Welcome miunnte : Shantfu

The wordsy meansy “Peace’’

I miss my dog back
home, so | babysit
this cutie here

| love dancing and
trekking along “short”
forest trails :P

Hate Animal
| love Playing cruelty. | eat lots

Badminton and

1 |
Table Tennis of veggies, yay!

2/ Yellow Submarine, The Beatles 4/

Announcements

e Send your welcome slide!
« Homework 1is posted

— Logistical updates & questions
» Posted on Gradescope - is it helpful to create an "assignment” on Canvas as well?
» "Call for Consistency”: Homework every week, assigned Thursday, due Thursday

e Reminder: First participation quiz will go live today
— Due: Tuesday (midnight)
— You have “something 141" every day (I\/\L/V\//F lecture; Tu Mini-quiz; Th HW)

y\/ VA~ ﬁ/@
@r\'/‘\f w2 W

“Control Flow"” describes how programs execute

* Jumps
* Procedure call (jump subroutine)
* (Conditional Branch

— Used to implement, for example, if-then-else logic, loops, etc.

« Control flow must specify two things
— Condition under which the jump or branch is taken
— If take, the location to read the next instruction from (“target”)

Jumps are unconditional control flow.
What do they look like in MIPS?

* needto be able tojump to an absolute address sometimes

* need to be able to do procedure calls and returns e R
b 26
——+=> Jump J-type ~ opcode target
— —)
° 1 A 2b
Jump |] 16600 >
* Jump and Link j 31 PC + 4, and

— used for procedure call

* Jump register r);j$3l => =)$31

— used for retums but can be useful for lots of other things

- Q hos—vvto encode jr instruction? M (1 (“)8@

Warning: Some ISAs call jumps “unconditional branche ot to for MIPS

do

{ .. ; at+t+; }

while (a < 100);

— beq rl, r2,

beqg and bne are the only branches you need

addr => 1if (rl1l == r2): goto addr
But other operations can be combined...

- slt $1, $2, => if ($2 < $3) $1 = 1; else $1 =
T\ I——
* beq, bne, slt__’qnd $zero, can|mplementallfundamentalC/Indltlonls
— Always, never, I=, = =, > <= >= < >(unsigned), <= (unsigned), .
ﬁ %L ﬁf]
(%) 1 1<] (z)(,lf{/ — b@@ w@\‘é&
W =
‘5{‘%; else //;Vwﬂ/_) Al 4 i

- :J&@ ﬁw'ﬁﬁu‘g
QQ(JLCJ‘

Re-working this example

it (i<3)
11 _body:

else
else body:

W = 5;
arter_else:

W = wtl;

slt $temp, $i, $j

beq $temp, $zero, else_body

7f_body:

addi $w, $w, 1

j after_else
else body:

addi $w, $zero, 5
arfter_else:

1.

2.

3.

4.

Need to do the comparison
— Use "store less than”, s1t $temp, $i, $j
. This writes 1in Stemp when the condition is true
Need to decide whether to branch, using only registers
— Only have $zero available to compare with
— The question is “should we jump over the if body”
— Wanttojump toelse body when $tempis 0
— So we conceptually we are asking if ! (i<j) [confusing!]
— beq $temp, $zero, else_body
— This says goto the else body when the s1t was not true
Need to jump over the else body
— Don't do both the if and the else on accident!

— Use "unconditional jump”
- j after_else

Finally, fill in the bodies

FAQs / Extras

if (i<j)

7f_body:
W:

else

else body:

W = 5;
arter_else:

w+1;

1. Could we have used a bne instead?
Yes, if you get the value Tinto a register

st $temp, $i, $j

addi $scratch, $zero, 1

bne $temp, $scratch, else_body
1 _body:

addi $w, $w, 1

j after_else

else body:

addi $w, $zero, 5

after_else:

But this is inefficient
. Extra instruction
. Register pressure

FAQs / Extras

if (i<j) 1. Could we have used a bne with no more instructions?
£ body. . . y))
e — Yes... if you flip the body and “put the else first
W = Wtl;
else sit $temp, $i, $j
else body: bne $temp, $zero, if_body
_ . else body:
W = 5; addi $w, $zero, 5
arter_else: i after
7f_body:
addi $w, %w, 1
arter:

— Real compilers do this sometimes

How do you specify the destination of a branch/jump?

* Unconditional jumps may go long distances
— Function calls, returns, ...

e Studies show that almost all conditional branches go short distances
from the current program counter

— loops, if-then-else, ...
* Avrelative address requires (many) fewer bits than an absolute address
— eg,beq $1, $2, 100 => if ($1 == $2): PC = (PC+4) + 100 * 4

MIPS Branch and Jump Addressing Modes

* Branches (e.g., beq) use PC-relative addressing mode
— uses fewer bits since address typically close
— Aka: base+displacement mode, with the PC being the base
* Jumps use pseudo-direct addressing mode

— Recall opcodeis 6 bits...
* How many bits are available for displacement? How far can you jump?
— 26 bits of the address is in the instruction, the rest is taken from the PC.

instruction program counter

jump destination address 6O

MIPS in one slide

MIPS operands

ame: Exampile:
$s0-$s7, $t0-5t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform
32 registers $a0-%a3, $v0-svl, $gp, arithmetic. MIPS register $zero always equals 0. Register $atis
Sfp, $sp, Sra, $at reserved for the assembler to handle large constants.
Memory|[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so
2% memory |Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language

add add $sl1, $s2, $s3 $s1 $s.2. + $s3 Three operands; data in reéisters
Arithmetic subtract sub $sl, $s2, $s3 $sl = $s2 - $s3 Three operands; data in registers
add immediate addi $s1, $s2, 100 $sl = $s2 + 100 Used to add constants
load word 1w $sl, 100 ($s2) $s1 = Memory[$s2 +100] [Word from memory to register
store word sw $sl, 100 ($s2) Memory[$s2 +100] = $s1 [Word from register to memory
Data transfer |load byte 1b $sl, 100 ($s2) $s1 = Memory[$s2 +100] |Byte from memory to register
store byte sb $sl, 100 ($s2) Memory[$s2 +100] = $s1 [Byte from register to memory
load upper lui $s1, 100 $s1=100*2"° Loads constant in upper 16 bits
immediate
branch on equal beqg $s1, $s2, 25 if($s1 == $s2)goto Equal test; PC-relative branch
PC +4 + 100
branch on notequalbne $s1, $s2, 25 if($s1 !'= $s2)goto Not equal test; PC-relative
» PC +4 + 100
Conditional
branch set on less than slt $sl, $s2, $s3 if($s2 < $s3) $s1=1; Compare less than; for beq, bne
elsessl =0
set less than slti $sl1, $s2, 100 if($s2 < 100) $s1=1; Compare less than constant
immediate else $s1 =0
jump 3 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra goto $ra For switch, procedure return
tional jump jump and link jal 2500 $ra=PC + 4; go to 10000 [For procedure call

Review — Instruction Execution in a CPU

RO
R1

R3
R4

Registers,

Program
Counter;

20800

zo20%|
q =? 2

Instruction Buffer

OPCSQ

Z

immediate/disp

;;5 O oo

4

operation

0000110106 POOLO0000
0000) 100010§101de000100406
Dont

r/)/,)

80000 000000000VOOOOOOOEEEEEN00111001

Load/Store
Unit

\b

Poll Q: Work an Example Yy B
d
N VoM

« (Can we figure out the code? “/: 2

void swap:

swap(int vIl, int k) mu@@%ﬁ, 4 -m

{ d dd $2, . $2 A $4 =X
int temp; lw $15, 0(%$2) B $5 98
tem [k]: lw $16, 4(%$2) c $15 29u
v[k] = v[k+1]; sw $16, 0(%$2) D $16 0 e
v[ik+1] = temp; sw $15, 4(%2) E None of the above

} jr $31 b

A

MIPS ISA Tradeoffs

6 bits 5 bits 5bits 5 bits 5 bits 6 bits
R-type oP rs rt rd sa funct
I-type oP rs rt immediate
J-type OP target
What if?

— 64 registers
— 20-bitimmediates

— 4 operand instruction (e.g. Y = AX + B)

RISC Architectures

* MIPS, like SPARC, PowerPC, and Alpha AXP, is a RISC
(Reduced Instruction Set Computer) ISA.

— fixed instruction length
— few instruction formats
— load/store architecture

e RISC architectures worked because they enabled pipelining.
They continue to thrive because they enable parallelism.

Alternative Architectures

Design alternative:

— provide more powerful operations

— goal is to reduce number of instructions executed

— danger is a slower cycle time and/or a higher CPI (cycles per instruction)
Sometimes referred to as “RISC vs. CISC”

— (CISC = Complex Instruction Set Computer (as alt to RISC)

— virtually all new instruction sets since 1982 have been RISC

— VAX: minimize code size, make assembly language easy
instructions from 1to 54 bytes long!

We'll look (briefly!) at PowerPC and 80x86
What is ARM?

PowerPC

* Indexed addressing
— example: 1w $t1,$a0+%s3 # $tl=Memory[$a0+5$s3]
— What do we have to do in MIPS?

« Update addressing
— update a register as part of load (for marching through arrays)
— example: lwu $t0,4(%$s3) # $tO=Memory[$s3+4];$s3=$s3+4
— What do we have to do in MIPS?

* Otbhers:
— load multiple/store multiple
— aspecial counter register "bc Loop”
decrement counter, if not O goto loop

80x86

1978: The Intel 8086 is announced (16 bit architecture)

1980: The 8087 floating point coprocessor is added

1982: The 80286 increases address space to 24 bits, +instructions
1985: The 80386 extends to 32 bits, new addressing modes

1989-1995: The 80486, Pentium, Pentium Pro add a few instructions
(mostly designed for higher performance)

1997: MMX is added

1999: Pentium Il (same architecture)

20071: Pentium 4 (144 new multimedia instructions), simultaneous multithreading (hyperthreading)
20065: dual core Pentium processors

2006: quad core (sort of) Pentium processors

20009: Nehalem - eight-core multithreaded processors

2015: Skylake - 4-core, multithreaded, added hw security features, transactional memory...

80x86

 Complexity:
— Instructions from 1to 17 bytes long
— one operand must act as both a source and destination
— one operand can come from memory

— complex addressing modes
e.g., "base or scaled index with 8 or 32 bit displacement”

e Saving grace:
— the most frequently used instructions are not too difficult to build
— compilers avoid the portions of the architecture that are slow

Key Points

* MIPS is a general-purpose register, load-store, fixed-instruction-length
architecture.

* MIPSis optimized for fast pipelined performance, not for low instruction
count

» Historic architectures favored code size over parallelism.

e MIPS most complex addressing mode, for both branches and
loads/stores is base + displacement.

