
CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 1!
Yellow Submarine, The Beatles

!

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 2

Announcements

• Send your welcome slide!
• Homework 1 is posted

– Logistical updates & questions
• Posted on Gradescope – is it helpful to create an “assignment” on Canvas as well?
• ”Call for Consistency”: Homework every week, assigned Thursday, due Thursday

• Reminder: First participation quiz will go live today
– Due: Tuesday (midnight)
– You have “something 141” every day (M/W/F lecture; Tu Mini-quiz; Th HW)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 3

“Control Flow” describes how programs execute

• Jumps
• Procedure call (jump subroutine)
• Conditional Branch

– Used to implement, for example, if-then-else logic, loops, etc.

• Control flow must specify two things
– Condition under which the jump or branch is taken
– If take, the location to read the next instruction from (“target”)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 4

Jumps are unconditional control flow.
What do they look like in MIPS?
• need to be able to jump to an absolute address sometimes
• need to be able to do procedure calls and returns

• Jump j 10000 => PC = 10000

• Jump and Link jal 20000 => $31 = PC + 4 and PC = 20000

– used for procedure calls
• Jump register jr $31 => PC = $31

– used for returns, but can be useful for lots of other things
– Q: how to encode jr instruction?

opcode targetJump J-type

Warning: Some ISAs call jumps “unconditional branches” – useful not to for MIPS

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 5

What if we want to condition the control flow? Branches.
do { … ; a++; } while (a < 100);

• beq and bne are the only branches you need
– beq r1, r2, addr => if (r1 == r2): goto addr

• But other operations can be combined…
– slt $1, $2, $3 => if ($2 < $3) $1 = 1; else $1 = 0

• beq, bne, slt, and $zero, can implement all fundamental conditions
– Always, never, !=, = =, >, <=, >=, <, >(unsigned), <= (unsigned), ...

if (i<j)
w = w+1;

else
w = 5;

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 6

Re-working this example
1. Need to do the comparison

– Use “store less than”, slt $temp, $i, $j

• This writes 1 in $temp when the condition is true

2. Need to decide whether to branch, using only registers
– Only have $zero available to compare with
– The question is “should we jump over the if body”
– Want to jump to else_body when $temp is 0
– So we conceptually we are asking if !(i<j) [confusing!]
– beq $temp, $zero, else_body
– This says goto the else body when the slt was not true

3. Need to jump over the else body
– Don’t do both the if and the else on accident!
– Use “unconditional jump”
– j after_else

4. Finally, fill in the bodies

if (i<j)
if_body:

w = w+1;
else
else_body:

w = 5;
after_else:

slt $temp, $i, $j
beq $temp, $zero, else_body
if_body:
addi $w, $w, 1
j after_else
else_body:
addi $w, $zero, 5
after_else:

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 7

FAQs / Extras

1. Could we have used a bne instead?
– Yes, if you get the value 1 into a register

– But this is inefficient
• Extra instruction
• Register pressure

if (i<j)
if_body:

w = w+1;
else
else_body:

w = 5;
after_else:

slt $temp, $i, $j
addi $scratch, $zero, 1
bne $temp, $scratch, else_body
if_body:
addi $w, $w, 1
j after_else
else_body:
addi $w, $zero, 5
after_else:

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 8

FAQs / Extras

1. Could we have used a bne with no more instructions?
– Yes… if you flip the body and “put the else first”

– Real compilers do this sometimes

if (i<j)
if_body:

w = w+1;
else
else_body:

w = 5;
after_else:

slt $temp, $i, $j
bne $temp, $zero, if_body
else_body:
addi $w, $zero, 5
j after
if_body:
addi $w, $w, 1
after:

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 9

How do you specify the destination of a branch/jump?

• Unconditional jumps may go long distances
– Function calls, returns, …

• Studies show that almost all conditional branches go short distances
from the current program counter
– loops, if-then-else, …

• A relative address requires (many) fewer bits than an absolute address
– e.g., beq $1, $2, 100 => if ($1 == $2): PC = (PC+4) + 100 * 4

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 10

MIPS Branch and Jump Addressing Modes
• Branches (e.g., beq) use PC-relative addressing mode

– uses fewer bits since address typically close
– Aka: base+displacement mode, with the PC being the base

• Jumps use pseudo-direct addressing mode
– Recall opcode is 6 bits…

• How many bits are available for displacement? How far can you jump?
– 26 bits of the address is in the instruction, the rest is taken from the PC.

instruction program counter

jump destination address
| |00

6 | 26 4 | 28

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 11

MIPS in one slide
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locat ions for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instruct ions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words dif fer by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper
immediate

lui $s1, 100 $s1 = 100 * 2 16 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 12

Review — Instruction Execution in a CPU

Memory2

20000
20004

80000

Address10

10001100010000110100111000100000
00000000011000010010100000100000

00000000000000000000000000111001

Registers10

R0
R1
R2
R3
R4
R5
...

0
36

60000
45

198
12
...

Program
Counter10

20000

Instruction Buffer

op rtrs rd shamt

immediate/disp

in1 in2

out
ALUoperation

Load/Store
Unit

addr

data

C
P
U

M
e
m
o
r
y

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 13

Poll Q: Work an Example

• Can we figure out the code?

Where is k?
A $4
B $5
C $15
D $16
E None of the above

void
swap(int v[], int k)
{
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 14

MIPS ISA Tradeoffs

What if?
– 64 registers
– 20-bit immediates
– 4 operand instruction (e.g. Y = AX + B)

OP

OP

OP

rs rt rd sa funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
R-type

I-type

J-type

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 15

RISC Architectures

• MIPS, like SPARC, PowerPC, and Alpha AXP, is a RISC
(Reduced Instruction Set Computer) ISA.
– fixed instruction length
– few instruction formats
– load/store architecture

• RISC architectures worked because they enabled pipelining.
They continue to thrive because they enable parallelism.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 16

Alternative Architectures

• Design alternative:
– provide more powerful operations
– goal is to reduce number of instructions executed
– danger is a slower cycle time and/or a higher CPI (cycles per instruction)

• Sometimes referred to as “RISC vs. CISC”
– CISC = Complex Instruction Set Computer (as alt to RISC)
– virtually all new instruction sets since 1982 have been RISC
– VAX: minimize code size, make assembly language easy

instructions from 1 to 54 bytes long!
• We’ll look (briefly!) at PowerPC and 80x86
• What is ARM?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 17

PowerPC

• Indexed addressing
– example: lw $t1,$a0+$s3 # $t1=Memory[$a0+$s3]

– What do we have to do in MIPS?

• Update addressing
– update a register as part of load (for marching through arrays)
– example: lwu $t0,4($s3) # $t0=Memory[$s3+4];$s3=$s3+4

– What do we have to do in MIPS?

• Others:
– load multiple/store multiple
– a special counter register “bc Loop”

decrement counter, if not 0 goto loop

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 18

80x86

1978: The Intel 8086 is announced (16 bit architecture)
1980: The 8087 floating point coprocessor is added
1982: The 80286 increases address space to 24 bits, +instructions
1985: The 80386 extends to 32 bits, new addressing modes
1989-1995: The 80486, Pentium, Pentium Pro add a few instructions

(mostly designed for higher performance)
1997: MMX is added
1999: Pentium III (same architecture)
2001: Pentium 4 (144 new multimedia instructions), simultaneous multithreading (hyperthreading)
2005: dual core Pentium processors
2006: quad core (sort of) Pentium processors
2009: Nehalem – eight-core multithreaded processors
2015: Skylake – 4-core, multithreaded, added hw security features, transactional memory…

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 19

80x86

• Complexity:
– Instructions from 1 to 17 bytes long
– one operand must act as both a source and destination
– one operand can come from memory
– complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”

• Saving grace:
– the most frequently used instructions are not too difficult to build
– compilers avoid the portions of the architecture that are slow

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 20

Key Points

• MIPS is a general-purpose register, load-store, fixed-instruction-length
architecture.

• MIPS is optimized for fast pipelined performance, not for low instruction
count

• Historic architectures favored code size over parallelism.
• MIPS most complex addressing mode, for both branches and

loads/stores is base + displacement.

