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CSE 141: Introduction to Computer Architecture

Memory & Caches
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Part I: Basic Memory & Cache Designs
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Finally, telling the truth about Memory

• Up to this point, we’ve been assuming memory can be accessed in a 
single cycle.

• In fact, that was true once.
• But cycle time has decreased rapidly (for high performance machines), 

while memory access time has decreased very little.
• In modern computers, memory latency can be in the neighborhood of 

350-500 cycles!
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The truth about memory latency

• So then what is the point of pipelining, branch prediction, etc. if memory 
latency is 500 cycles?

• Keep in mind, 20% of instructions are loads and stores, and we fetch 
(read inst memory) every instruction.

lw R4, 1000(R2)    IF ID EX M - - - - - - - - - …    - - - - - - - WB
lw R8, 200(R4)           IF  ID  B - - - - - - - - - - - - - - - - -ID EX M- - - - - - - - - …  - - - - -- - - - WB
add  R10, R8, R10             IF  B - - - - - - - - - - - - - - - - - ID  B - - - - - - - - - - - - - - - - -ID EX M

CPI = ~ ??
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But wait…

• That is assuming DRAM technology, which is necessary for large main 
memories (multiple gigabytes, for example)

• But we can design much smaller (capacity) memories using SRAM, even 
on chip.

• If we still want to access it in a cycle, it should be KB, not MB or GB.
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So what can I do with this?

CPU

memory

Main memory

1 cycle, maybe?
<<1% of the capacity?

400 cycles, maybe?
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Memory Locality

• Memory hierarchies take advantage of memory locality. 
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Memory Locality

• Memory hierarchies take advantage of memory locality. 
• Memory locality is the principle that future memory accesses are near

past accesses.
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Memory Locality

• Memory hierarchies take advantage of memory locality. 
• Memory locality is the principle that future memory accesses are near 

past accesses.
• Memories take advantage of two types of locality

– near in time  => we will often access the same data again very soon
– near in space/distance => our next access is often very close to our last access 

(or recent accesses).

• (this sequence of addresses exhibits both temporal and spatial locality)
– 1,2,3,1,2,3,8,8,47,9,10,8,8...
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Locality and cacheing

• Memory hierarchies exploit locality by cacheing (keeping close to the 
processor) data likely to be used again.

• This is done because we can build large, slow memories and small, fast 
memories, but we can’t build large, fast memories.

• If it works, we get the illusion of SRAM access time with disk capacity

• SRAM access times are ~1ns at cost of $2000 to $5000 per Gbyte.
• DRAM access times are ~70ns at cost of $20 to $75 per Gbyte.
• Disk access times are 5 to 20 million ns at cost of $.20 to $2 per Gbyte. 
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A typical memory hierarchy
CPU

memory

memory

memory

memory

on-chip caches

off-chip cache

main memory

disk

small
expensive $/bit

cheap $/bit

big

so then where is my program and data??

fast

slow

memory
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Cache Fundamentals
cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals

• cache hit -- an access where the data is 
found in the cache.

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals

• cache hit -- an access where the data is 
found in the cache.

• cache miss -- an access which isn’t

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals

• cache hit -- an access where the data is 
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals

• cache hit -- an access where the data is 
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache
• miss penalty -- time to move data from 

further level to closer

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals

• cache hit -- an access where the data is 
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache
• miss penalty -- time to move data from 

further level to closer
• hit ratio -- percentage of time the data is 

found in the cache

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals

• cache hit -- an access where the data is 
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache
• miss penalty -- time to move data from 

further level to closer
• hit ratio -- percentage of time the data is 

found in the cache
• miss ratio -- (1 - hit ratio)

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals, cont.

• cache block size or cache line size–
the amount of data that gets 
transferred on a  cache miss.

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals, cont.

• cache block size or cache line size –
the amount of data that gets 
transferred on a  cache miss.

• instruction cache – cache that only 
holds instructions.

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals, cont.

• cache block size or cache line size –
the amount of data that gets 
transferred on a  cache miss.

• instruction cache – cache that only 
holds instructions.

• data cache – cache that only caches 
data.

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals, cont.

• cache block size or cache line size – the 
amount of data that gets transferred 
on a  cache miss.

• instruction cache – cache that only 
holds instructions.

• data cache – cache that only caches 
data.

• unified cache – cache that holds both.

cpu

lowest-level
cache

next-level
memory/cache
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Cacheing Issues

• On a memory access -
– How do I know if this is a hit or miss?

• On a cache miss -
– where to put the new data?
– what data to throw out?
– how to remember what data this is?

cpu

lowest-level
cache

next-level
memory/cache

access

miss
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Hardware implications on cache design

• Caches are basically the thing that make real workloads fast
• The size of a cache is inversely proportional to its speed

– Smaller caches are faster

• And every bit counts

• This is why caches use as few bits as possible to do their work
– This makes caches tricky to walk through as a human
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A simple cache

• A cache that can put a line of data anywhere is called __________________________
• The most popular replacement strategy is LRU (                              ).

tag data

the tag identifies
the address of 
the cached data

4 entries, each block holds one word, any block
can hold any word.

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100
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A simple cache

• A cache that can put a line of data anywhere is called Fully Associative
• The most popular replacement strategy is LRU ( Least Recently Used ).

tag data

the tag identifies
the address of 
the cached data

4 entries, each block holds one word, any block
can hold any word.

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100
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A simpler cache

• A cache that can put a line of data in exactly one place is called __________________.
• Advantages/disadvantages vs. fully-associative?

an index is used
to determine 

which line an address
might be found in

4 entries, each block holds one word, each word
in memory maps to exactly one cache location.

00000100
tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 28

A simpler cache

• A cache that can put a line of data in exactly one place is called direct mapped
• Advantages/disadvantages vs. fully-associative?

an index is used
to determine 

which line an address
might be found in

4 entries, each block holds one word, each word
in memory maps to exactly one cache location.

00000100
tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100
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A set-associative cache

• A cache that can put a line of data in exactly n places is called n-way ______________________.
• The cache lines/blocks that share the same index are a cache ____________.

tag data

4 entries, each block holds one word, each word
in memory maps to one of a set of n cache lines

00000100
tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100
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A set-associative cache

• A cache that can put a line of data in exactly n places is called n-way set-associative.
• The cache lines/blocks that share the same index are a cache set.

tag data

4 entries, each block holds one word, each word
in memory maps to one of a set of n cache lines

00000100
tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100
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Longer Cache Blocks

• Large cache blocks take advantage of spatial locality.
• Too large of a block size can waste cache space.
• Longer cache blocks require less tag space

tag data

4 entries, each block holds two words, each word
in memory maps to exactly one cache location 
(this cache is twice the total size of the prior caches).

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

00000100
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Longer Cache Blocks

• Large cache blocks take advantage of spatial locality.
• Too large of a block size can waste cache space.
• Longer cache blocks require less tag space

tag data (now 64 bits)

4 entries, each block holds two words, each word
in memory maps to exactly one cache location 
(this cache is twice the total size of the prior caches).

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

00000100



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 33

Selection Fully-
Associative

4-way Set 
Associative

Direct 
Mapped

A 3 2 1

B 3 3 2
C 1 2 3

D 3 2 1
E None of the above

Q: Describing Cache Type Tradeoffs?

1. Exceptional usage of the cache space in exchange for a slow hit time
2. Poor usage of the cache space in exchange for an excellent hit time
3. Reasonable usage of cache space in exchange for a reasonable hit time
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Back to Block Size

• If block size increases spatial locality, should we just make the cache 
block size really, really big????
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Block Size and Miss Rate
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Cache Parameters

Cache size = Number of sets * block size * associativity
tag data tag data

Bytes per block

Blocks per set

Se
ts

 p
er

 C
ac

he

Warning / Notice—Things that count towards “cache size”: cache data
Things that do not count towards “cache size”: tags, valid bits, etc…
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Cache Parameters

Cache size = Number of sets * block size * associativity

• 128 blocks, 32-byte block size, direct mapped, size = ?

• 128 KB cache, 64-byte blocks, 512 sets, associativity = ?

(always keep in mind “cache size” only counts the data storage)
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Handling a Cache Access

• 1.  Use index and tag to access cache and determine hit/miss.
• 2.  If hit, return requested data.
• 3.  If miss, select a cache block to be replaced, and access memory or 

next lower cache (possibly stalling the processor).
– load entire missed cache line into cache
– return requested data to CPU (or higher cache)

• 4.  If next lower memory is a cache, goto step 1 for that cache.

ICache Reg

A
LU Dcache Reg
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Accessing a Sample Cache
• 64 KB cache, direct-mapped, 32-byte cache block size 

31 30 29 28 27 .......... 17 16 | 15 14 13 12 11 10 9 8 7 6 5 | 4 3 2 1 0
tag index

valid tag data
64 K

B
 / 32 bytes = 

2 K
 cache blocks/sets

11

=
256

32

16

hit/miss

0
1
2

...

...

...

...
2045
2046
2047

block offset
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Accessing a Sample Cache
• 32 KB cache, 2-way set-associative, 16-byte block size 

31 30 29 28 27 .......... 17 16 15 14 | 13 12 11 10 9 8 7 6 5 4 | 3 2 1 0
tag index

valid tag data
32 K

B
 / 16 bytes / 2 = 

1 K
 cache sets

10

=

18

hit/miss

0
1
2

...

...

...

...
1021
1022
1023

block offset

tag datavalid

=
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Associative Caches

• Higher hit rates, but...

• longer access time
– (longer to determine hit/miss, more muxing of outputs)

• more space (longer tags)
– 16 KB, 16-byte blocks, DM, tag = ?
– 16 KB, 16-byte blocks, 4-way, tag = ?



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 42

for (int i = 0; i < 10,000,000; i++)
sum += A[i];

Assume each element of A is 4 bytes and sum is kept in a register.  
Assume a baseline direct-mapped 32KB L1 cache with 32 byte blocks. 
Assume this loop is visited many times.
Which changes would help the hit rate of the above code?

Selection Change

A Increase to 2-way set associativity 
B Increase block size to 64 bytes

C Increase cache size to 64 KB
D A and C combined

E A, B, and C combined
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for (int i=0; i < 10,000,000; i++)
for (int j = 0; j < 8192; j++)

sum += A[j] – B[j];

Assume each element of A and B are 4 bytes.
Assume each array is at least 32KB in size.
Assume sum is kept in a register.
Assume a baseline direct-mapped 32KB L1 cache with 32 byte blocks.
Which changes would help the hit rate of the above code?

Selection Change
A Increase to 2-way set associativity 

B Increase block size to 64 bytes
C Increase cache size to 64 KB

D A and C combined
E A, B, and C combined
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Dealing with Stores

• Stores must be handled differently than loads, because...
– they don’t necessarily require the CPU to stall.
– they change the content of cache/memory (creating memory consistency

issues)

• Q: Can you think of a situation when you might need to load from 
memory before you can execute a store?
– Can you think of another one?
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Policy decisions for stores

• Keep memory and cache identical?
– _____________________ => all writes go to both cache and main memory
– _____________________ => writes go only to cache.  Modified cache lines are 

written back to memory when the line is replaced.

• Make room in cache for store miss?
– write-allocate => on a store miss, bring written line into the cache
– write-around => on a store miss, ignore cache
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Dealing with stores

• On a store hit, write the new data to cache.
– In a write-through cache, write the data immediately to memory.
– In a write-back cache, mark the line as dirty.

• On a store miss, initiate a cache block load from memory for a write-
allocate cache.
– Write directly to memory for a write-around cache.

• On any kind of cache miss in a write-back cache, if the line to be replaced 
in the cache is dirty, write it back to memory. 
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Cache Performance

• CPI = BCPI + MCPI
– BCPI = base CPI, which means the CPI assuming perfect memory
– MCPI = the memory CPI, the number of cycles (per instruction) the processor is 

stalled waiting for memory.
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Cache Performance

CPI = BCPI + MCPI
– BCPI = base CPI, which means the CPI assuming perfect memory
– MCPI = the memory CPI, the number of cycles (per instruction) the processor is stalled waiting for 

memory.

MCPI = accesses/instruction * miss rate * miss penalty
– this assumes we stall the pipeline on both read and write misses, that the miss penalty is the same for 

both, that cache hits require no stalls.
– If the miss penalty or miss rate is different for Inst cache and data cache (common case), then
MCPI = I$ accesses/inst*I$MR*I$MP + D$ acc/inst*D$MR*D$MP
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In fact…

• Can generalize this formula further for other stalls:

• CPI = BCPI + DHSPI + BHSPI + MCPI
– DHSPI = data hazard stalls per instruction
– BHSPI = branch hazard stalls per instruction.
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Cache Performance

Instruction cache miss rate of 4%
Data cache miss rate of 10%
BCPI = 1.0 (no data or control hazards)
20% of instructions are loads and stores
Miss penalty = 12 cycles
CPI = ???

Selection CPI (rounded if 
necessary)

A 1.24

B 1.34

C 1.48

D 1.72

E None of the above
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Cache Performance

• Unified cache
• 25% of instructions are loads and stores
• BCPI = 1.2, miss penalty of 10 cycles

• If we improve the miss rate from 10% to 4% (e.g. with a larger cache), 
how much do we improve performance?
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Cache Performance

• BCPI = 1
• Miss rate of 8% overall, 20% loads, miss penalty 20 cycles, never stalls 

on stores. 

• What is the speedup from doubling the CPU clock rate?
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Example -- DEC Alpha 21164 Caches

21164 CPU
core

Instruction
Cache

Data
Cache

Unified
L2

Cache

Off-Chip
L3 Cache

• ICache and DCache -- 8 KB, DM, 32-byte lines
• L2 cache -- 96 KB, ?-way SA, 32-byte lines
• L3 cache -- 1 MB, DM, 32-byte lines
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Cache Alignment

• The data that gets moved into the cache on a miss are all 
data whose addresses share the same tag and index 
(regardless of which data gets accessed first).

• This results in 
– no overlap of cache lines
– easy mapping of addresses to cache lines (no additions)
– data at address X always being present in the same location in 

the cache block (at byte X mod blocksize) if it is there at all.

• Think of main memory as organized into cache-line sized 
pieces (because in reality, it is!).

tag index block offset

memory address

.

.

.

0
1
2
3
4
5
6
7
8
9

10
.
.
.

Memory
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Three types of cache misses

• Compulsory (or cold-start) misses
– first access to the data.

• Capacity misses
– we missed only because the cache isn’t big enough.

• Conflict misses
– we missed because the data maps to the same line 

as other data that forced it out of the cache.

tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

DM cache
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Q: Categorizing Misses

• Suppose you experience a cache miss on 
a block (let's call it block A).

• You have accessed block A in the past. 
There have been precisely 1027 different 
blocks accessed between your last access 
to block A and your current miss.

• Your block size is 32-bytes and you have a 
64KB cache. What kind of miss was this? 

Selection Cache Miss

A Compulsory

B Capacity

C Conflict

D Both Capacity and 
Conflict

E None of the above
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So, then, how do we decrease...

• Compulsory misses?

• Capacity misses?

• Conflict misses?



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 58

Cache Associativity



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 59

LRU replacement algorithms

• only needed for associative caches
• requires one bit for 2-way set-associative, 8 bits (per set, 2/line) for 4-

way, 24 bits for 8-way…
• can be emulated with log n bits (NMRU)
• can be emulated with use bits for highly associative caches (like page 

tables)
• However, for most caches (eg, associativity <= 8), LRU is calculated 

exactly.
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Caches in Current Processors

• Not long ago, they were DM at lowest level (closest to CPU), associative further 
away.  Today they are less associative near the processor (2-4+), and more associative 
farther away (4-16).

• split I and D close (L1) to the processor (for throughput rather than miss rate), unified 
further away (L2 and beyond).

• write-through and write-back both common, but never write-through all the way to 
memory.

• 64-byte cache lines common (but getting larger)

• Non-blocking
– processor doesn’t stall on a miss, but only on the use of a miss (if even then)
– this means the cache must be able to keep track of multiple outstanding accesses, even 

multiple outstanding misses.
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Intel Nehalem (i7)

CPU
I$

D$
L2 

cache

CPU
I$

D$
L2 

cache

CPU
I$

D$
L2 

cache

CPU
I$

D$
L2 

cache

L3 cache

Instruction Cache
-32 KB, 4-way
-64-byte line

Data Cache
-32 KB, 8-way
-64-byte line
-write-back, write-allocate

Unified L2 Cache
-256 KB, 8-way
-64-byte line
-write-back, write-allocate

Shared, unified L3 Cache
-8 MB, 16-way
-64-byte line
-write-back, write-allocate
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Key Points

• Caches give illusion of a large, cheap memory with the access time of a 
fast, expensive memory.

• Caches take advantage of memory locality, specifically temporal locality 
and spatial locality.

• Cache design presents many options (block size, cache size, associativity, 
write policy) that an architect must combine to minimize miss rate and 
access time to maximize performance.
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ADVANCED CACHE ARCHITECTURES



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 64

Advanced Cache Architectures

• AMAT = Average Memory Access Time
• AMAT = hit time + miss rate*miss penalty

• (usually expressed in cycles, but can also be expressed in time, e.g. 
nanoseconds)

• AMAT is a common measure of memory hierarchy performance in 
architectural studies.
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Advanced Cache Architectures

• AMAT = Average Memory Access Time
• AMAT = hit time + miss rate*miss penalty

• So improving memory hierarchy performance means improving AMAT
• In this context, then, there are several ways to improve performance 

(reduce AMAT):
– ?
– ?
– ?
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Advanced Cache Architectures

• AMAT = Average Memory Access Time
• AMAT = hit time + miss rate*miss penalty

• As a result, then, there are several ways to improve performance (reduce 
AMAT):
– Decrease hit time
– Decrease miss rate
– Decrease (observed) miss penalty
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Hit Rate vs. Hit Time

• Direct-mapped caches have low hit time, associative caches have low 
miss rate.

• Ideally, we’d like low miss rate and low hit time together.
– Way prediction
– Victim Cache
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Victim Cache
• Small, fully associative buffer which holds 

recently evicted cache lines.
• Targets conflict misses
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Advanced Cache Architectures

• AMAT = Average Memory Access Time
• AMAT = hit time + miss rate*miss penalty

• As a result, then, there are several ways to improve performance (reduce 
AMAT):
– Decrease hit time
– Decrease miss rate
– Decrease (observed) miss penalty
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Reducing Compulsory Misses and Capacity Misses

• Prefetching 
– Brings data into the cache (or a special buffer) based on access patterns or 

program knowledge.
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Reducing Compulsory Misses and Capacity Misses

• Prefetching 
– Brings data into the cache (or a special buffer) based on access patterns or program 

knowledge.
• Who does the prefetching?

– Hardware (based on access patterns)
• Most modern high-performance processors do this
• Sometimes called stream buffers.

– Software
• Most ISAs support some kind of software prefetch
• Works best for regular computation

– A separate thread (in a multithreaded processor)
• We called this speculative precomputation  (2001)
• Typically done by distilling a reduced version of the main thread
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Advanced Cache Architectures

• AMAT = Average Memory Access Time
• AMAT = hit time + miss rate*miss penalty

• As a result, then, there are several ways to improve performance (reduce 
AMAT):
– Decrease hit time
– Decrease miss rate
– Decrease (observed) miss penalty
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Reducing memory stalls

• A non-blocking cache is one that can still handle new requests after a 
miss.
– Requires some extra bookkeeping to keep everything straight.

• A couple of design options:
– Hit-under-miss (can have 1 outstanding miss)

• Can continue to service hits after a miss
• Stalls on second miss

– Miss-under-miss
• Can have up to M outstanding misses at once

• More generally, we want to…



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 74

Tolerating cache misses

• Sometimes you can’t make the miss go away.  But that doesn’t mean you 
have to stall.  We toleratemisses by continuing to make progress in the 
face of cache misses.

• Miss tolerance techniques (increasingly effective)
– Stall on miss (no tolerance)
–
–
–
–
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Tolerating cache misses

• Sometimes you can’t make the miss go away.  But that doesn’t mean you 
have to stall.  We toleratemisses by continuing to make progress in the 
face of cache misses.

• Miss tolerance techniques (increasingly effective)
– Stall on miss (no tolerance)
– Stall on use
–
–
–
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Tolerating cache misses

• Sometimes you can’t make the miss go away.  But that doesn’t mean you 
have to stall.  We toleratemisses by continuing to make progress in the 
face of cache misses.

• Miss tolerance techniques (increasingly effective)
– Stall on miss (no tolerance)
– Stall on use
– Non-blocking caches
–
–
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Tolerating cache misses

• Sometimes you can’t make the miss go away.  But that doesn’t mean you 
have to stall.  We toleratemisses by continuing to make progress in the 
face of cache misses.

• Miss tolerance techniques (increasingly effective)
– Stall on miss (no tolerance)
– Stall on use
– Non-blocking caches
– Out-of-order execution
–



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 78

Tolerating cache misses

• Sometimes you can’t make the miss go away.  But that doesn’t mean you 
have to stall.  We toleratemisses by continuing to make progress in the 
face of cache misses.

• Miss tolerance techniques (increasingly effective)
– Stall on miss (no tolerance)
– Stall on use
– Non-blocking caches
– Out-of-order execution
– Multithreaded execution
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Cache Optimization Summary

• Reducing Conflict Misses
– Way prediction
– Victim Cache

• Reducing Capacity or Compulsory Misses
– Prefefetching

• Tolerating Misses
– Non-blocking caches
– Out-of-order execution
– Multithreading
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VIRTUAL MEMORY
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Virtual Memory
• It’s just another level in the cache/memory hierarchy
• Virtual memory is the name of the technique that allows 

us to view main memory as a cache of a larger memory 
space (on disk).

cpu

$

cache

Main memory

disk

cacheing

cacheing

virtual memory
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Virtual Memory

• is just cacheing, but uses different terminology (and different 
storage/lookup techniques)

cache VM
block page
cache miss page fault
address virtual address
index physical address (sort of)
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Virtual Memory

• What happens if another program in the processor uses the same addresses 
that yours does?

• What happens if your program uses addresses that don’t exist in the 
machine?

• What happens to “holes” in the address space your program uses?

• So, virtual memory provides
– performance (through the cacheing effect)
– protection
– ease of programming/compilation
– efficient use of memory
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Virtual Memory…

…is just a mapping function from virtual memory addresses to physical 
memory locations, which allows cacheing of virtual pages in physical memory.

Virtual Page 
Number
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What makes VM different than memory caches

• MUCH higher miss penalty (millions of cycles)!
• Therefore

– large pages [equivalent of cache line] (4 KB to MBs)
– associative mapping of pages (typically fully associative)
– software handling of misses (but not hits!!)
– write-through not an option, only write-back
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Virtual Memory mapping

physical addresses

virtual addresses

virtual addresses

disk
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Virtual Address Translation

• We do not need to translate/change all bits of the address.

• We’ll only change high order bits, and leave the low order bits alone –
the number of low bits we do not change defines the “page size”.
– Page size (virtual memory) is analogous to block size (caches) – it is the chunk 

of memory that gets moved as a unit on a miss.
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Address translation via the page table

• all page mappings are in the page table, so hit/miss is determined solely by the valid bit (i.e., no tag)
• so why is this fully associative???
• Biggest problem – this is slow.  Why?
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Making Address Translation Fast
• A cache for address translations:  translation 

lookaside buffer (TLB)

TLB accessed first, page table only
accessed on TLB miss.
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TLBs and caches

Block
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Virtual Memory & Caches

• Cache lookup is now a serial process
1. V->P translation through TLB
2. Get index
3. Read tag from cache
4. Compare

• How can we make this faster?
1.
2.
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Virtual Caches

• Which addresses are used to lookup data in cache/store in tag?
– Virtual Addresses?
– Physical Addresses?

• Pros/Cons?
– Virtual
– Physical
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Fast Index Translation

• Can do
1. V->P translation through TLB
2. Get index

in parallel, if the v->p translation does not change the index.
virtual page number page offset

tag index block offset

virtual page number page offset

tag index block offset
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TLBs and caches

Block
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Virtual Memory Key Points

• How does virtual memory provide:
– protection?
– sharing?
– performance?
– illusion of large main memory?

• Virtual Memory requires twice as many memory accesses, so we cache 
page table entries in the TLB.

• Three things can go wrong on a memory access:  cache miss, TLB miss, 
page fault.
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Using the address…

tag                   index                   block offset

N-bit address

Check your understanding:

What is the size of the index (how many bits) in a fully associative cache?

A direct-mapped cache is a ___-way Set Associative Cache
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tag                   index                   block offset

N-bit address

Q: How many bits for each field?

• Generally, we have variables block_size, cache_size, and memory_size
– Let’s work it out for

• BS = 8 bytes
• CS = 1 KB
• MS = 4 MB

– And we have a 4-way set-associative cache?
• What is the…

– Number of bits for the block offset: ____
– Number of bits for the index: ____
– Number of bits for the tag: ____

• Can you derive a general equation for each of these?


