
CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 1

CSE 141: Introduction to Computer Architecture

Advanced Pipelines

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 2

Part I: Exceptions

• This is the last piece of what’s needed to make a “real” CPU useful

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 3

Exceptions

• There are two sources of non-sequential control flow in a processor

– explicit branch and jump instructions

– exceptions

• Branches are synchronous and deterministic

• Exceptions are typically asynchronous and non-deterministic

• Guess which is more difficult to handle?

(recall: control flow refers to the movement of the program counter through memory)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 4

Exceptions and Interrupts

The terminology is not consistent, but we’ll refer to

• exceptions as any unexpected change in control flow

• interrupts as any externally-caused exception

So then, what is:

– arithmetic overflow

– divide by zero

– I/O device signals completion to CPU

– user program invokes the OS

– memory parity error

– illegal instruction

– timer signal

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 5

For now...

• The machine we’ve been designing in class can generate two types of

exceptions.

–

–

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 6

For now...

• The machine we’ve been designing in class can generate two types of

exceptions.

– arithmetic overflow

– illegal instruction

• On an exception, we need to

– save the PC (invisible to user code)

– record the nature of the exception/interrupt

– transfer control to OS

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 7

First steps towards supporting exceptions

• For our MIPS-subset architecture, we will add two
registers:

– EPC: a 32-bit register to hold the user’s PC

– Cause: A register to record the cause of the exception

• we’ll assume undefined inst = 0, overflow = 1

• We will also add three control signals:

– EPCWrite (will need to be able to subtract 4 from PC)

– CauseWrite

– IntCause

• We will extend PCSource multiplexor to be able to
latch the interrupt handler address into the PC.

E
P
C

C
au
se

P
C

PCWrite EPCWrite

CauseWrite

IntCause

PCSource

Interrupt

Handler
Address

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 8

Pipelining and Exceptions

• Again, exceptions represent another form of control flow and therefore
control dependence.

• Therefore, they create a potential branch hazard

• Exceptions must be recognized early enough in the pipeline that subsequent
instructions can be flushed before they change any permanent state.

– Q: What is the first stage that can change permanent state?

• We also have issues with handling exceptions in the correct order and
“exceptions” on speculative instructions.

• Exception-handling that always correctly identifies the offending
instruction is called precise interrupts

– (different words, same idea: ARM has asynchronous / synchronous exceptions)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 9

Pipelining and Exceptions – The Whole Picture

(except not really)

