CSE 141: Introduction to Computer Architecture
/
Memory(& Caches

Part I: Basic Memory & Cache Designs

GRS e
Finally, telling the truth about Memory ' ° \B '

* Up to this point, we've been assuming memory can be accessed in a
single cycle.
* |nfact, that was true once.

» But cycle time has decreased rapidly (for high performance machines),
while memory access time has decreased very little.

* In modern computers, memory latency can be in the neighborhood of
350-500 cycles!
S

The truth about memory latency

* Sothen whatis the point of pipelining, branch prediction, etc. if memory
latency is 500 cycles?

* Keepin mind, 20% of instructions are loads and stores, and we fetch
(read inst memory) every instruction. \

@™
Iw R4, 1000(R2) IFIDEXM--------- . WB — .99
Iw R8, 200(R4) IF ID—ID EXM----mnmn- e wB CPI N
add R10, R8, R10 L [S IDEX M 3 \
+ - |
o . oy

]
[
u P
x
:

But wait...

* Thatis assuming DRAM technology, which is necessary for large main
memories (multiple gigabytes, for example)

« But we can design much smaller (capacity) memories using SRAM, even
on chip.

*) If we still want to access it in a cycle, it should be KB, not MB or GB.

L'. htion s L e = sl HLA

So what can | do with this? ol .
o/ (e

AL

1 cycle, maybe?
<<1% of the capacity?

Ve

Memory Locality

* Memory hierarchies take advantage of memory locality.

Memory Locality

* Memory hierarchies take advantage of memory locality.

* Memory locality is the principle that future memory accesses are near
past accesses.

Memory Locality

* Memory hierarchies take advantage of memory locality.
 Memory locality is the principle that future memory accesses are near

past accesses.
. . m,usea«f: e
* Memories take advantage of two types of locality v fhe 52

— nearintime => we will often access the same data again very soon AE |\
. . . e T >
— near in space/distance => our next access is often very close to our last access

(or recent accesses).
ST 7L

 (this sei Jence of adress%s exhibits both temporal and spatial locality)

— 38849

Locality and cacheing

« Memory hierarchies exploit locality by cacheing (keeping close to the

ess Pprocessor) data likely to be used again.
30 () Thisis done b build Large, slovk ies and small, fast
o is is done because we can uufarge,so memories and small, fas

\;\‘L‘% memories, but we can’t build large, fast memories.

» |fitworks, we get the illusion of SRAM access time with disk capacity
Coar 2 lo—

* SRAM access times are ~1Ins at cost of $2000 to $5000 per Gbyte.

« DRAM access times are ~70ns at cost of $20 to $75 per Gbyte.

« Disk access times are 5 to 20 million ns at cost of $.20 to $2 per Gbyte.

A typical memory hierarchy

small

o

\5‘&(

W on-chip caches

/ memory o ;MK V_-nb off-chip cache

P D M
SANeIn <“— main memory
- YD
B — =~ — L/

— _ .~ —
memory [DO(_(& “— disk

so then where is my program and data??

expensive $/bit

fast

big
cheap $/bit

slow

Cache Fundamentals

cpu

lowest-level
cache

v

next-level
memory/cache

Cache Fundamentals

e cache hit -- an access where the data is |

found in the cache.

next-level
memory/cache

Cache Fundamentals

cache hit -- an access where the data is
found in the cache.

cache miss -- an access which isn't

cpu

lowest-level
cache

v

next-level
memory/cache

Cache Fundamentals /S)u't

cacne

e cachehit -- an access where the data is |

found in the cache.

next-level
memory/cache

e cache miss -- an access which isn’t
.

Qﬂime -- time to access the cacheq
S

=D K oy W

CPU.?__ |

Cache Fundamentals ¥ N
ckCU\ lowest-leye‘l/
cacheR

* cache hit -- an access where the data is 4
found in the cache. > HEC oo _

« cache miss -- an access which isn't <_f“/ & memolygache
. (M time to access the cache - —
. C@spenalty -~ time to move data from%ﬂ/w L

further level to closer —

F D X

Cache Fundamentals

e cachehit -- an access where the data is
found in the cache.

e cache miss -- an access which isn’t
* hittime -- time to access the cache

* miss penalty -- time to move data from
further level to closer

e hit ratio -- percentage of time the datais
found in the cache

cpu

lowest-level
cache

v

next-level
memory/cache

W 3 \m
P NV

cpu

Cache Fundamentals

lowest-level
cache

e cachehit -- an access where the data is

\ 4

found in the cache. o
* cache miss -- an access which isn't memory/cache

* hittime -- time to access the cache

* miss penalty -- time to move data from
further level to closer

* hitratio -- percentage of time the data is
found in the cache

: : : :)=
e miss ratio -- (1 - hit ratio)

pot >

Cache Fundamentals, cont.

\@b(&\
. . . W
* cache block size or cache line size- T\
the amount of data that gets = C
] lowest-level NeZ
transferred on a cache miss. cache SR LQ\AV‘@
[¢ s
next-level
memory/cache \‘-0/& O(

\/\I\[\:w\ mLm o \

Cache Fundamentals, cont.

cache block size or cache line size -
the amount of data that gets
transferred on a cache miss.

instruction cache - cache that only
holds instructions.

cpu

lowest-level
cache

next-level
memory/cache

Cache Fundamentals, cont.

\\

cache block size or cache line size -
the amount of data that gets
transferred on a cache miss.

instruction cache - cache that only
holds instructions.

data cache - cache that only caches
data.

DX

cpu

lowest-level

cache

next-level
memory/cache

Cache Fundamentals, cont.

e cache block size or cache line size — the
amount of data that gets transferred
on a cache miss.

* instruction cache - cache that only
holds instructions.

* data cache - cache that only caches
data.

* unified cache - cache that holds both.

D X
¢
cpu
lowest-level
cache
next-level
memory/cache
(,PU

,,ﬁd\

Cacheing Issues

cpu

acCCessS \(O \{(&S
* Onamemory access - P s N
|
— How do I know if this is a hit or miss? miss | N
\ 4 é/ \%
next-level
* On acache miss - memory/cache

— where to put the new data?
— what data to throw out? \‘Q&
— how to remember what data this is?

Hardware implications on cache design

* (Caches are basically the thing that make real workloads fast
 Thesize of a cache is inversely proportional to its speed

— Smaller caches are faster
* And every bit counts

* Thisis why caches use as few bits as possible to do their work
— This makes caches tricky to walk through as a human

A simple cache

* Acachethat can put a line of data anywhere is called ﬂ

address string:

4
8

12

00000100
00001000
00001100
00000100
00001000
00010100
00000100
00001000
00010100
00011000
00001100
00001000
00000100

the tag identifies
the address of
the cached data

tag data

4 entries, each block holds one word, any block
can hold any word.

The most popular replacement strategy s LR (

° '\S(,
A simple cache % ';Cﬁgwﬁ(

address string:

4
8
12
4
8
20
4
8
20
24
12
8
4

00000100 M5

00001000
00001100
00000100
00001000
00010100
00000100
00001000
00010100
00011000
00001100
00001000
00@00189J

N

the tag identifies
the address of
the cached data

4
L\b.
\&h\ tag data
Q)
O :?
O |Joo00o0l\ ’ ‘
C .

4 entries, each block holds one word, any block
can hold any word.

A cache that can put a line of data anywhere is called Fully Associative
The most popular replacement strategy is LRU (Least Recently Used).

o™

A simpler cache

address string:

4
8
12
4
8
20
4
8
20
24
12
8
4

A cache that can put a line of data in exactly one place is called

00000100
00001000
00001100
00000100
00001000
00010100
00000100
00001000
00010100
00011000
00001100
00001000
00000100

00000100

an index is used
to determine
which line an address
might be found in

tag data

v

4 entries, each block holds one word, each word
in memory maps to exactly one cache location.

Advantages/disadvantages vs. fully-associative?

A simpler cache

address string:

4 qoodelme
.8 00001000
12 00001100
-4 00000100
8 00001000
.20 oeeolpleo
4 00000100
8 00001000
20 00010100
24 00011090
12 00001160
8 00001000
4 00800100
G~ ,
T W

'ad .
e

1
\
e~

00000100

an index is used
to determine
which line an address

might be found in

—
\!
Lo\oal

4

v

data
oo\ ncoeet (20)
00O (2
OO0 (VL\

_ Q_(/\X'bh ydf__ :\
N |
S <

4 entries, each block holds one word, each word

in memory maps to exactly one cache location.

* A cachethat can put a line of data in exactly one place is called direct mapped
* Advantages/disadvantages vs. fully-associative?

