Ranaun ce mants
"»&Q(0 e nofek I\ e V\RLBU(

= AW eger = AL peve(
CSE 141: Introduction to Computer Architecture

Advanced Pipelines

Part I: Exceptions

* Thisis the last piece of what's needed to make a “real” CPU useful

Exceptions

There are two sources of non-sequential control flow in a processor

— explicit branch and jump instructions
— exceptions

Branches are synchronous and deterministic
Exceptions are typically asynchronous and non-deterministic
Guess which is more difficult to handle?

(recall: control flow refers to the movement of the program counter through memory)

Exceptions and Interrupts Q As\Y ek

SL\M UK
- \1/C(N -;Y.‘
The terminology is not consistent, but we'll refer to L6 NG
. . e /
* exceptions as any unexpected change in control flow % MW
* interrupts as any externally-caused exception T,
nppl
So then, what is: - P ;
— arithmetic overflow = €% te ¢ ¥ 107 03 o >

— 1/O device signals completion to CPU L

— divideby zero &] L UY \/‘&{
a C:\C\"z D

— user program invokes the OS - @« N SV
— memory parity error — | QN 0l
— illegalinstruction ~ & B \" nx 23

— timersignal —

For now...

* The machine we've been designing in class can generate two types of
exceptions.
— pyecFlow

For now...

* The machine we've been designing in class can generate two types of
exceptions.

— arithmetic overflow
— illegal instruction
* On an exception, we need to
6;ave the PC (invisible to user code)

— record the nature of the exception/interrupt
transfer control to OS)

i\few“w Yoo
First steps towards supporting exceptions L\

FQ}L/ . PCWrite EPCWrite

For our MIPS-subset architecture, we will add two |
registers: -

— EPC: a 32-bit register to hold the user’'s PC Interrup . " l

— Cause: A register to record the cause of the exception Addhens —

w:/_\;ve’u assume undefined inst = O, overflow =1 = Souree CauseWrite

We will also add three control signals: %—;

— EPCWrite (will need to be able to subtract 4 from PC) 2

— CauseWrite s S

— IntCause

We will extend PCSource multiplexor to be able to L\]Qd/dﬂck\o\i/
latch the interrupt handler address into the PC. b et

NS

Ml [= S
£ v T oo [e
Pipelining and Exceptions il PSR
- o X ™
Cy_whb (' eV ~\“::j ©

Again, exceptions represent another form of control flow and therefore
control dependence.

Therefore, they create a potential branch hazard

Exceptions must be recognized early enough in the pipeline that subsequent
instructions can be flushed before they change any permanent state.

— Q: What s the first stage that can change permanent state? 4 %X mEM

We also have issues with handling exceptions in the correct order ancg(wf\&o”‘
“exceptions” on speculative instructions. AT

Exception-handling that always correctly identifies the offending.*

: S S b
instruction is called precise interrupts- e

— (different words, same idea: ARM has asynchronolt/,ls / synchronous excepuons)
244 £ v -
M O\lL22\ Lo\

l
Rssmanoa St

Pipelining and Exceptions - The Whole Picture

(except not really) OR SK™
_— — 6"“‘\”\5\&:\)& -
_;[=L l) | — e~
=14
\ 7/ D— o %d/_.spé' bo L] S
-0 “‘
= 4 G 1G;

~

