
CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 1

CSE 141: Introduction to Computer Architecture

Instruction Set Architecture (ISA)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 2

What is Computer Architecture?

Computer Architecture =

Instruction Set Architecture

+

Machine Organization

What the machine

hardware looks like

How you talk to the machine

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 3

An Instruction Set Architecture is an abstraction of a

computational machine

• An ISA is “the agreed-upon interface between all the software that runs

on the machine and the hardware that executes it.”

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Digital Design

Circuit Design

Instruction Set
Architecture

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 4

Compiler

Computers do not speak English

And they do not speak C or Java or Python or Haskell (or…) either

High Level Language

(C, Java, Rust, etc)

Assembly Language

lw $15, 0($2)
lw $16, 4($2)

sw $16, 0($2)
sw $15, 4($2)

int temp = array[index];

array[index] = array[index + 1];

array[index + 1] = temp;

ALUOP[0:3] <= InstReg[9:11] & MASK

Machine Language
1000110001100010000000000000000

1000110011110010000000000000100

1010110011110010000000000000000

1010110001100010000000000000100

Control Signal Spec

Assembler

Machine

Interpretation

Specification
Programmer

“Swap two array elements.”

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 5

Poll Q: If you had to put the ISA somewhere in this stack,

would you say it sits between…

Compiler

High Level Language

(C, Java, Rust, etc)

Assembly Language

lw $15, 0($2)
lw $16, 4($2)

sw $16, 0($2)
sw $15, 4($2)

int temp = array[index];

array[index] = array[index + 1];

array[index + 1] = temp;

ALUOP[0:3] <= InstReg[9:11] & MASK

Machine Language
1000110001100010000000000000000

1000110011110010000000000000100

1010110011110010000000000000000

1010110001100010000000000000100

Control Signal Spec

Assembler

Machine

Interpretation

Specification
Programmer

“Swap two array elements.”
Specification and HLL

HLL and assembly

Assembly and machine language

Machine language and control signals

ISAs define control signals

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 6

The Instruction Set Architecture

• that part of the architecture that is visible to the programmer

– available instructions (“opcodes”)

– number and types of registers

– instruction formats

– storage access, addressing modes

– exceptional conditions

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 7

The Instruction Execution Cycle

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 8

A brief preview of some machine organization concepts:

Cycle

• The smallest unit of time in a processor

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 9

A brief preview of some machine organization concepts:

Parallelism

• The ability to do more than one thing at once

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Real-world example

ARM’s Thumb instruction set is (mostly)
16-bit instructions on a 32-bit machine

ISA design makes fetch “freely parallel”

Instruction

Fetch

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 10

A brief preview of some machine organization concepts:

Superscalar Processor

• Can execute more than one instruction per cycle

Instruction

Decode

Operand

Fetch

Execute

Duplication is easy but expensive…

How to do parallelism well?

• Second half of this class

• CSE148

Instruction

Fetch

Execute Execute

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 11

A brief preview of some machine organization concepts:

Pipelining

• Overlapping parts of a large task to increase throughput without

decreasing latency

– Key insight: The less work you do in one step, the faster each step can finish

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 12

Key questions to ask when designing an ISA

• operations

– how many?

– which ones?

• operands

– how many?

– location

– types

– how to specify?

• instruction format

– size

– how many formats?

y = x + b

operation

source operands

destination operand

how does the computer know what

0001 0101 0001 0010 means?

Syntax choice Design choice

add r5, r1, r2 add r5, r1– r4

add [r1, r2], r5

add r5, r1, r2

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 13

Let us design MIPS together

• We will look at several of the key ISA design decisions

• To succeed in 141 you need to understand the how and the why of MIPS

– The rest of the course builds on MIPS, so need to be comfortable with it

– But also need to understand the architectural tradeoffs of MIPS

• To succeed in 141L you need to understand the tradeoffs in ISA design

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 14

How long should an instruction be?

• Fixed

• Variable

• Hybrid

…

add r5, r1, r2

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 15

Instruction length tradeoffs

• Fixed-length instructions (MIPS)
– easy fetch and decode

– simplify pipelining and parallelism.

• Variable-length instructions (Intel 80x86, VAX)
– multi-step fetch and decode

– much more flexible and compact instruction set.

• Hybrid instructions (ARM)
– Middle ground

c All MIPS instructions are 32 bits long.
– this decision impacts every other ISA decision we make because it makes instruction

bits scarce.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 16

Instruction Formats: What does each bit mean?

• Having many different instruction formats...

– complicates decoding

– uses more instruction bits (to specify the format)

– Could allow us to take full advantage of a variable-length ISA

VAX 11 instruction format

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 17

The MIPS Instruction Format

• the opcode tells the machine which format

opcode

opcode

opcode

rs rt rd shamt funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Register R-type

Immediate I-type

Jump J-type

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 18

Example of instruction encoding:

opcode=0, rs=1, rt=2, rd=5, sa=0, funct=32

000000 00001 00010 00101 00000 100000

00000000001000100010100000100000

0x00222420

opcode

opcode

opcode

rs rt rd shamt funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Register R-type

Immediate I-type

Jump J-type

add r5, r1, r2

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 19

Poll Q: Implications of the MIPS instruction format

opcode

opcode

opcode

rs rt rd sa funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Register R-type

Immediate I-type

Jump J-type

What is the maximum number of unique operations MIPS can encode?

3 64 127 128

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 20

Accessing the Operands
aka, what’s allowed to go here

• operands are generally in one of two places:

– registers (32 options)

– memory (232 locations)

• registers are

– easy to specify

– close to the processor (fast access)

• the idea that we want to use registers whenever possible led to
load-store architectures.

– normal arithmetic instructions only access registers

– only access memory with explicit loads and stores

add r5, r1, r2

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 21

Poll Q: Accessing the Operands

Faster access Fewer bits to specify More locations

A Mem Mem Reg

B Mem Reg Mem

C Reg Mem Reg

D Reg Reg Mem

E None of the above

There are typically two locations for operands: registers (internal storage - $t0, $a0)
and memory. In each column we have which (reg or mem) is better.

Which row is correct?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 22

MIPS uses a load/store architecture to access operands

can do:

add $t0 = $s1 + $s2

and

lw $t0, 32($s3)

è forces heavy dependence on
registers, which is exactly what
you want in today’s CPUs

can’t do

add $t0 = $s1, 32($s3)

— more instructions

+ fast implementation

(e.g., easy pipelining)

What pushes MIPS towards a load/store design? (hint: fixed instruction length)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 23

r6, r7, r8, …
How Many Operands?
aka how many of these?

• Most instructions have three operands (e.g., z = x + y).

• Well-known ISAs specify 0-3 (explicit) operands per instruction.

• Operands can be specified implicitly or explicity.

add r5, r1, r2

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 24

Historically, many classes of ISAs have been explored, and

trade off compactness, performance, and complexity

Style # Operands Example Operation

Stack 0 add tos(N-1) ¬ tos(N) + tos(N-1)

Accumulator 1 add A acc ¬ acc + mem[A]

General Purpose 3 add A B Rc mem[A] ¬ mem[B] + Rc

Register 2 add A Rc mem[A] ¬ mem[A] + Rc

Load/Store: 3 add Ra Rb Rc Ra ¬ Rb + Rc

load Ra Rb Ra ¬ mem[Rb]

store Ra A mem[A] ¬ Ra

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 25

Comparing the Number of Instructions

Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator GP Register GP Register

(register-memory) (load-store)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 26

Comparing the Number of Instructions

Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator GP Register GP Register

(register-memory) (load-store)

Push A

Push B

Add

Pop C

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 27

Comparing the Number of Instructions

Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator GP Register GP Register

(register-memory) (load-store)

Load A

Add B

Store C

Push A

Push B

Add

Pop C

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 28

Comparing the Number of Instructions

Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator GP Register GP Register

(register-memory) (load-store)

Load A

Add B

Store C

ADD C, A, BPush A

Push B

Add

Pop C

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 29

Comparing the Number of Instructions

Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator GP Register GP Register

(register-memory) (load-store)

Load A

Add B

Store C

ADD C, A, BPush A

Push B

Add

Pop C

Load R1,A

Load R2,B

Add R3,R1,R2

Store C,R3

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 30

A = X*Y - B*C

Stack Architecture Accumulator GPR GPR (Load-store)

Memory

A

X

Y

B

C

temp

__

12

3

4

5

__

Stack

R1

R2

R3

Accumulator

Exercise: Working through alternative ISAs
[if time]

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 31

Poll Q: The destination of a MIPS add operation can be…

• Only the top of the stack

• Only the accumulator register

• Any general purpose register

• Any general purpose register or anywhere in memory

• Any general purpose register or the top of the stack

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 32

Addressing Modes

aka: how do we specify the operand we want?

• Register direct R3

• Immediate (literal) #25
• Direct (absolute) M[10000]

• Register indirect M[R3]
• Base+Displacement M[R3 + 10000]

• Base+Index M[R3 + R4]
• Scaled Index M[R3 + R4*d + 10000]
• Autoincrement M[R3++]

• Autodecrement M[R3 - -]

• Memory Indirect M[M[R3]]

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 33

MIPS addressing modes and syntax

register direct

add $1, $2, $3

immediate

add $1, $2, #35

base + displacement

lw $1, disp($2)

OP rs rt rd sa funct

OP rs rt immediate

rt

rs

immediate

register indirect

c disp = 0

absolute

c (rs) = 0

(R1 = M[R2 + disp])

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 34

Is this sufficient?

• measurements on the VAX show that these addressing modes
(immediate, direct, register indirect, and base+displacement) represent
88% of all addressing mode usage.

• similar measurements show that 16 bits is enough for the immediate 75
to 80% of the time

• and that 16 bits is enough of a displacement 99% of the time.

• (and when these are not sufficient, it typically means we need one more
instruction)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 35

What does memory look like anyway?

• Viewed as a large, single-dimension array, with an address.

• A memory address is an index into the array

• "Byte addressing" means that the index (address) points to a byte of
memory.

0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 36

Memory accesses are (often) required to be “word-aligned”

because of how buses and memory work

• Bytes are nice, but most data items use larger "words"

• For MIPS, a word is 32 bits or 4 bytes.

• Words are aligned

i.e., what are the least 2 significant bits of a word address?

0

4

8

12

32 bits of data

32 bits of data

32 bits of data

32 bits of data

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 37

The MIPS ISA, so far

• fixed 32-bit instructions

• 3 instruction formats (R, I, J)

• 3-operand, load-store architecture

• 32 general-purpose registers

– R0 always equals 0.

• 2 additional special-purpose integer registers, HI and LO, because
multiply and divide produce more than 32 bits.

• registers are 32-bits wide (word)

• register, immediate, and base+displacement addressing modes

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 38

But what kinds of things do computers actually do?

• arithmetic

• logical

• data transfer

• conditional branch

• unconditional jump

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 39

Which kinds of instructions does (and doesn’t) the MIPS ISA

support?

• arithmetic

– add, subtract, multiply, divide

– But not:

• logical

– and, or, shift left, shift right

– But not:

• data transfer

– load word, store word

– But not:

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 40

“Control Flow” describes how programs execute

• Jumps

• Procedure call (jump subroutine)

• Conditional Branch

– Used to implement, for example, if-then-else logic, loops, etc.

• Control flow must specify two things

– Condition under which the jump or branch is taken

– If take, the location to read the next instruction from (“target”)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 41

Jumps are unconditional control flow.

What do they look like in MIPS?

• need to be able to jump to an absolute address sometimes

• need to be able to do procedure calls and returns

• Jump j 10000 => PC = 10000

• Jump and Link jal 20000 => $31 = PC + 4 and PC = 20000

– used for procedure calls

• Jump register jr $31 => PC = $31

– used for returns, but can be useful for lots of other things

– Q: how to encode jr instruction?

Warning: Some ISAs call jumps “unconditional branches” – useful not to for MIPS

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 42

What if we want to condition the control flow? Branches.

do { … ; a++; } while (a < 100);

• beq and bne are the only branches you need

– beq r1, r2, addr => if (r1 == r2): goto addr

• But other operations can be combined…

– slt $1, $2, $3 => if ($2 < $3) $1 = 1; else $1 = 0

• beq, bne, slt, and $zero, can implement all fundamental conditions

– Always, never, !=, = =, >, <=, >=, <, >(unsigned), <= (unsigned), ...

if (i<j)

w = w+1;

else

w = 5;

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 43

How do you specify the destination of a branch/jump?

• Unconditional jumps may go long distances

– Function calls, returns, …

• Studies show that almost all conditional branches go short distances
from the current program counter

– loops, if-then-else, …

• A relative address requires (many) fewer bits than an absolute address

– e.g., beq $1, $2, 100 => if ($1 == $2): PC = (PC+4) + 100 * 4

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 44

MIPS Branch and Jump Addressing Modes

• Branches (e.g., beq) use PC-relative addressing mode

– uses fewer bits since address typically close

– Aka: base+displacement mode, with the PC being the base

• Jumps use pseudo-direct addressing mode
– Recall opcode is 6 bits…

• How many bits are available for displacement? How far can you jump?

– 26 bits of the address is in the instruction, the rest is taken from the PC.

instruction program counter

jump destination address

| |00

6 | 26 4 | 28

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 45

MIPS in one slide

MIPS operands

Name Example Comments

$s0-$s7, $t0-$t9, $zero, Fast locat ions for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is

$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instruct ions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words dif fer by 4. Memory holds data structures, such as arrays,

words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments
add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants

load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register

store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register

store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory

load upper
immediate

lui $s1, 100 $s1 = 100 * 2 16 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address

Uncondi- jump register jr $ra go to $ra For switch, procedure return

tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 46

Review — Instruction Execution in a CPU

Memory2

20000

20004

80000

Address10

10001100010000110100111000100000

00000000011000010010100000100000

00000000000000000000000000111001

Registers10

R0
R1
R2
R3
R4
R5
...

0

36

60000

45

198

12

...

Program

Counter10

20000

Instruction Buffer

op rtrs rd shamt

immediate/disp

in1 in2

out

ALUoperation

Load/Store

Unit

addr

data

C
P
U

M
e
m
o
r
y

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 47

Poll Q: Work an Example

• Can we figure out the code?

Where is k?

A $4

B $5

C $15

D $16

E None of the above

void

swap(int v[], int k)

{
int temp;

temp = v[k];
v[k] = v[k+1];

v[k+1] = temp;

}

swap:

muli $2, $5, 4

add $2, $4, $2
lw $15, 0($2)

lw $16, 4($2)
sw $16, 0($2)

sw $15, 4($2)

jr $31

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 48

MIPS ISA Tradeoffs

What if?

– 64 registers

– 20-bit immediates

– 4 operand instruction (e.g. Y = AX + B)

OP

OP

OP

rs rt rd sa funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-type

I-type

J-type

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 49

RISC Architectures

• MIPS, like SPARC, PowerPC, and Alpha AXP, is a RISC
(Reduced Instruction Set Computer) ISA.

– fixed instruction length

– few instruction formats

– load/store architecture

• RISC architectures worked because they enabled pipelining.
They continue to thrive because they enable parallelism.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 50

Alternative Architectures

• Design alternative:

– provide more powerful operations

– goal is to reduce number of instructions executed

– danger is a slower cycle time and/or a higher CPI (cycles per instruction)

• Sometimes referred to as “RISC vs. CISC”

– CISC = Complex Instruction Set Computer (as alt to RISC)

– virtually all new instruction sets since 1982 have been RISC

– VAX: minimize code size, make assembly language easy
instructions from 1 to 54 bytes long!

• We’ll look (briefly!) at PowerPC and 80x86

• What is ARM?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 51

PowerPC

• Indexed addressing

– example: lw $t1,$a0+$s3 # $t1=Memory[$a0+$s3]

– What do we have to do in MIPS?

• Update addressing

– update a register as part of load (for marching through arrays)

– example: lwu $t0,4($s3) # $t0=Memory[$s3+4];$s3=$s3+4

– What do we have to do in MIPS?

• Others:

– load multiple/store multiple

– a special counter register “bc Loop”

decrement counter, if not 0 goto loop

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 52

80x86

1978: The Intel 8086 is announced (16 bit architecture)

1980: The 8087 floating point coprocessor is added

1982: The 80286 increases address space to 24 bits, +instructions
1985: The 80386 extends to 32 bits, new addressing modes

1989-1995: The 80486, Pentium, Pentium Pro add a few instructions
(mostly designed for higher performance)

1997: MMX is added
1999: Pentium III (same architecture)

2001: Pentium 4 (144 new multimedia instructions), simultaneous multithreading (hyperthreading)

2005: dual core Pentium processors

2006: quad core (sort of) Pentium processors

2009: Nehalem – eight-core multithreaded processors
2015: Skylake – 4-core, multithreaded, added hw security features, transactional memory…

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 53

80x86

• Complexity:

– Instructions from 1 to 17 bytes long

– one operand must act as both a source and destination

– one operand can come from memory

– complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”

• Saving grace:

– the most frequently used instructions are not too difficult to build

– compilers avoid the portions of the architecture that are slow

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 54

Key Points

• MIPS is a general-purpose register, load-store, fixed-instruction-length

architecture.

• MIPS is optimized for fast pipelined performance, not for low instruction

count

• Historic architectures favored code size over parallelism.

• MIPS most complex addressing mode, for both branches and

loads/stores is base + displacement.

