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CSE 141: Introduction to Computer Architecture

Memory & Caches
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Part I: Basic Memory & Cache Designs
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Finally, telling the truth about Memory

• Up to this point, we’ve been assuming memory can be accessed in a 
single cycle.

• In fact, that was true once.
• But cycle time has decreased rapidly (for high performance machines), 

while memory access time has decreased very little.
• In modern computers, memory latency can be in the neighborhood of 

350-500 cycles!
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The truth about memory latency

• So then what is the point of pipelining, branch prediction, etc. if memory 
latency is 500 cycles?

• Keep in mind, 20% of instructions are loads and stores, and we fetch 
(read inst memory) every instruction.

lw R4, 1000(R2)    IF ID EX M - - - - - - - - - …    - - - - - - - WB
lw R8, 200(R4)           IF  ID  B - - - - - - - - - - - - - - - - -ID EX M- - - - - - - - - …  - - - - -- - - - WB
add  R10, R8, R10             IF  B - - - - - - - - - - - - - - - - - ID  B - - - - - - - - - - - - - - - - -ID EX M

CPI = ~ ??
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But wait…

• That is assuming DRAM technology, which is necessary for large main 
memories (multiple gigabytes, for example)

• But we can design much smaller (capacity) memories using SRAM, even 
on chip.

• If we still want to access it in a cycle, it should be KB, not MB or GB.
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So what can I do with this?

CPU

memory

Main memory

1 cycle, maybe?
<<1% of the capacity?

400 cycles, maybe?
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Memory Locality

• Memory hierarchies take advantage of memory locality. 
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Memory Locality

• Memory hierarchies take advantage of memory locality. 
• Memory locality is the principle that future memory accesses are near

past accesses.
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Memory Locality

• Memory hierarchies take advantage of memory locality. 
• Memory locality is the principle that future memory accesses are near 

past accesses.
• Memories take advantage of two types of locality

– near in time  => we will often access the same data again very soon
– near in space/distance => our next access is often very close to our last access 

(or recent accesses).

• (this sequence of addresses exhibits both temporal and spatial locality)
– 1,2,3,1,2,3,8,8,47,9,10,8,8...
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Locality and cacheing

• Memory hierarchies exploit locality by cacheing (keeping close to the 
processor) data likely to be used again.

• This is done because we can build large, slow memories and small, fast 
memories, but we can’t build large, fast memories.

• If it works, we get the illusion of SRAM access time with disk capacity

• SRAM access times are ~1ns at cost of $2000 to $5000 per Gbyte.
• DRAM access times are ~70ns at cost of $20 to $75 per Gbyte.
• Disk access times are 5 to 20 million ns at cost of $.20 to $2 per Gbyte. 
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A typical memory hierarchy
CPU

memory

memory

memory

memory

on-chip caches

off-chip cache

main memory

disk

small
expensive $/bit

cheap $/bit

big

so then where is my program and data??

fast

slow

memory
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Cache Fundamentals
cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals

• cache hit -- an access where the data is 
found in the cache.

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals

• cache hit -- an access where the data is 
found in the cache.

• cache miss -- an access which isn’t

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals

• cache hit -- an access where the data is 
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals

• cache hit -- an access where the data is 
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache
• miss penalty -- time to move data from 

further level to closer

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals

• cache hit -- an access where the data is 
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache
• miss penalty -- time to move data from 

further level to closer
• hit ratio -- percentage of time the data is 

found in the cache

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals

• cache hit -- an access where the data is 
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache
• miss penalty -- time to move data from 

further level to closer
• hit ratio -- percentage of time the data is 

found in the cache
• miss ratio -- (1 - hit ratio)

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals, cont.

• cache block size or cache line size–
the amount of data that gets 
transferred on a  cache miss.

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals, cont.

• cache block size or cache line size –
the amount of data that gets 
transferred on a  cache miss.

• instruction cache – cache that only 
holds instructions.

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals, cont.

• cache block size or cache line size –
the amount of data that gets 
transferred on a  cache miss.

• instruction cache – cache that only 
holds instructions.

• data cache – cache that only caches 
data.

cpu

lowest-level
cache

next-level
memory/cache
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Cache Fundamentals, cont.

• cache block size or cache line size – the 
amount of data that gets transferred 
on a  cache miss.

• instruction cache – cache that only 
holds instructions.

• data cache – cache that only caches 
data.

• unified cache – cache that holds both.

cpu

lowest-level
cache

next-level
memory/cache



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 23

Cacheing Issues

• On a memory access -
– How do I know if this is a hit or miss?

• On a cache miss -
– where to put the new data?
– what data to throw out?
– how to remember what data this is?

cpu

lowest-level
cache

next-level
memory/cache

access

miss
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Hardware implications on cache design

• Caches are basically the thing that make real workloads fast
• The size of a cache is inversely proportional to its speed

– Smaller caches are faster

• And every bit counts

• This is why caches use as few bits as possible to do their work
– This makes caches tricky to walk through as a human
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A simple cache

• A cache that can put a line of data anywhere is called __________________________
• The most popular replacement strategy is LRU (                                                        ).

tag data

the tag identifies
the address of 
the cached data

4 entries, each block holds one word, any block
can hold any word.

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100
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A simple cache

• A cache that can put a line of data anywhere is called Fully Associative
• The most popular replacement strategy is LRU ( Least Recently Used ).

tag data

the tag identifies
the address of 
the cached data

4 entries, each block holds one word, any block
can hold any word.

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100
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A simpler cache

• A cache that can put a line of data in exactly one place is called __________________.
• Advantages/disadvantages vs. fully-associative?

an index is used
to determine 

which line an address
might be found in

4 entries, each block holds one word, each word
in memory maps to exactly one cache location.

00000100
tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100
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A simpler cache

• A cache that can put a line of data in exactly one place is called direct mapped
• Advantages/disadvantages vs. fully-associative?

an index is used
to determine 

which line an address
might be found in

4 entries, each block holds one word, each word
in memory maps to exactly one cache location.

00000100
tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100


