
CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 1

CSE 141: Introduction to Computer Architecture

Instruction Set Architecture (ISA)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 2

What is Computer Architecture?

Computer Architecture =

Instruction Set Architecture

+

Machine Organization

What the machine

hardware looks like

How you talk to the machine

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 3

An Instruction Set Architecture is an abstraction of a

computational machine

• An ISA is “the agreed-upon interface between all the software that runs

on the machine and the hardware that executes it.”

I/O systemInstr. Set Proc.

Compiler

Operating
System

Application

Digital Design

Circuit Design

Instruction Set
Architecture

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 4

Compiler

Computers do not speak English

And they do not speak C or Java or Python or Haskell (or…) either

High Level Language

(C, Java, Rust, etc)

Assembly Language

lw $15, 0($2)
lw $16, 4($2)

sw $16, 0($2)
sw $15, 4($2)

int temp = array[index];

array[index] = array[index + 1];

array[index + 1] = temp;

ALUOP[0:3] <= InstReg[9:11] & MASK

Machine Language
1000110001100010000000000000000

1000110011110010000000000000100

1010110011110010000000000000000

1010110001100010000000000000100

Control Signal Spec

Assembler

Machine

Interpretation

Specification
Programmer

“Swap two array elements.”

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 5

Poll Q: If you had to put the ISA somewhere in this stack,

would you say it sits between…

Compiler

High Level Language

(C, Java, Rust, etc)

Assembly Language

lw $15, 0($2)
lw $16, 4($2)

sw $16, 0($2)
sw $15, 4($2)

int temp = array[index];

array[index] = array[index + 1];

array[index + 1] = temp;

ALUOP[0:3] <= InstReg[9:11] & MASK

Machine Language
1000110001100010000000000000000

1000110011110010000000000000100

1010110011110010000000000000000

1010110001100010000000000000100

Control Signal Spec

Assembler

Machine

Interpretation

Specification
Programmer

“Swap two array elements.”
Specification and HLL

HLL and assembly

Assembly and machine language

Machine language and control signals

ISAs define control signals

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 6

The Instruction Set Architecture

• that part of the architecture that is visible to the programmer

– available instructions (“opcodes”)

– number and types of registers

– instruction formats

– storage access, addressing modes

– exceptional conditions

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 7

The Instruction Execution Cycle

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

Obtain instruction from program storage

Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 8

A brief preview of some machine organization concepts:

Cycle

• The smallest unit of time in a processor

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 9

A brief preview of some machine organization concepts:

Parallelism

• The ability to do more than one thing at once

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Real-world example

ARM’s Thumb instruction set is (mostly)
16-bit instructions on a 32-bit machine

ISA design makes fetch “freely parallel”

Instruction

Fetch

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 10

A brief preview of some machine organization concepts:

Superscalar Processor

• Can execute more than one instruction per cycle

Instruction

Decode

Operand

Fetch

Execute

Duplication is easy but expensive…

How to do parallelism well?

• Second half of this class

• CSE148

Instruction

Fetch

Execute Execute

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 11

A brief preview of some machine organization concepts:

Pipelining

• Overlapping parts of a large task to increase throughput without

decreasing latency

– Key insight: The less work you do in one step, the faster each step can finish

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 12

Key questions to ask when designing an ISA

• operations

– how many?

– which ones?

• operands

– how many?

– location

– types

– how to specify?

• instruction format

– size

– how many formats?

y = x + b

operation

source operands

destination operand

how does the computer know what

0001 0101 0001 0010 means?

Syntax choice Design choice

add r5, r1, r2 add r5, r1– r4

add [r1, r2], r5

add r5, r1, r2

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 13

Let us design MIPS together

• We will look at several of the key ISA design decisions

• To succeed in 141 you need to understand the how and the why of MIPS

– The rest of the course builds on MIPS, so need to be comfortable with it

– But also need to understand the architectural tradeoffs of MIPS

• To succeed in 141L you need to understand the tradeoffs in ISA design

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 14

How long should an instruction be?

• Fixed

• Variable

• Hybrid

…

add r5, r1, r2

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 15

Instruction length tradeoffs

• Fixed-length instructions (MIPS)
– easy fetch and decode

– simplify pipelining and parallelism.

• Variable-length instructions (Intel 80x86, VAX)
– multi-step fetch and decode

– much more flexible and compact instruction set.

• Hybrid instructions (ARM)
– Middle ground

c All MIPS instructions are 32 bits long.
– this decision impacts every other ISA decision we make because it makes instruction

bits scarce.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 16

Instruction Formats: What does each bit mean?

• Having many different instruction formats...

– complicates decoding

– uses more instruction bits (to specify the format)

– Could allow us to take full advantage of a variable-length ISA

VAX 11 instruction format

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 17

The MIPS Instruction Format

• the opcode tells the machine which format

opcode

opcode

opcode

rs rt rd sa funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Register R-type

Immediate I-type

Jump J-type

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 18

Example of instruction encoding:

opcode=0, rs=1, rt=2, rd=5, sa=0, funct=32

000000 00001 00010 00101 00000 100000

00000000001000100010100000100000

0x00222420

opcode

opcode

opcode

rs rt rd sa funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Register R-type

Immediate I-type

Jump J-type

add r5, r1, r2

