currently provides a
rich enough API to perform advanced photography [16].

We modify the Nokia Camera Explorer [17] to build our applica-
tion. We augment the app to expose the full range of resolution and
exposure settings, and we add a streaming picture mode that continu-
ously takes images as fast as the hardware will allow. Finally, we add
cloud integration, transferring captured images to our local cloudlet
for processing, storage, and visualization without employing any
smartphone-based optimizations that would filter images.

We emphasize that the platform support is not a hardware issue
but a software issue. Exposure and ISO settings are controlled by
OS-managed feedback loops. We are able to coerce these feedback
loops by shining a bright light into imagers and removing it at the
last moment before capturing an image of our transmitters. Using
this technique, we are able to capture images with 1/7519 s exposure
on ISO 68 film using Google Glass and 1/55556 s exposure and ISO 50
on an iPhone 5; we are able to recover the location information from
these coerced-exposure images successfully, but evaluating using
this approach is impractical, so we focus our efforts on the Lumia.

Photogrammetry—the discipline of making measurements from
photographs—requires camera characterization and calibration. We
use the Nokia Pro Camera application included with the Lumia,
which allows the user to specify exposure and ISO settings, to cap-
ture images for this purpose. Using known phone locations, beacon
locations, and beacon frequencies, we measure the distance between
the lens and imager, Zf (1039 pixels, 5620 pixels), and scan rate
(30,880 columns/s, 47,540 columns/s), for the front and back cameras, re-
spectively. To estimate the impact of manufacturing tolerances, we
measure these parameters across several Lumia 1020s and find only a
0.15% deviation, suggesting that per-unit calibration is not required.

Camera optics can distort a captured image, but most smartphone
cameras digitally correct distortions in the camera firmware [23]. To
verify the presence and quality of distortion correction in the Lumia,

Figure 8: Indoor positioning testbed. Five LED beacons are mounted
246 cm above the ground for experiments. Ground truth is provided
by a pegboard on the floor with 2.54 cm location resolution.

we move an object from the center to the edge of the camera’s
frame, and find that the Lumia’s images show very little distortion,
deviating at most 3 pixels from the expected location.

The distance, Zf , between the center of lens and the imager is a
very important parameter in AoA localization algorithms. Unfortu-
nately, this parameter is not fixed on the Lumia 1020, which uses a
motor to adjust the lens for sharper images. This raises the question
of how this impacts localization accuracy. In a simple biconvex lens
model, the relationship between s1 (distance from object to lens),
s2 (from lens to image), and f (focal length) is:

1

s1
+

1

s2
=

1

f

where s2 and Zf are the same parameter but s2 is measured in
meters whereas Zf is measured in pixels. s2 can be rewritten as
s1×f
s1−f

. For the Lumia 1020, f = 7.2 mm. In the general use case, s1
is on the order of meters which leads to s2 values between 7.25 mm
(s1 = 1 m) and 7.2 mm (s1 = ∞). This suggests that Zf should
deviate only 0.7% from a 1 m focus to infinity. As lighting fixtures
are most likely 2∼5 m above ground, the practical deviation is even
smaller, thus we elect to use a fixed Zf value for localization. We
measure Zf while the camera focuses at 2.45 m across 3 Lumia
phones. All Zf values fall within 0.15% of the average: 5,620 pixels.

While the front camera is more likely to face lights in day-to-
day use, we use the back camera for our experiments since it offers
higher resolution. Both cameras support the same exposure and ISO
ranges, but have different resolutions and scan rates. Scan rate places
an upper bound on transmit frequency, but the limited exposure
range places a more restrictive bound, making this difference moot.
Resolution imposes an actual limit by causing quantization effects
to occur at lower frequencies; the maximum frequency decodable
by the front camera using edge detection is ∼5 kHz, while the
back camera can reach ∼7 kHz. Given Hendy’s Law—the annual
doubling of pixels per dollar—we focus our evaluation on the higher-
resolution imager, without loss of generality.

6.3 Cloudlet Server
A cloudlet server implements the full image processing pipeline

shown in Figure 6 using OpenCV 2.4.8 with Python bindings. On
an unburdened MacBook Pro with a 2.7 GHz Core i7, the median
processing time for the full 33 MP images captured by the Lumia
is about 9 s (taking picture: 4.46 s, upload: 3.41 s, image process-
ing: 0.3 s, estimate location: 0.87 s) without any optimizations. The
cloudlet application contains a mapping from transmitter frequency
to absolute transmitter position in space. Using this mapping and
the information from the image processing, we implement the tech-
niques described in Section 4 using the leastsq implementation
from SciPy. Our complete cloudlet application is 722 Python SLOC.
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Figure 9: Key location and orientation results under realistic usage conditions on our indoor positioning testbed. The shaded areas are directly
under the lights. (a), (b), and (e) show Luxapose’s estimated location and orientation of a person walking from the back, top, and side views,
respectively, while using the system. A subject carrying a phone walks underneath the testbed repeatedly, trying to remain approximately
under the center (x = −100 . . . 100, y = 0, z = 140). We measure the walking speed at ~1 m/s. (d) suggests location estimates (solid line) and
orientation (dotted line) under the lights (blue), have lower error than outside the lights (red). (c) and (f) show the effect of motion blur. To
estimate the impact of motion while capturing images, we place the smartphone on a model train running in an oval at two speeds. While the
exact ground truth for each point is unknown, we find the majority of the estimates fall close to the track and point as expected.

7. EVALUATION
In this section, we evaluate position and orientation accuracy in

both typical usage conditions and in carefully controlled settings.
We also evaluate the visible light communications channel for pure
tones, Manchester-encoded data, and a hybrid of the two. Our exper-
iments are carried out on a custom indoor positioning testbed.

7.1 Experimental Methodology
We integrate five LED landmarks, a smartphone, and a cloudlet

server into an indoor positioning testbed, as Figure 8 shows. The
LED landmarks are mounted on a height-adjustable pegboard and
they form a 71.1×73.7 cm rectangle with a center point. A com-
plementary pegboard is affixed to floor and aligned using a laser
sight and verified with a plumb-bob, creating a 3D grid with 2.54 cm
resolution of known locations for our experimental evaluation. To
isolate localization from communications performance, we set the
transmitters to emit pure tones in the range of 2 kHz to 4 kHz,
with 500 Hz separation, which ensures reliable communications
(we also test communications performance separately). Using this
testbed, we evaluate indoor positioning accuracy—both location and
orientation—for a person, model train, and statically.

7.2 Realistic Positioning Performance
To evaluate the positioning accuracy of the Luxapose system

under realistic usage conditions, we perform an experiment in which
a person repeatedly walks under the indoor positioning testbed,
from left to right at 1 m/s, as shown from the top view of the testbed
in Figure 9b and side view in Figure 9e. The CDF of estimated loca-
tion and orientation errors when the subject is under the landmarks
(shaded) or outside the landmarks (unshaded) is shown in Figure 9d.
When under the landmarks, our results show a median location error
of 7 cm and orientation error of 6◦, substantially better than when
outside the landmarks, which exhibit substantially higher magnitude
(and somewhat symmetric) location and orientation errors.

To evaluate the effect of controlled turning while under the
landmarks, we place a phone on a model train running at 6.75 cm/s
in an oval, as shown in Figure 9c. Most of the location samples fall
on or within 10 cm of the track with the notable exception of when
the phone is collinear with three of the transmitters, where the error
increases to about 30 cm, though this is an artifact of the localization
methodology and not the motion. When the speed of the train is
doubled—to 13.5 cm/s—we find a visible increase in location and
orientation errors, as shown in Figure 9f.
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Figure 10: Localization accuracy at a fixed height (246 cm). (a)
shows a heat map of error when all 5 transmitters are present in
the image, and (c) shows a CDF of the error. (d) explores how
the system degrades as transmitters are removed. Removing any
one transmitter (corner or center) has minimal impact on location
error, still remaining within 10 cm for ~90% of locations. Removing
two transmitters (leaving only the minimum number of transmitters)
raises error to 20~60 cm when corners are lost and as high as 120 cm
when the center and a corner are lost. As shown in the heat map in
(b), removing the center and corner generates the greatest errors as
it creates sample points with both the largest minimum distance to
any transmitter and the largest mean distance to all transmitters.

7.3 Controlled Positioning Accuracy
To evaluate the limits of positioning accuracy under controlled,

static conditions, we take 81 pictures in a grid pattern across 100×
100 cm area 246 cm below the transmitters and perform localization.
When all five transmitters are active, the average position error across
all 81 locations is 7 cm, as shown in Figure 10a and Figure 10c.
Removing any one transmitter, corner or center, yields very similar
results to the five-transmitter case, as seen in the CDF in Figure 10d.

Removing two transmitters can be done in three ways: (i) remov-
ing two opposite corners, (ii) removing two transmitters from the
same side, and (iii) removing one corner and the center. Performing
localization requires three transmitters that form a triangle on the
image plane, so (i) is not a viable option. Scenario (iii) introduces
the largest error, captured in the heatmap in Figure 10b, with an
average error as high as 50 cm in the corner underneath the missing
transmitter. In the case of a missing side (ii), the area underneath the
missing transmitters has an average error of only 29 cm. Figure 10d
summarizes the results of the removing various transmitter subsets.

In our worst case results, on an unmodified smartphone we are
able to achieve parity (∼50 cm accuracy) with the results of systems
such as Epsilon [13] that require dedicated receiver hardware in
addition to the infrastructure costs of a localization system. However,
with only one additional transmitter in sight, we are able to achieve
an order of magnitude improvement in location accuracy.
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Figure 12: We rotate the mobile phone along axes parallel to the z′-,
y′-, and x′-axis. Along the z′-axis, the mobile phone rotates 45° at a
time and covers a full circle. Because of FoV constraints, the y′-axis
rotation is limited to -27° to 27° and the x′-axis is limited to -18° to
18° with 9° increments. The experiments are conducted at a height
of 240 cm. The angle error for all measurements falls within 3°.

Thus far, we have assumed the precise location of each transmit-
ters is known. Figure 11 explores the effect of transmitter installation
error on positioning by introducing a 5% error in 1–5 transmitter
positions and re-running the experiment from Figure 10a. With
5% error in the origin of all five transmitters, our system has only
a 30 cm 50th percentile error, which suggests some tolerance to
installation-time measurement and calibration errors.

To evaluate the orientation error from localization, we rotate
the phone along the x′, y′, and z′ axes. We compute the estimated
rotation using our localization system and compare it to ground
truth when the phone is placed 240 cm below the 5 transmitters.
Figure 12 shows the orientation accuracy across all 3 rotation axes.
The rotation errors fall within 3° in all measurements.

7.4 Frequency-Based Identification
We evaluate two frequency decoders and find that the FFT is

more robust, but edge-detection gives better results when it succeeds.
Rx Frequency Error vs Tx Frequency. Figure 13 sweeps the

transmit frequency from 1 to 10 kHz in 500 Hz steps and evaluates
the ability of both the FFT and edge detector to correctly identify
the transmitted frequency. The edge detector with 1/16667 s exposure
performs best until 7 kHz when the edges can no longer be detected
and it fails completely. The FFT detector cannot detect the frequency
as precisely, but can decode a wider range of frequencies.
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Figure 15: Examining the decodability of Manchester data across various transmit frequencies and distances. Figures (b) through (e) share the
same legends. The transmitted frequencies are 2.5 KHz, 3.5 KHz, 4.5 KHz, 5.5 KHz and 6.5 KHz.
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Figure 13: Frequency recovery at 0.2 m, 1/16667 s, ISO 100. The edge
detector performs better until ∼7 kHz when quantization causes it
to fail completely. The FFT method has lower resolution but can
decode a wider frequency range.
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Figure 14: As distance grows, the light intensity and area fall super-
linearly. Using a higher ISO amplifies what little light is captured,
enhancing frequency recoverability. We transmit a 1 kHz frequency
on a commercial LED and find that the decoded frequency error
remains under 100 Hz for distances up to 6 m from the transmitter.

Rx Frequency Error vs Tx Distance. As the distance between
the transmitter and phone increases, the received energy at each pixel
drops due to line of sight path loss [8]. The area of the transmitter
projected onto the imager plane also decreases. These factors reduce
the ability to decode information. In Figure 14 we use a 10 cm
diameter 14 W Commercial Electric can light to explore the impact
of distance on our ability to recover frequency, and the effect of
varying the ISO to attempt to compensate for the lower received
power. As intensity fades, the edge detection cannot reliably detect
edges and it fails. The FFT method is more robust to this failure, as
it is able to better take advantage of pixels with medium intensity.

The Importance of Frequency Channels. Human constraints
and optics constraints limit our bandwidth to 1~7 kHz. With an
effective resolution of 200 Hz, the FFT decoder can only identify
about 30 channels, and thus can only label 30 unique transmitters.
The finer 50 Hz resolution of the edge detector allows for about
120 channels. A typical warehouse-style store, however, can easily
have over 1,000 lights. We explore techniques for more efficiently
using this limited set of frequency channels in Section 8.
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Figure 16: Hybrid decoding is able to better tolerate the frequency
quantization ambiguity than pure Manchester. Shorter data has a
higher probability of being correctly decoded at long distances.

7.5 Decoding Manchester Data
The relative size of a transmitter in a captured image dominates

data decodability. If the physical width of a transmitter is A and
the distance from the imager is D, the width of the transmitter on
the image is A/D × Zf pixels. Figure 15a shows measured width
in pixels and theoretical values at different distances. Figure 15b
shows the effect on the maximum theoretical bandwidth when using
Manchester encoding for various frequencies. Figure 15c finds that
if the transmitter frequency is known, the symbol error rate (SER) is
∼10−3. Our sweeping match filter is able to detect frequency until a
quantization cutoff, as Figure 15d shows. When the frequency is not
known a priori, Figure 15e shows that the SER correlates strongly
with the ability to decode frequency.

7.6 Decoding Hybrid Data
Hybrid decoding first decodes the pure tone frequency and then

is able to use the known frequency to improve its ability to decode
the data. As distance increases, the probability of capturing the data
segment in the limited transmitter area falls, thus Figure 16 finds
that shorter messages are more robust to large distances.

8. DISCUSSION
In this section, we discuss some limitations of our current system

and potential directions for future work.
Deployment Considerations. In real settings, all LED loca-

tions must be known, although only the relative distances between
closely located LEDs must be known with high accuracy. Although
not trivial, it does not seem difficult to ensure that this condition
holds. We have deployed a grid of sixteen luminaires in our lab,
and we analyze the effect of location errors on localization accuracy
in Section 7.3. We note that almost any localization system must
know the anchor locations. In a practical setting, this would be done,
presumably, with the aid of blueprints and a laser rangefinder.

Usability. Our system targets an active user, so that the front-
facing camera naturally observes the ceiling during use. Passive
localization (e.g. while the phone is in a pocket) is out of scope.
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Figure 17: (a)Local filtering. In this experiment, we walk under our testbed, capturing images at about 1 fps. We divide each frame into 8
“chunks” and run an FFT along the center row of pixels for each chunk. The FFTs of non-negligible chunks are presented next to each image.
At each location, we also capture an image taken with traditional exposure and film speed settings to help visualize the experiment; the FFTs
are performed on images captured with 1/16667 s exposure on ISO 100 film. (b)-(c), Recursive Searching. The image is partitioned and each
segment is quickly scanned by taking an FFT of the column sum of each segment. Segments with no peaks are discarded and segments with
interesting peaks are recursed into until the minimum decodable transmitter size (~60 pixels) is found.

Figure 18: (left) The same LED tube imaged twice at 90◦ rotations
shows how multiple beacons can be supported in a single lamp.
(right) A single fixture can support multiple LED drivers (four here).
An image capturing only this fixture could be used to localize.

Distance. Distance is the major limitation for our system. Re-
ceived signal and projected image size are strongly affected by dis-
tance. We find that a 60 pixel projection is roughly the lower bound
for reliable frequency decoding. However, as camera resolutions
increase, our usable distance will improve.

Local Filtering. Not all images capture enough transmitters to
successfully localize. It would be desirable to perform some local
filtering to discard images that would not be useful for positioning,
thus avoiding the cost of transferring undecodable images to the
cloud. We explore one such possibility in Figure 17a. The phone
selects a sampling of image rows and performs an FFT, searching
for the presence of high frequency components. This fast and simple
algorithm rejects many images that would not have decoded.

Alternative Image Processing. Building on the local filtering
concept, another possible approach for locating transmitters in the
captured image, like Figure 17b, may be a divide and conquer tech-
nique, as shown in Figure 17c. As this algorithm already partitions
the image into bins with FFTs, it is also well suited to solve the
problem of separating non-disjoint transmitters. If only the filtered
chunks are processed, the processing load is substantially reduced—
from 33 MP to 0.42 MP (13 chunks × (33/1024) MP/chunk), dramat-
ically reducing image transfer time to the cloudlet, and the process-
ing time on the cloudlet. This approach may even allow positioning
to occur entirely on the smartphone.

Fixture Flexibility. Our system requires that at least three trans-
mitters are captured and decoded. Many LED fixtures, such as office
fluorescent T8 tube replacements, are actually multiple LED trans-
mitters in a single fixture. Figure 18 shows how a single LED tube
can transmit multiple beacons (left) and how a fixture with multiple
tubes could support the non-collinear transmitter requirement (right).
Localizing with this fixture would require improving our image pro-
cessing, which currently assumes disjoint, circular transmitters.

Interference. Since only the direct line-of-sight path is captured
by our short exposure time, there is little danger from interference
regardless of transmitter density (for two transmitters’ projections
to alias, the pixel quantization must be so poor that they are only
mapping to a few pixels and are undecodable anyway).

Limited Frequency Channels. Our system has a limited set
(up to 120) of frequencies with which to label each transmitter.
One method to increase the number of labels would be to have
each transmitter alternate between two frequencies (

(

120
2

)

= 7140).
Reliably and accurately estimating inter-frame motion (e.g. using
the accelerometer and gyroscope), however, could prove difficult,
making it difficult to match transmitter projections across frames.

A simpler approach that still requires only a single image is to
simply re-use labels and leverage transmitter adjacency relationships.
As our system captures contiguous images and requires at least three
landmarks to localize, the adjacency relationships between lights
form another constraint that can uniquely identify transmitters. Actu-
ally identifying transmitters with this system is surprisingly simple.
For each frequency observed, consider all possible transmitter lo-
cations and compute the total inter-transmitter distance. The set of
transmitters that minimizes this distance are the actual transmit-
ters. This transmitter labeling technique is the same minimization
procedure already used by the processing for AoA estimation.

Dimmable LEDs. Dimming is a requirement in 802.15.7. LEDs
can be dimmed by either reducing their current or using PWM. As
PWM dimming may affect our transmitted signal, we briefly explore
its impact by PWM dimming an LED using a frequency higher than
the phone’s scan rate (we use 1 MHz, 10% duty cycle). We find that
it does not affect our ability to decode data.

Privacy. Our design does not require interaction with the local
environment. Luminaires are unidirectional beacons and image cap-
ture emits no signals. If needed, the lookup table can be acquired
once out of band, and processing could be done either on the phone
or a user’s private cloud. A user can thus acquire location estimates
without sharing any location information with any other entity.



9. CONCLUSIONS
Accurate indoor positioning has been called a “grand challenge”

for computing. In this paper, we take a small step toward address-
ing this challenge by showing how unmodified smartphones and
slightly-modified LED lighting can support accurate indoor posi-
tioning with higher accuracy than prior work. Our results show that
it is possible to achieve decimeter location error and 3◦ orientation
error by simply walking under an overhead LED light while using
one’s smartphone. When used in typical retail settings with over-
head lighting, this allows a user to be accurately localized every few
meters, perhaps with dead reckoning filling in the gaps. Although
our current approach has many drawbacks, none appear to be fun-
damental. Having demonstrated the viability of the basic approach,
future work could explore the rolling shutter channel, improve chan-
nel capacity, increase image processing performance, and reduce
positioning error.
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