
CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 1

CSE 141: Introduction to Computer Architecture

Advanced Pipelines

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 2

Part I: Exceptions

• This is the last piece of what’s needed to make a “real” CPU useful

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 3

Exceptions

• There are two sources of non-sequential control flow in a processor

– explicit branch and jump instructions

– exceptions

• Branches are synchronous and deterministic

• Exceptions are typically asynchronous and non-deterministic

• Guess which is more difficult to handle?

(recall: control flow refers to the movement of the program counter through memory)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 4

Exceptions and Interrupts

The terminology is not consistent, but we’ll refer to

• exceptions as any unexpected change in control flow

• interrupts as any externally-caused exception

So then, what is:

– arithmetic overflow

– divide by zero

– I/O device signals completion to CPU

– user program invokes the OS

– memory parity error

– illegal instruction

– timer signal

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 5

For now...

• The machine we’ve been designing in class can generate two types of

exceptions.

–

–

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 6

For now...

• The machine we’ve been designing in class can generate two types of

exceptions.

– arithmetic overflow

– illegal instruction

• On an exception, we need to

– save the PC (invisible to user code)

– record the nature of the exception/interrupt

– transfer control to OS

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 7

First steps towards supporting exceptions

• For our MIPS-subset architecture, we will add two
registers:

– EPC: a 32-bit register to hold the user’s PC

– Cause: A register to record the cause of the exception

• we’ll assume undefined inst = 0, overflow = 1

• We will also add three control signals:

– EPCWrite (will need to be able to subtract 4 from PC)

– CauseWrite

– IntCause

• We will extend PCSource multiplexor to be able to
latch the interrupt handler address into the PC.

E
P
C

C
au
se

P
C

PCWrite EPCWrite

CauseWrite

IntCause

PCSource

Interrupt

Handler
Address

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 8

Pipelining and Exceptions

• Again, exceptions represent another form of control flow and therefore
control dependence.

• Therefore, they create a potential branch hazard

• Exceptions must be recognized early enough in the pipeline that subsequent
instructions can be flushed before they change any permanent state.

– Q: What is the first stage that can change permanent state?

• We also have issues with handling exceptions in the correct order and
“exceptions” on speculative instructions.

• Exception-handling that always correctly identifies the offending
instruction is called precise interrupts

– (different words, same idea: ARM has asynchronous / synchronous exceptions)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 9

Pipelining and Exceptions – The Whole Picture

(except not really)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 10

Part II: The Fancy Stuff in Real (Fast) Machines

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 11

Pipelining in Today’s Most Advanced Processors

• Not fundamentally different than the techniques we discussed

• Deeper pipelines

• Pipelining is combined with

– superscalar execution

– out-of-order execution

– VLIW (very-long-instruction-word)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 12

Deeper Pipelines

• Power 4

• Pentium 3

• Pentium 4
Pentium 4 “Prescott”
- Deeper still: 31 stages!

- Planned for up to 5 GHz
operation! (scrapped)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 13

Superscalar Execution
IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 14

Selection

A Any two instructions

B Any two independent instructions

C An arithmetic instruction and a memory instruction

D Any instruction and a memory instruction

E None of the above

What can this do in

parallel?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 15

A modest superscalar MIPS

• what can this machine do in parallel?

• what other logic is required?

• Represents earliest superscalar technology (eg, circa early 1990s)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 16

Superscalar Execution

• To execute four instructions in the same cycle, we must find four
independent instructions

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 17

Superscalar Execution

• To execute four instructions in the same cycle, we must find four
independent instructions

• If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 18

Superscalar Execution

• To execute four instructions in the same cycle, we must find four
independent instructions

• If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

• If the four instructions fetched are only executed together if hardware
confirms that they are independent, this is an in-order superscalar
processor.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 19

Superscalar Execution

• To execute four instructions in the same cycle, we must find four
independent instructions

• If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

• If the four instructions fetched are only executed together if hardware
confirms that they are independent, this is an in-order superscalar
processor.

• If the hardware actively finds four (not necessarily consecutive)
instructions that are independent, this is an out-of-order superscalar
processor.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 20

Superscalar Execution

• To execute four instructions in the same cycle, we must find four
independent instructions

• If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

• If the four instructions fetched are only executed together if hardware
confirms that they are independent, this is an in-order superscalar
processor.

• If the hardware actively finds four (not necessarily consecutive)
instructions that are independent, this is an out-of-order superscalar
processor.

• What do you think are the tradeoffs?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 21

Superscalar Scheduling

• Assume in-order, 2-issue, ld-store followed by integer

lw $6, 36($2)

add $5, $6, $4
lw $7, 1000($5)

sub $9, $12, $5

• Assume 4-issue, in-order, any combination (VLIW?)

lw $6, 36($2)

add $5, $6, $4
lw $7, 1000($5)

sub $9, $12, $5

sw $5, 200($6)

add $3, $9, $9

and $11, $7, $6
• When does each instruction begin execution?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 22

Superscalar vs. superpipelined

(multiple instructions in the same stage, same clock rate as scalar)

(more total stages, faster clock rate)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 23

Dynamic Scheduling

aka,Out-of-Order Scheduling

• Issues (begins execution of) an instruction as soon as all of its
dependences are satisfied, even if prior instructions are stalled.
(assume 2-issue, any combination)

lw $6, 36($2)

add $5, $6, $4

lw $7, 1000($5)

sub $9, $12, $8

sw $5, 200($6)

add $3, $9, $9

and $11, $5, $6

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 24

Reservation Stations
(other pieces: ROB, RAT, RRAT.. CSE 148 covers these!)

• Are a mechanism to allow dynamic scheduling (out of order execution)

ALU op rs rs value rt rt value rdy

result bus

Execution

Unit

reg

file

ALU op rs rs value rt rt value rdy

ALU op rs rs value rt rt value rdy

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 25

Pentium 4

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 26

Modern (Pre-Multicore) Processors

• Pentium II, III – 3-wide superscalar, out-of-order, 14 integer pipeline stages

• Pentium 4 – 3-wide superscalar, out-of-order, simultaneous multithreading, 20+ pipe stages

• AMD Athlon, 3-wide ss, out-of-order, 10 integer pipe stages

• AMD Opteron, similar to Athlon, with 64-bit registers, 12 pipe stages, better multiprocessor
support.

• Alpha 21164 – 2-wide ss, in-order, 7 pipe stages

• Alpha 21264 – 4-wide ss, out-of-order, 7 pipe stages

• Intel Itanium – 3-operation VLIW, 2-instruction issue (6 ops per cycle), in-order, 10-stage pipeline

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 27

More Recent Developments – Multicore Processors

• IBM Power 4, 5, 6, 7
– Power 4 dual core
– Power 5 and 6, dual core, 2 simultaneous multithreading (SMT) threads/core
– Power7 4-8 cores, 4 SMT threads per core

• Sun Niagara
– 8 cores, 4 threads/core (32 threads).
– Simple, in-order, scalar cores.

• Sun Niagara 2
– 8 cores, 8 threads/core.

• Intel Quad Core Xeon

• AMD Quad Core Opteron

• Intel Nehalem, Ivy Bridge, Sandy Bridge, Haswell, Skylake, …(Core i3, i5, i7, etc.)
– 2 to 8 cores, each core SMT (2 threads)

• AMD Phenom II
– 6 cores, not multithreaded

• AMD Zen
– 4-8 (mainstream, but up to 32) cores, 2 SMT threads/core, superscalar (6 micro-op/cycle)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 28

Intel SkyLake

• Up to 4 cores (CPUs)

• Each core can have 224 uncommitted instructions in the pipeline
• Up to 72 loads

• Up to 56 stores

– 97 unexecuted instructions in the pipeline waiting to be scheduled

– Has 180 physical integer registers (used via register renaming)

– Has 168 physical floating point registers

– Executes up to 4 (?) micro-ops/cycle (think RISC instructions)

– Has a 16-cycle branch hazard

• (note—Intel now hiding more and more architectural details)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 29

Intel SkyLake

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 30

What do we know about the Apple M1? We can learn from

the A14 (the M1 may be a rebranded, lightly enhanced A14)

This part makes a lot of
sense for a new player

This part implies

they must be doing

something different

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 31

(Really this section should be what does Andrei Frumusanu know

about the M1 – the AnandTech writeup is pretty good)

• 12 MB L2 cache [this is huge]
• C.f. Intel Tiger Lake @ 1.25*4 = 5MB
• C.f. Intel Cooper Lake @ 1*28 = 28MB

• For $13,000
• Massive ILP

• 8-wide instruction issue [SMT actual unclear]
• C.f. Intel’s 1+4 [CISC limitation??]
• C.f. Samsung 6-wide [also ARM]

• Truly massive OoO window
• ~630 instructions in flight??
• C.f. Intel Willow Cove at 352
• C.f. AMD Zen3 at 256

Much more here: https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 32

The

Internet’s

Educated

Guess

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 33

Part III: The Less Fancy Stuff in Real (Low-Power) Machines

• How much of a real processor can we implement with CSE 141 alone?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 34

Acorn/Advanced RISC Machine (ARM) has three processor

families

• Cortex A – “Application” processors

• Cortex R – “Real-Time” processors

• Cortex M – “Microcontroller” processors

– (get it?)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 35

The Cortex-M family exposes a wide tradeoff of capability
and cost – measured mostly in $$, Joules, and die area

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 36

Let’s look at the ARM Cortex-M3 in depth

• ISA: “Thumb2”, specifically ARMv7-M

– Mixed 16/32-bit instructions [“hybrid length”
instructions]

– Compromise: many instructions can be compact,
why waste bits? Still simple (just two cases)

• 3 stage, in-order, single issue pipeline

– With single-cycle hardware multiply!

• It has a branch predictor…

– It predicts Not Taken!

– 2 cycle mis-predict penalty

• It has a 3-word prefetcher

– Prefetchers help make unified memory designs fast

– Q: How many instructions can prefetcher hold?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 37

Implications of being area and energy constrained

• Performance / Watt >> than raw Performance
– Latest designs are 22 µA/MHz (this is the measure that matters for IoT!)

• Fewer general purpose registers (There are 16)
– Many of the smaller (16-bit) encodings can only access r0-r7

• Much slower core frequency (many in the 1-8 MHz, fastest M3’s 48 or maybe 96 MHz)

• Much simpler microarchitecture
– In-order design
– Limited parallelism

• Tightly coupled memory -- No cache!
– (well, a 3 word instruction cache)
– Just 1 cycle memory access penalty! (i.e. ldr instruction takes 2 cycles, with no cache!)

– VERY different than traditional processors

• Q: How might Amdahl’s law explain tradeoffs in embedded MCUs?
– Embedded processors are duty cycled, modern ones run ~0.1% of the time

– In embedded: Compute is not the bottleneck! New arch tradeoff opportunity!

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 38

How is ML at the edge

changing the edge?

• Hot new chip: MAX78000

– 22 uA/MHz Cortex-M4

– + RISC-V Co-Processor

– + CNN accelerator

– + many peripherals

In this whole chip, this

part is the processor

https://www.maximintegrated.com/en/products/microcontrollers/MAX78000.html

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 39

There are many, many more deeply embedded processors

than high performance general purpose processors

• 0% of processors in the world are “high-performance” processors

– Seriously, the number of Intel Core XXX and AMD XXX are a rounding error
compared to AVR, MIPS (yes, our MIPS), PIC, ARM Cortex M’s, etc

• So why do we talk about the fancy machines?

– Thought experiment: Which gives you the most aggregate processing power:

– (Very) Coarse estimate: 1 trillion PIC-8’s in the world

• Say, average 50 MHz, CPI of ~20 [for 32-bit math]

– (Very) Coarse estimate: 120 billion ARM Cortex-M’s in the world
• Say, average 24 MHz, CPI of ~1.25

– (Very) Coarse estimate: 1 billion Intel Core i7’s in the world
• Say, average 4 GHz, CPI of ~0.25

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 40

Advanced Pipelining -- Key Points

• Exceptions are another form of control flow

– An ”unexpected branch” or ”unprogrammed branch” perhaps

• Scalar [fancy word for non-parallel] pipelining attempts to get CPI close
to 1. To improve performance we must reduce cycle time
(superpipelining) or get CPI below 1 (superscalar, VLIW).
– What are the costs / problems of pipelining too deeply? When does better CT

no longer improve ET?

• Modern processors are fast because they work on many hundred
instructions at once

• Simple pipelines are valuable when raw performance is less important
– Specialization can be more efficient, but only if you know workload!

