
CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 1

CSE 141: Introduction to Computer Architecture

Memory & Caches

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 2

Part I: Basic Memory & Cache Designs

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 3

Finally, telling the truth about Memory

• Up to this point, we’ve been assuming memory can be accessed in a
single cycle.

• In fact, that was true once.
• But cycle time has decreased rapidly (for high performance machines),

while memory access time has decreased very little.
• In modern computers, memory latency can be in the neighborhood of

350-500 cycles!

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 4

The truth about memory latency

• So then what is the point of pipelining, branch prediction, etc. if memory
latency is 500 cycles?

• Keep in mind, 20% of instructions are loads and stores, and we fetch
(read inst memory) every instruction.

lw R4, 1000(R2) IF ID EX M - - - - - - - - - … - - - - - - - WB
lw R8, 200(R4) IF ID B - - - - - - - - - - - - - - - - -ID EX M- - - - - - - - - … - - - - -- - - - WB
add R10, R8, R10 IF B - - - - - - - - - - - - - - - - - ID B - - - - - - - - - - - - - - - - -ID EX M

CPI = ~ ??

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 5

But wait…

• That is assuming DRAM technology, which is necessary for large main
memories (multiple gigabytes, for example)

• But we can design much smaller (capacity) memories using SRAM, even
on chip.

• If we still want to access it in a cycle, it should be KB, not MB or GB.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 6

So what can I do with this?

CPU

memory

Main memory

1 cycle, maybe?
<<1% of the capacity?

400 cycles, maybe?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 7

Memory Locality

• Memory hierarchies take advantage of memory locality.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 8

Memory Locality

• Memory hierarchies take advantage of memory locality.
• Memory locality is the principle that future memory accesses are near

past accesses.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 9

Memory Locality

• Memory hierarchies take advantage of memory locality.
• Memory locality is the principle that future memory accesses are near

past accesses.
• Memories take advantage of two types of locality

– near in time => we will often access the same data again very soon
– near in space/distance => our next access is often very close to our last access

(or recent accesses).

• (this sequence of addresses exhibits both temporal and spatial locality)
– 1,2,3,1,2,3,8,8,47,9,10,8,8...

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 10

Locality and cacheing

• Memory hierarchies exploit locality by cacheing (keeping close to the
processor) data likely to be used again.

• This is done because we can build large, slow memories and small, fast
memories, but we can’t build large, fast memories.

• If it works, we get the illusion of SRAM access time with disk capacity

• SRAM access times are ~1ns at cost of $2000 to $5000 per Gbyte.
• DRAM access times are ~70ns at cost of $20 to $75 per Gbyte.
• Disk access times are 5 to 20 million ns at cost of $.20 to $2 per Gbyte.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 11

A typical memory hierarchy
CPU

memory

memory

memory

memory

on-chip caches

off-chip cache

main memory

disk

small
expensive $/bit

cheap $/bit

big

so then where is my program and data??

fast

slow

memory

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 12

Cache Fundamentals
cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 13

Cache Fundamentals

• cache hit -- an access where the data is
found in the cache.

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 14

Cache Fundamentals

• cache hit -- an access where the data is
found in the cache.

• cache miss -- an access which isn’t

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 15

Cache Fundamentals

• cache hit -- an access where the data is
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 16

Cache Fundamentals

• cache hit -- an access where the data is
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache
• miss penalty -- time to move data from

further level to closer

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 17

Cache Fundamentals

• cache hit -- an access where the data is
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache
• miss penalty -- time to move data from

further level to closer
• hit ratio -- percentage of time the data is

found in the cache

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 18

Cache Fundamentals

• cache hit -- an access where the data is
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache
• miss penalty -- time to move data from

further level to closer
• hit ratio -- percentage of time the data is

found in the cache
• miss ratio -- (1 - hit ratio)

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 19

Cache Fundamentals, cont.

• cache block size or cache line size–
the amount of data that gets
transferred on a cache miss.

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 20

Cache Fundamentals, cont.

• cache block size or cache line size –
the amount of data that gets
transferred on a cache miss.

• instruction cache – cache that only
holds instructions.

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 21

Cache Fundamentals, cont.

• cache block size or cache line size –
the amount of data that gets
transferred on a cache miss.

• instruction cache – cache that only
holds instructions.

• data cache – cache that only caches
data.

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 22

Cache Fundamentals, cont.

• cache block size or cache line size – the
amount of data that gets transferred
on a cache miss.

• instruction cache – cache that only
holds instructions.

• data cache – cache that only caches
data.

• unified cache – cache that holds both.

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 23

Cacheing Issues

• On a memory access -
– How do I know if this is a hit or miss?

• On a cache miss -
– where to put the new data?
– what data to throw out?
– how to remember what data this is?

cpu

lowest-level
cache

next-level
memory/cache

access

miss

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 24

Hardware implications on cache design

• Caches are basically the thing that make real workloads fast
• The size of a cache is inversely proportional to its speed

– Smaller caches are faster

• And every bit counts

• This is why caches use as few bits as possible to do their work
– This makes caches tricky to walk through as a human

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 25

A simple cache

• A cache that can put a line of data anywhere is called __________________________
• The most popular replacement strategy is LRU ().

tag data

the tag identifies
the address of
the cached data

4 entries, each block holds one word, any block
can hold any word.

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 26

A simple cache

• A cache that can put a line of data anywhere is called Fully Associative
• The most popular replacement strategy is LRU (Least Recently Used).

tag data

the tag identifies
the address of
the cached data

4 entries, each block holds one word, any block
can hold any word.

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 27

A simpler cache

• A cache that can put a line of data in exactly one place is called __________________.
• Advantages/disadvantages vs. fully-associative?

an index is used
to determine

which line an address
might be found in

4 entries, each block holds one word, each word
in memory maps to exactly one cache location.

00000100
tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 28

A simpler cache

• A cache that can put a line of data in exactly one place is called direct mapped
• Advantages/disadvantages vs. fully-associative?

an index is used
to determine

which line an address
might be found in

4 entries, each block holds one word, each word
in memory maps to exactly one cache location.

00000100
tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 29

A set-associative cache

• A cache that can put a line of data in exactly n places is called n-way ______________________.
• The cache lines/blocks that share the same index are a cache ____________.

tag data

4 entries, each block holds one word, each word
in memory maps to one of a set of n cache lines

00000100
tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 30

A set-associative cache

• A cache that can put a line of data in exactly n places is called n-way set-associative.
• The cache lines/blocks that share the same index are a cache set.

tag data

4 entries, each block holds one word, each word
in memory maps to one of a set of n cache lines

00000100
tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 31

Longer Cache Blocks

• Large cache blocks take advantage of spatial locality.
• Too large of a block size can waste cache space.
• Longer cache blocks require less tag space

tag data

4 entries, each block holds two words, each word
in memory maps to exactly one cache location
(this cache is twice the total size of the prior caches).

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

00000100

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 32

Longer Cache Blocks

• Large cache blocks take advantage of spatial locality.
• Too large of a block size can waste cache space.
• Longer cache blocks require less tag space

tag data (now 64 bits)

4 entries, each block holds two words, each word
in memory maps to exactly one cache location
(this cache is twice the total size of the prior caches).

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

00000100

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 33

Selection Fully-
Associative

4-way Set
Associative

Direct
Mapped

A 3 2 1

B 3 3 2
C 1 2 3

D 3 2 1
E None of the above

Q: Describing Cache Type Tradeoffs?

1. Exceptional usage of the cache space in exchange for a slow hit time
2. Poor usage of the cache space in exchange for an excellent hit time
3. Reasonable usage of cache space in exchange for a reasonable hit time

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 34

Back to Block Size

• If block size increases spatial locality, should we just make the cache
block size really, really big????

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 35

Block Size and Miss Rate

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 36

Cache Parameters

Cache size = Number of sets * block size * associativity
tag data tag data

Bytes per block

Blocks per set

Se
ts

 p
er

 C
ac

he

Warning / Notice—Things that count towards “cache size”: cache data
Things that do not count towards “cache size”: tags, valid bits, etc…

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 37

Cache Parameters

Cache size = Number of sets * block size * associativity

• 128 blocks, 32-byte block size, direct mapped, size = ?

• 128 KB cache, 64-byte blocks, 512 sets, associativity = ?

(always keep in mind “cache size” only counts the data storage)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 38

Handling a Cache Access

• 1. Use index and tag to access cache and determine hit/miss.
• 2. If hit, return requested data.
• 3. If miss, select a cache block to be replaced, and access memory or

next lower cache (possibly stalling the processor).
– load entire missed cache line into cache
– return requested data to CPU (or higher cache)

• 4. If next lower memory is a cache, goto step 1 for that cache.

ICache Reg

A
LU Dcache Reg

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 39

Accessing a Sample Cache
• 64 KB cache, direct-mapped, 32-byte cache block size

31 30 29 28 27 17 16 | 15 14 13 12 11 10 9 8 7 6 5 | 4 3 2 1 0
tag index

valid tag data
64 K

B
 / 32 bytes =

2 K
 cache blocks/sets

11

=
256

32

16

hit/miss

0
1
2

...

...

...

...
2045
2046
2047

block offset

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 40

Accessing a Sample Cache
• 32 KB cache, 2-way set-associative, 16-byte block size

31 30 29 28 27 17 16 15 14 | 13 12 11 10 9 8 7 6 5 4 | 3 2 1 0
tag index

valid tag data
32 K

B
 / 16 bytes / 2 =

1 K
 cache sets

10

=

18

hit/miss

0
1
2

...

...

...

...
1021
1022
1023

block offset

tag datavalid

=

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 41

Associative Caches

• Higher hit rates, but...

• longer access time
– (longer to determine hit/miss, more muxing of outputs)

• more space (longer tags)
– 16 KB, 16-byte blocks, DM, tag = ?
– 16 KB, 16-byte blocks, 4-way, tag = ?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 42

for (int i = 0; i < 10,000,000; i++)
sum += A[i];

Assume each element of A is 4 bytes and sum is kept in a register.
Assume a baseline direct-mapped 32KB L1 cache with 32 byte blocks.
Assume this loop is visited many times.
Which changes would help the hit rate of the above code?

Selection Change

A Increase to 2-way set associativity
B Increase block size to 64 bytes

C Increase cache size to 64 KB
D A and C combined

E A, B, and C combined

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 43

for (int i=0; i < 10,000,000; i++)
for (int j = 0; j < 8192; j++)

sum += A[j] – B[j];

Assume each element of A and B are 4 bytes.
Assume each array is at least 32KB in size.
Assume sum is kept in a register.
Assume a baseline direct-mapped 32KB L1 cache with 32 byte blocks.
Which changes would help the hit rate of the above code?

Selection Change
A Increase to 2-way set associativity

B Increase block size to 64 bytes
C Increase cache size to 64 KB

D A and C combined
E A, B, and C combined

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 44

Dealing with Stores

• Stores must be handled differently than loads, because...
– they don’t necessarily require the CPU to stall.
– they change the content of cache/memory (creating memory consistency

issues)

• Q: Can you think of a situation when you might need to load from
memory before you can execute a store?
– Can you think of another one?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 45

Policy decisions for stores

• Keep memory and cache identical?
– _____________________ => all writes go to both cache and main memory
– _____________________ => writes go only to cache. Modified cache lines are

written back to memory when the line is replaced.

• Make room in cache for store miss?
– write-allocate => on a store miss, bring written line into the cache
– write-around => on a store miss, ignore cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 46

Dealing with stores

• On a store hit, write the new data to cache.
– In a write-through cache, write the data immediately to memory.
– In a write-back cache, mark the line as dirty.

• On a store miss, initiate a cache block load from memory for a write-
allocate cache.
– Write directly to memory for a write-around cache.

• On any kind of cache miss in a write-back cache, if the line to be replaced
in the cache is dirty, write it back to memory.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 47

Cache Performance

• CPI = BCPI + MCPI
– BCPI = base CPI, which means the CPI assuming perfect memory
– MCPI = the memory CPI, the number of cycles (per instruction) the processor is

stalled waiting for memory.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 48

Cache Performance

CPI = BCPI + MCPI
– BCPI = base CPI, which means the CPI assuming perfect memory
– MCPI = the memory CPI, the number of cycles (per instruction) the processor is stalled waiting for

memory.

MCPI = accesses/instruction * miss rate * miss penalty
– this assumes we stall the pipeline on both read and write misses, that the miss penalty is the same for

both, that cache hits require no stalls.
– If the miss penalty or miss rate is different for Inst cache and data cache (common case), then
MCPI = I$ accesses/inst*I$MR*I$MP + D$ acc/inst*D$MR*D$MP

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 49

In fact…

• Can generalize this formula further for other stalls:

• CPI = BCPI + DHSPI + BHSPI + MCPI
– DHSPI = data hazard stalls per instruction
– BHSPI = branch hazard stalls per instruction.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 50

Cache Performance

Instruction cache miss rate of 4%
Data cache miss rate of 10%
BCPI = 1.0 (no data or control hazards)
20% of instructions are loads and stores
Miss penalty = 12 cycles
CPI = ???

Selection CPI (rounded if
necessary)

A 1.24

B 1.34

C 1.48

D 1.72

E None of the above

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 51

Cache Performance

• Unified cache
• 25% of instructions are loads and stores
• BCPI = 1.2, miss penalty of 10 cycles

• If we improve the miss rate from 10% to 4% (e.g. with a larger cache),
how much do we improve performance?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 52

Cache Performance

• BCPI = 1
• Miss rate of 8% overall, 20% loads, miss penalty 20 cycles, never stalls

on stores.

• What is the speedup from doubling the CPU clock rate?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 53

Example -- DEC Alpha 21164 Caches

21164 CPU
core

Instruction
Cache

Data
Cache

Unified
L2

Cache

Off-Chip
L3 Cache

• ICache and DCache -- 8 KB, DM, 32-byte lines
• L2 cache -- 96 KB, ?-way SA, 32-byte lines
• L3 cache -- 1 MB, DM, 32-byte lines

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 54

Cache Alignment

• The data that gets moved into the cache on a miss are all
data whose addresses share the same tag and index
(regardless of which data gets accessed first).

• This results in
– no overlap of cache lines
– easy mapping of addresses to cache lines (no additions)
– data at address X always being present in the same location in

the cache block (at byte X mod blocksize) if it is there at all.

• Think of main memory as organized into cache-line sized
pieces (because in reality, it is!).

tag index block offset

memory address

.

.

.

0
1
2
3
4
5
6
7
8
9

10
.
.
.

Memory

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 55

Three types of cache misses

• Compulsory (or cold-start) misses
– first access to the data.

• Capacity misses
– we missed only because the cache isn’t big enough.

• Conflict misses
– we missed because the data maps to the same line

as other data that forced it out of the cache.

tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

DM cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 56

Q: Categorizing Misses

• Suppose you experience a cache miss on
a block (let's call it block A).

• You have accessed block A in the past.
There have been precisely 1027 different
blocks accessed between your last access
to block A and your current miss.

• Your block size is 32-bytes and you have a
64KB cache. What kind of miss was this?

Selection Cache Miss

A Compulsory

B Capacity

C Conflict

D Both Capacity and
Conflict

E None of the above

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 57

So, then, how do we decrease...

• Compulsory misses?

• Capacity misses?

• Conflict misses?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 58

Cache Associativity

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 59

LRU replacement algorithms

• only needed for associative caches
• requires one bit for 2-way set-associative, 8 bits (per set, 2/line) for 4-

way, 24 bits for 8-way…
• can be emulated with log n bits (NMRU)
• can be emulated with use bits for highly associative caches (like page

tables)
• However, for most caches (eg, associativity <= 8), LRU is calculated

exactly.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 60

Caches in Current Processors

• Not long ago, they were DM at lowest level (closest to CPU), associative further
away. Today they are less associative near the processor (2-4+), and more associative
farther away (4-16).

• split I and D close (L1) to the processor (for throughput rather than miss rate), unified
further away (L2 and beyond).

• write-through and write-back both common, but never write-through all the way to
memory.

• 64-byte cache lines common (but getting larger)

• Non-blocking
– processor doesn’t stall on a miss, but only on the use of a miss (if even then)
– this means the cache must be able to keep track of multiple outstanding accesses, even

multiple outstanding misses.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 61

Intel Nehalem (i7)

CPU
I$

D$
L2

cache

CPU
I$

D$
L2

cache

CPU
I$

D$
L2

cache

CPU
I$

D$
L2

cache

L3 cache

Instruction Cache
-32 KB, 4-way
-64-byte line

Data Cache
-32 KB, 8-way
-64-byte line
-write-back, write-allocate

Unified L2 Cache
-256 KB, 8-way
-64-byte line
-write-back, write-allocate

Shared, unified L3 Cache
-8 MB, 16-way
-64-byte line
-write-back, write-allocate

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 62

Key Points

• Caches give illusion of a large, cheap memory with the access time of a
fast, expensive memory.

• Caches take advantage of memory locality, specifically temporal locality
and spatial locality.

• Cache design presents many options (block size, cache size, associativity,
write policy) that an architect must combine to minimize miss rate and
access time to maximize performance.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 63

ADVANCED CACHE ARCHITECTURES

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 64

Advanced Cache Architectures

• AMAT = Average Memory Access Time
• AMAT = hit time + miss rate*miss penalty

• (usually expressed in cycles, but can also be expressed in time, e.g.
nanoseconds)

• AMAT is a common measure of memory hierarchy performance in
architectural studies.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 65

Advanced Cache Architectures

• AMAT = Average Memory Access Time
• AMAT = hit time + miss rate*miss penalty

• So improving memory hierarchy performance means improving AMAT
• In this context, then, there are several ways to improve performance

(reduce AMAT):
– ?
– ?
– ?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 66

Advanced Cache Architectures

• AMAT = Average Memory Access Time
• AMAT = hit time + miss rate*miss penalty

• As a result, then, there are several ways to improve performance (reduce
AMAT):
– Decrease hit time
– Decrease miss rate
– Decrease (observed) miss penalty

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 67

Hit Rate vs. Hit Time

• Direct-mapped caches have low hit time, associative caches have low
miss rate.

• Ideally, we’d like low miss rate and low hit time together.
– Way prediction
– Victim Cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 68

Victim Cache
• Small, fully associative buffer which holds

recently evicted cache lines.
• Targets conflict misses

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 69

Advanced Cache Architectures

• AMAT = Average Memory Access Time
• AMAT = hit time + miss rate*miss penalty

• As a result, then, there are several ways to improve performance (reduce
AMAT):
– Decrease hit time
– Decrease miss rate
– Decrease (observed) miss penalty

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 70

Reducing Compulsory Misses and Capacity Misses

• Prefetching
– Brings data into the cache (or a special buffer) based on access patterns or

program knowledge.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 71

Reducing Compulsory Misses and Capacity Misses

• Prefetching
– Brings data into the cache (or a special buffer) based on access patterns or program

knowledge.
• Who does the prefetching?

– Hardware (based on access patterns)
• Most modern high-performance processors do this
• Sometimes called stream buffers.

– Software
• Most ISAs support some kind of software prefetch
• Works best for regular computation

– A separate thread (in a multithreaded processor)
• We called this speculative precomputation (2001)
• Typically done by distilling a reduced version of the main thread

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 72

Advanced Cache Architectures

• AMAT = Average Memory Access Time
• AMAT = hit time + miss rate*miss penalty

• As a result, then, there are several ways to improve performance (reduce
AMAT):
– Decrease hit time
– Decrease miss rate
– Decrease (observed) miss penalty

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 73

Reducing memory stalls

• A non-blocking cache is one that can still handle new requests after a
miss.
– Requires some extra bookkeeping to keep everything straight.

• A couple of design options:
– Hit-under-miss (can have 1 outstanding miss)

• Can continue to service hits after a miss
• Stalls on second miss

– Miss-under-miss
• Can have up to M outstanding misses at once

• More generally, we want to…

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 74

Tolerating cache misses

• Sometimes you can’t make the miss go away. But that doesn’t mean you
have to stall. We toleratemisses by continuing to make progress in the
face of cache misses.

• Miss tolerance techniques (increasingly effective)
– Stall on miss (no tolerance)
–
–
–
–

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 75

Tolerating cache misses

• Sometimes you can’t make the miss go away. But that doesn’t mean you
have to stall. We toleratemisses by continuing to make progress in the
face of cache misses.

• Miss tolerance techniques (increasingly effective)
– Stall on miss (no tolerance)
– Stall on use
–
–
–

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 76

Tolerating cache misses

• Sometimes you can’t make the miss go away. But that doesn’t mean you
have to stall. We toleratemisses by continuing to make progress in the
face of cache misses.

• Miss tolerance techniques (increasingly effective)
– Stall on miss (no tolerance)
– Stall on use
– Non-blocking caches
–
–

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 77

Tolerating cache misses

• Sometimes you can’t make the miss go away. But that doesn’t mean you
have to stall. We toleratemisses by continuing to make progress in the
face of cache misses.

• Miss tolerance techniques (increasingly effective)
– Stall on miss (no tolerance)
– Stall on use
– Non-blocking caches
– Out-of-order execution
–

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 78

Tolerating cache misses

• Sometimes you can’t make the miss go away. But that doesn’t mean you
have to stall. We toleratemisses by continuing to make progress in the
face of cache misses.

• Miss tolerance techniques (increasingly effective)
– Stall on miss (no tolerance)
– Stall on use
– Non-blocking caches
– Out-of-order execution
– Multithreaded execution

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 79

Cache Optimization Summary

• Reducing Conflict Misses
– Way prediction
– Victim Cache

• Reducing Capacity or Compulsory Misses
– Prefefetching

• Tolerating Misses
– Non-blocking caches
– Out-of-order execution
– Multithreading

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 80

VIRTUAL MEMORY

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 81

Virtual Memory
• It’s just another level in the cache/memory hierarchy
• Virtual memory is the name of the technique that allows

us to view main memory as a cache of a larger memory
space (on disk).

cpu

$

cache

Main memory

disk

cacheing

cacheing

virtual memory

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 82

Virtual Memory

• is just cacheing, but uses different terminology (and different
storage/lookup techniques)

cache VM
block page
cache miss page fault
address virtual address
index physical address (sort of)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 83

Virtual Memory

• What happens if another program in the processor uses the same addresses
that yours does?

• What happens if your program uses addresses that don’t exist in the
machine?

• What happens to “holes” in the address space your program uses?

• So, virtual memory provides
– performance (through the cacheing effect)
– protection
– ease of programming/compilation
– efficient use of memory

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 84

Virtual Memory…

…is just a mapping function from virtual memory addresses to physical
memory locations, which allows cacheing of virtual pages in physical memory.

Virtual Page
Number

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 85

What makes VM different than memory caches

• MUCH higher miss penalty (millions of cycles)!
• Therefore

– large pages [equivalent of cache line] (4 KB to MBs)
– associative mapping of pages (typically fully associative)
– software handling of misses (but not hits!!)
– write-through not an option, only write-back

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 86

Virtual Memory mapping

physical addresses

virtual addresses

virtual addresses

disk

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 87

Virtual Address Translation

• We do not need to translate/change all bits of the address.

• We’ll only change high order bits, and leave the low order bits alone –
the number of low bits we do not change defines the “page size”.
– Page size (virtual memory) is analogous to block size (caches) – it is the chunk

of memory that gets moved as a unit on a miss.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 88

Address translation via the page table

• all page mappings are in the page table, so hit/miss is determined solely by the valid bit (i.e., no tag)
• so why is this fully associative???
• Biggest problem – this is slow. Why?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 89

Making Address Translation Fast
• A cache for address translations: translation

lookaside buffer (TLB)

TLB accessed first, page table only
accessed on TLB miss.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 90

TLBs and caches

Block

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 91

Virtual Memory & Caches

• Cache lookup is now a serial process
1. V->P translation through TLB
2. Get index
3. Read tag from cache
4. Compare

• How can we make this faster?
1.
2.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 92

Virtual Caches

• Which addresses are used to lookup data in cache/store in tag?
– Virtual Addresses?
– Physical Addresses?

• Pros/Cons?
– Virtual
– Physical

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 93

Fast Index Translation

• Can do
1. V->P translation through TLB
2. Get index

in parallel, if the v->p translation does not change the index.
virtual page number page offset

tag index block offset

virtual page number page offset

tag index block offset

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 94

TLBs and caches

Block

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 95

Virtual Memory Key Points

• How does virtual memory provide:
– protection?
– sharing?
– performance?
– illusion of large main memory?

• Virtual Memory requires twice as many memory accesses, so we cache
page table entries in the TLB.

• Three things can go wrong on a memory access: cache miss, TLB miss,
page fault.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 96

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 97

Using the address…

tag index block offset

N-bit address

Check your understanding:

What is the size of the index (how many bits) in a fully associative cache?

A direct-mapped cache is a ___-way Set Associative Cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 99

tag index block offset

N-bit address

Q: How many bits for each field?

• Generally, we have variables block_size, cache_size, and memory_size
– Let’s work it out for

• BS = 8 bytes
• CS = 1 KB
• MS = 4 MB

– And we have a 4-way set-associative cache?
• What is the…

– Number of bits for the block offset: ____
– Number of bits for the index: ____
– Number of bits for the tag: ____

• Can you derive a general equation for each of these?

