CSE 141: Introduction to Computer Architecture

Instruction Set Architecture (ISA)

\
(G (ernteny

What is Computer Architecture?

Computer Architecture =

—

Instruction Set Architecture
l

How you talk to the machine

Machine Organization

What the machine
hardware looks like

An Instruction Set Architecture is an abstraction of a
computational machine

* AnISAis “the agreed-upon interface between all the software that runs
on the machine and the hardware that executes it."

Application

| Operating

Compiler | System
| Instruction Set
Architecture

Instr. Set Proc. | I/0O system

Digital Design

Circuit Design

Computers do not speak English
And they do not speak C or Java or Python or Haskell (or...) either

Specitication

High Level Language int temp = array[index];

array[index] = array[index + 1];
(C’ Java, Rust, etc) array[index + 1] = temp;

w 1w $15, 0(%$2)

“Swap two array elements.”

w $16, 4(3$2) m
Assembly Language sw $16. 0($2) h&/fﬂﬁ
Assembler sw $15, 4($2)
_
, 1000110001100010000000000000000
Machine Language 1000110011110010000000000000100 W ,
. 1010110011110010000000000000000 \/
erpretatio 1010110001100010000000000000100
MA,VV\ 3—9”
RS

ALUOP[0:3] <= InstReg[9:11] & MASK

U -
C Control Signal Spec o¥{ LJ

Poll Q: If you had to put the ISA somewhere in this stack,
would you say it sits between...

Specification and HLL

> | Specification | “Swap two array elements.”

orammar

int temp = @rray[index];

array[index] = array[index + 17;
array[index + 1] = temp;

‘0<$2)
’462)

->S 16 0(%2
sw $15, 4($)

00011000110010 0000
10001100 0010000000000000100
1010110011110010000000000000000

1010110001100010000000000000100

High Level Language

HLL and assembly

Assembly and machine language

| Assembly Language |

Assembler

Machine lan n nrlinlé
ac € language a dCO tro Slghd | Machine Language

[
Machine
Interpretation

ISAs define com{rol signals Control Signal Spec | ALUOP[0:3] <= InstReg[9:11] & MASK
| B7A— > -

The Instruction Set Architecture

» that part of the architecture that is visible to the programmer

available instructions (“opcodes”)
number and types of registers -
. . P ° V\/\Q;(/\
instruction formats >0 4
storage access, addressing modes (
exceptional conditions

The Instruction Execution Cycle

[

Instruction
Fetch

v

Instruction
Decode

v

Operand
Fetch

/F;B

(LB

Result
Store

}

Next
Instruction

Obtain instruction from program storage

Determine required actions and instruction size . . U\

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

A brief preview of some machine organization concepts:

Cycle)
* The smallest unit of time in a processor W

macOS Catalina

Version 10.15.6

iMac (Retina 5K_27-inch, 2017) -
Processor 4.2 GHz Quad-Core Intel Core i7

Memory 40 GB 2400 MHz DDR4

Startup Disk Macintosh HD

Graphics Radeon Pro 580 8 GB /\,——j/—/

macOS Catalina %/)1

Version 10.15.7 J

MacBook Prs (13-inch, 2318, Four Thunderbolt 3 Ports) [— @ ’g l f\ S
N = .

Processor 2.7 GHz Quad-Core Intel Core i7 Z g‘j 1\ 9\

Memory 16 GB 2132 MHz LPDDR3

Startup Disk APPLE SSD AP1024M Media
Graphics Intel Iris Plus Graphics 655 1536 MB = % ’2/ V) S

A brief preview of some machine organization concepts:
Parallelism

* The ability to do more than one thing at once

. /
Instructibrstiuction

Fetch Fetch
! ARM'’s Thumb instruction set is (mostly)

Instruction 16-bit instructions on a 32-bit machine
Decode

Op:rand ISA design makes fetch “freely parallel”

Fetch
]

Execute

v

Real-world example

A brief preview of some machine organization concepts:
Superscalar Processor

e (Can execute more than one instruction per clcle

Instruction Duplication is easy but expensive...

Fetch
v How to do parallelism well?

Instruction * Second half of this class

Decode . CSE148
!

Operand
Fetch

Execute Execute | [Execute

v v v

A brief preview of some machine organization concepts:
Pipelining

* Overlapping parts of a large task to increase throughput without
decreasing latency

— Key insight: The less work you do in one step, the faster each step can finish

. X 5 v
Tnstruction Instruction Instruction Instruction Instruction
Fetch
B - Fetch Fetch - Fetch ~ Fetch
Decode ‘ }D ‘ 3 ‘ \ ‘
S Instruction Instruction Instruction Instruction
5 Decode Decode _ Decode Decode
y J NV !
Rosul Operand Operand | Operand Operand
! Fetch Fetch Fetch Fetch
lext
Instruction ‘ ‘ ‘ \.. ‘
— Execute Execute Execute Execute

v v v v

Key questions to ask when designing an ISA

L. _ X
destination operand — operation %

operations
— how many?
— which ones?
operands
— how many?
— location

— ypes

— how to specify?

— how many formats?

&=x+b

N

0\(&6& b | fikmﬁm—\
DY/

add r5, rl, 12

J Uq/jif
source operands

Syntax choice

add 15,11, 12,
add [rl,r2],r5

esign choice
dr5,rl—-r4

vp\\/—\A/l
v \'4

0PP1 0101 PPP1 AP1O0 means?
LI [

Al S A

Let us design MIPS together

* We will look at several of the key ISA design decisions

» To succeed in 141 you need to understand the how and the why of MIPS
— The rest of the course builds on MIPS, so need to be comfortable with it
— But also need to understand the architectural tradeoffs of MIPS

* To succeed in 141L you need to understand the tradeoffs in ISA design

How long should an instruction be?

o ¥ = 52
L* Sz N \
Fixed
T el b
Variable P S ¢
Lb?% # 2=5 Ll
Hybrid)
\ 14 ! Cé /)b)L
addr5,rl, 12 | — > \ob |© S\NOX)

Instruction length tradeoffs

* Fixed-length instructions (MIPS)
— easy fetch and decode
— simplify pipelining and parallelism.
» Variable-length instructions (Intel 80x86, VAX)
— multi-step fetch and decode
— much more flexible and compact instruction set.
« Hybrid instructions (ARM)
— Middle ground

= All MIPS instructions are 32 bits long.

— this decision impacts every other ISA decision we make because it makes instruction
bits scarce.

Instruction Formats: What does each bit mean?

* Having many different instruction formats...
— complicates decoding
— uses more instruction bits (to specify the format)
— Could allow us to take full advantage of a variable-length ISA

VAX 11 instruction format

Byte O 1 n m
OpCode | A/M AM AM
N N—>s A—

operand specifier
register EI] autoinc ‘IlI‘
disp |_A_|_r_|_b;ue_|
lclr | halfword |

LE [r | word

index |4|r|m|r|di§plac_em_enﬂ

The MIPS Instruction Format

5 bits 5 bits 5 bits 5 bits 6 bits

Rggister R-type rs rt rd sa funct

rs rt immediate

Immediate 1-type
[—— —

Jump J-type target

» the opcode tells the machine which format

.ﬁ , . A&L f} . 1% < U
Example of instruction encoding:

| '_ £b|ts 6 bits ot ,\,mrza,zk
Register R-type . Csa)| funct
Immediate I-type immediate ' e
Jump J-type | opcode target =] QL ~
| . fo
add r5, rl, 12 Ne

o8 o

opcode=0, rs=1, rt=2, _ rd=5, sa=0, funct=32
000000 00001 00010 00101 00000 100000

00000000NO1000100010100000100000 Zg - (f(opLSLS
0x00222420

