Part II: The Fancy Stuff in Real (Fast) Machines



Pipelining in Today’s Most Advanced Processors
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A modest superscalar MIPS
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* what can this machine do in parallel?

* what other logic is required?

* Represents earliest superscalar technology (eg, circa early 1990s)
—_————



Superscalar Execution

* To execute four instructions in the same cycle, we must find four
independent instructions



Superscalar Execution

To execute four instructions in the same cycle, we must find four
independent instructions

2;(&(,JUV"
If the four instructions fetched are guaranteed by the comp//er to be
independent, this is a VL/VW machine
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Superscalar Execution

* To execute four instructions in the same cycle, we must find four
independent instructions

* If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

* |If the fourinstructions fetched are only executed together if hardware

confirms that they are independent, this is an in-order superscalar
processor.



Superscalar Execution

* To execute four instructions in the same cycle, we must find four
independent instructions

* If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

* |f the fourinstructions fetched are only executed together if hardware

confirms that they are independent, this is an in-order superscalar
processor.

* If the hardware actively finds four (not necessarily consecutive)
instructions that are independent, this is an out-of-order superscalar
processor.



Superscalar Execution X

* To execute four instructions in thé same cycle, we must find four

independent instructions
* If the four instructions fetchied are guaranteed by the compiler to be
independent, this is alVLIW machine
* |f the fourinstructions fetched are only executed together if hardware

confirms that they are independent, this is an in-order superscalar
processor.

* If the hardware actively finds four (not necessarily consecutive)
instructions that are independent, this is an out-of-order superscalar
pProcessor.

* What do you think are the tradeoffs?




Superscalar Scheduling
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Assume in-order, 2-issue, ld-store followed by integer = ™
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Assume 4-issud, in-order) any combination (VLIW?)
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en does each instruction begin execution?




Superscalar vs. superpipelined

(multiple instructions in the same stage, same clock rate as scalar) >

(more total stages, faster clock rate)



Dynamic Scheduling r — ,
aka, Out-of-Order Scheduling = — @M@J

* Issues (begins execution of) an instruction as soon as all of its

dependences are satisfied, even if prior instructions are stalled.
(assum§2-issu§, any combination) -
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Modern (Pre-Multicore) Processors

e Pentium Il, lll - 3-wide superscalar, out-of-order, 14 integer pipeline stages
*  Pentium 4 - 3-wide superscalar, out-of-order, simultaneous multithreading, 20+ pipe stages
*  AMD Athlon, 3-wide ss, out-of-order, 10 integer pipe stages

*  AMD Opteron, similar to Athlon, with 64-bit registers, 12 pipe stages, better multiprocessor
support.

* Alpha 21164 - 2-wide ss, in-order, 7 pipe stages
* Alpha 21264 - 4-wide ss, out-of-order, 7 pipe stages
* Intel ltanium - 3-operation VLIW, 2-instruction issue (6 ops per cycle), in-order, 10-stage pipeline



More Recent Developments - Multicore Processors

IBM Power 4,5, 6,7
—  Power 4 dual core
—  Power 5and 6, dual core, 2 simultaneous multithreading (SMT) threads/core
—  Power7 4-8 cores, 4 SMT threads per core
. Sun Niagara
— 8 cores, 4 threads/core (32 threads).
—  Simple, in-order, scalar cores.
. Sun Niagara 2
—  8cores, 8 threads/core.
. Intel Quad Core Xeon
*  AMD Quad Core Opteron
. Intel Nehalem, Ivy Bridge, Sandy Bridge, Haswell, Skylake, ...(Core i3, i5, i7, etc.)
—  2to 8 cores, each core SMT (2 threads)
. AMD Phenom |l
— 6 cores, not multithreaded
. AMD Zen
—  4-8 (mainstream, but up to 32) cores, 2 SMT threads/core, superscalar (6 micro-op/cycle)



Intel SkyLake

 Upto4cores (CPUs)

e Each core can have 224 uncommitted instructions in the pipeline
* Upto72loads
* Up to 56 stores

— 97 unexecuted instructions in the pipeline waiting to be scheduled
— Has 180 physical integer registers (used via register renaming)

— Has 168 physical floating point registers

— Executes up to 4 (?) micro-ops/cycle (think RISC instructions)

— Has a16-cycle branch hazard

* (note—Intel now hiding more and more architectural details)



Intel SkyLake
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Figure 1. Architecture components layout for an Intel® Core™ i7 processor 6700K for desktop systems. This SoC
contains 4 CPU cores, outlined in blue dashed boxes. Outlined in the red dashed box, is an Intef® HD Graphics 530. it
is a one-slice instantiation of Intel processor graphics gen9 architecture.



What do we know about the Apple M1? We can learn from
the A14 (the M1 may be a rebranded, lightly enhanced A14)

This part makes a lot of

sense for a new player

o
~

60

50

ce (SPECiint2006)

rman

erfol

Q.

Intel vs Apple Top Performance

Apple A1 3.3
10900K, 58.6
|
9900K, 54.3

.
m_97 el
7700K, 49.2 - - | 1185G7,55.3

-
6700K,45.6 _o - Afpieais, 549
n- é
4790K, 41.4%° v
i . appfe A12,45.3
5775C, 41.4 /
Y 3
Ave A11,36.8
V4
A?Ie A10,28.7
appi A9, 21.2
V4

ANANDIECH

9 2020 2021

Product Release Date

This part implies
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(Really this section should be what does Andrei Frumusanu know
about the M1 - th

e AnandTech writeup is pretty good)

13

Sl © 12 MB L2 cache [this is huge]

« C.f Intel Tiger Lake @ 1.25*4 = 5MB
e C.f. Intel Cooper Lake @ 1*28 = 28MB

« For $13,000

* Massive ILP
* 8-wide instruction issue [SMT actual unclear]
o C.f Intel's 1+4 [CISC limitation??]
» C.f. Samsung 6-wide [also ARM]

e Truly massive OoO window

| « ~630 instructions in flight??

» C.f Intel Willow Cove at 352

 C.f. AMD Zen3 at 256

uh more hr: https://w.anandtec.cm/show/16226/apple-silicon—m1—a14—deep—dive/2



https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
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Part lll: The Less Fancy Stuff in Real (Low-Power) Machines

* How much of a real processor can we implement with CSE 141 alone?



Acorn/Advanced RISC Machine (ARM) has three processor
families

e Cortex A - "Application” processors

 Cortex R - "Real-Time" processors

* Cortex M - "Microcontroller” processors
— (getit?)



The Cortex-M family exposes a wide tradeoff of capability
and cost - measured mostly in $$, Joules, and die area
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Let’s look at the ARM Cortex-M3 in depth

e ISA: “Thumb2”, specifically ARMv7-M Thumb 2 Performance / Density

— Mixed 16/32-bit instructions ["hybrid length”
0/52-DIT
instructions]

— Compromise: many instructions can be compact,
why waste bits? Still simple (just two cases)

« 3stage, in-order, single issue pipeline
—  With single-cycle hardware multiply!
* It has a branch predictor...
— It predicts Not Taken!
— 2 cycle mis-predict penalty
* It hasa 3-word prefetcher
——
— Prefetchers help make unified memory designs fast ,
— Q: How many instructions can prefetcher hold? 2 . (ﬂ TASY S




Implications of being area and energy constrained

Performance / Watt >> than raw Performance
— Latest designs are 22 WA/MHz (this is the measure that matters for loT!)
*  Fewer general purpose registers (There are 16)
— Many of the smaller (16-bit) encodings can only access rO-r7
*  Much slower core frequency (many in the 1-8 MHz, fastest M3’s 48 or maybe 96 MHz)
*  Much simpler microarchitecture
— In-order design
—  Limited parallelism
« Tightly coupled memory -- No cache!
— (well, a 3word instruction cache)
— Just1cycle memory access penalty! (i.e. 1dr instruction takes 2 cycles, with no cache!)
—  VERY different than traditional processors L 260 - LoD V4t e
*  Q:How might Amdahl’s law explain tradeoffs in embedded MCUs?
— Embedded processors are duty cycled, modern ones run ~0.1% of the time
— Inembedded: Compute is not the bottleneck! New arch tradeoff opportunity!



How is ML at the edge
changing the edge?

* Hot new chip: MAX78000
— 22 UA/MHz Cortex-M4
— + RISC-V Co-Processor
— + CNN accelerator

— 4+ many peripherals

In this whole chip, this
part is the processor
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https://www.maximintegrated.com/en/products/microcontrollers/MAX78000.html

There are many, many more deeply embedded processors
than high performance general purpose processors

* 0% of processors in the world are “high-performance” processors

— Seriously, the number of Intel Core XXX and AMD XXX are a rounding error
compared to AVR, MIPS (yes, our MIPS), PIC, ARM Cortex M's, etc

* So why do we talk about the fancy machines?

— Thought experiment: Which gives you the most aggregate processing power:

— (Very) Coarse estimate: 1 trillion PIC-8's in the world
* Say, average 50 MHz, CPI of ~20 [for 32-bit math]

— (Very) Coarse estimate: 120 billion ARM Cortex-M'’s in the world
« Say, average 24 MHz, CPI of ~1.25

— (Very) Coarse estimate: 1billion Intel Core i7's in the world
* Say, average 4 GHz, CPl of ~0.25



Advanced Pipelining -- Key Points

* Exceptions are another form of control flow
— An "unexpected branch” or "unprogrammed branch” perhaps

» Scalar [fancy word for non-parallel] pipelining attempts to get CPI close
to 1. Toimprove performance we must reduce cycle time
(superpipelining) or get CPI below 1 (superscalar, VLIW).

— What are the costs / problems of pipelining too deeply? When does better CT
no longer improve ET?

* Modern processors are fast because they work on many hundred
instructions at once

* Simple pipelines are valuable when raw performance is less important
— Specialization can be more efficient, but only if you know workload!
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