Part II: The Fancy Stuff in Real (Fast) Machines



Pipelining in Today’s Most Advanced Processors

* Not fundamentally different than the techniques we discussed

* Deeper pipelines =D >~ o
e Pipelining is combined with \ FDenrn o
— superscalar execution
— out-of-order execution %
— VLW (very-long-instruction-word)
Al add | [aid ] Lo
 { Y ﬁal \F;xccu\l

!Zr) Mo\




Deeper Pipelines

Branch Redirects Out-af.Ordar Processing

* Power4
—

(S (RFI=(PA I!!—ﬂ WBj o =
L 1 Q},(b

lm—m—m—m—m—mim Eoa— o m-r
e b = W ye
L Interrupts & Flushes \/) \D(()\_ \ ‘

%’D
Pipeline Differences (e/

§ 1]
ROB Rd Rdy/Sch  Dispatgh Exes Retrement

P8(Pentium 1)

e Pentium3 ™ \_ "™

-—

v i £ o /1_;/ Pentium 4 “Prescott”

* Pentium4 e ora Y e oo o v - Deeper st|[T{: 31 stages!]
e i S e e sy e R i e S
W - Planned for up to 5 GHz

illamette ‘ .
operation! (scrapped)

The translation of x86 instructions into micro-ops

is made in Willamette outside the pipeline



Superscalar Execution
S

-/
K LWaL’" 3‘”
\
L%L% 70
A
)%\1

M Reg| | 5&2 DM Reg P
M Reg| [ >E DM Reg | x
Ng
™M Reg %ﬂ DM Reg
[
S .
M Reg KE) DM Reg
Y| Reg % DM Reg| ™M
#4 M Reg | Y] g DM Reg E_
a Y | Reg 55’ DM Reg
N
i:‘; M Reg _ag) DM Reg
™ Reg _% DM Reg
<
M Reg P DM Reg
=
M Reg _% DM Reg

I S3
m\ g4 e R

T SN 7
epy 085



ad\d
I,

U

r[\‘ \ (q'/ (9

1oL, 3

A

K

L

b

lj%pa -

What can thisdo in
M

S

M
+ u
X
4 Y
ALU
M\
M
egisters u - -
Instrl@:) || ); 1 L - == b
menfory [ 1) [_]
L~
b= T
A (
T
Sim SL}‘G ) ALY
| extend Sign S

exten b

Write
data

Data -
memory

Address

Any two instructions
Any two independent instructions

An arithmetic instruction and a memory instruction

Any instruction and a memory instruction

None of the above




A modest superscalar MIPS

M
40000040 u
X jgi

:g)

ALY

:g) (x

Registers

ite
ata
Data -
memory
Sign ALU Address
| extend Sign |

(=
:

* what can this machine do in parallel?

* what other logic is required?

* Represents earliest superscalar technology (eg, circa early 1990s)
—_————



Superscalar Execution

* To execute four instructions in the same cycle, we must find four
independent instructions



Superscalar Execution

To execute four instructions in the same cycle, we must find four

independent instructions e\

If the four instructions fetched are guaranteed by the comp//er to be

independent, thisis a VL//W machine u rl el e



Superscalar Execution

* To execute four instructions in the same cycle, we must find four
independent instructions

* If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

* |If the fourinstructions fetched are only executed together if hardware

confirms that they are independent, this is an in-order superscalar
processor.



Superscalar Execution

* To execute four instructions in the same cycle, we must find four
independent instructions

* If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

* |f the fourinstructions fetched are only executed together if hardware

confirms that they are independent, this is an in-order superscalar
processor.

* If the hardware actively finds four (not necessarily consecutive)
instructions that are independent, this is an out-of-order superscalar
processor.



Superscalar Execution

* To execute four instructions in the same cycle, we must find four
independent instructions

* If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

* |f the fourinstructions fetched are only executed together if hardware
confirms that they are independent, this is an in-order superscalar
processor.

* If the hardware actively finds four (not necessarily consecutive)
instructions that are independent, this is an out-of-order superscalar
processor.

* What do you think are the tradeoffs?



Superscalar Scheduling

Assume in-order, 2-issue, ld-store followed by integer

sub $9, $12,q£;
Assume 4-issue, in-order, any combination (VLIW?)

lw  $6, 36(%2)

add $5, $6, $4

lw  $7, 1000(%$5)

sub $9, $12, $5

sw $5, 200(%$6)

add $3, $9, $9

and $11, ¢$7, $6
When does each instruction begin execution?

R +
& ([F\ O O M
~~ F\B\@‘@"x



Superscalar vs. superpipelined

(multiple instructions in the same stage, same clock rate as scalar)

(more total stages, faster clock rate)



Dynamic Scheduling
aka, Out-of-Order Scheduling

* Issues (begins execution of) an instruction as soon as all of its
dependences are satisfied, even if prior instructions are stalled.
(assume 2-issue, any combination)

lw  $6, 36(%$2)
add $5, $6, %4
lw  $7, 1000($5)
sub $9, $12, $8
sw $5, 200($6)
add $3, $9, $9
and $11, $5, $6



Reservati i

(other pieces: ROB, RAT, RRAT.. CSE 148 covers these!)

* Are a mechanism to allow dynamic scheduling (out of order execution)

— result bus o8
A A A A file
v \ 4 v v
ALU op rs | rsvalue | rt | rtvalue |rdy
SJA('J“\ ALU op rs | rsvalue | rt | rtvalue |rdy
uA ALU op rs | rsvalue | rt | rtvalue |rdy
s
S <
¥ » ¢
¢
)L
F—= i
‘ >>
Execution L

Unit




