
CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 1

CSE 141: Introduction to Computer Architecture

Memory & Caches

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 2

Part I: Basic Memory & Cache Designs

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 3

Finally, telling the truth about Memory

• Up to this point, we’ve been assuming memory can be accessed in a
single cycle.

• In fact, that was true once.
• But cycle time has decreased rapidly (for high performance machines),

while memory access time has decreased very little.
• In modern computers, memory latency can be in the neighborhood of

350-500 cycles!

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 4

The truth about memory latency

• So then what is the point of pipelining, branch prediction, etc. if memory
latency is 500 cycles?

• Keep in mind, 20% of instructions are loads and stores, and we fetch
(read inst memory) every instruction.

lw R4, 1000(R2) IF ID EX M - - - - - - - - - … - - - - - - - WB
lw R8, 200(R4) IF ID B - - - - - - - - - - - - - - - - -ID EX M- - - - - - - - - … - - - - -- - - - WB
add R10, R8, R10 IF B - - - - - - - - - - - - - - - - - ID B - - - - - - - - - - - - - - - - -ID EX M

CPI = ~ ??

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 5

But wait…

• That is assuming DRAM technology, which is necessary for large main
memories (multiple gigabytes, for example)

• But we can design much smaller (capacity) memories using SRAM, even
on chip.

• If we still want to access it in a cycle, it should be KB, not MB or GB.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 6

So what can I do with this?

CPU

memory

Main memory

1 cycle, maybe?
<<1% of the capacity?

400 cycles, maybe?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 7

Memory Locality

• Memory hierarchies take advantage of memory locality.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 8

Memory Locality

• Memory hierarchies take advantage of memory locality.
• Memory locality is the principle that future memory accesses are near

past accesses.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 9

Memory Locality

• Memory hierarchies take advantage of memory locality.
• Memory locality is the principle that future memory accesses are near

past accesses.
• Memories take advantage of two types of locality

– near in time => we will often access the same data again very soon
– near in space/distance => our next access is often very close to our last access

(or recent accesses).

• (this sequence of addresses exhibits both temporal and spatial locality)
– 1,2,3,1,2,3,8,8,47,9,10,8,8...

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 10

Locality and cacheing

• Memory hierarchies exploit locality by cacheing (keeping close to the
processor) data likely to be used again.

• This is done because we can build large, slow memories and small, fast
memories, but we can’t build large, fast memories.

• If it works, we get the illusion of SRAM access time with disk capacity

• SRAM access times are ~1ns at cost of $2000 to $5000 per Gbyte.
• DRAM access times are ~70ns at cost of $20 to $75 per Gbyte.
• Disk access times are 5 to 20 million ns at cost of $.20 to $2 per Gbyte.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 11

A typical memory hierarchy
CPU

memory

memory

memory

memory

on-chip caches

off-chip cache

main memory

disk

small
expensive $/bit

cheap $/bit

big

so then where is my program and data??

fast

slow

memory

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 12

Cache Fundamentals
cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 13

Cache Fundamentals

• cache hit -- an access where the data is
found in the cache.

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 14

Cache Fundamentals

• cache hit -- an access where the data is
found in the cache.

• cache miss -- an access which isn’t

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 15

Cache Fundamentals

• cache hit -- an access where the data is
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 16

Cache Fundamentals

• cache hit -- an access where the data is
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache
• miss penalty -- time to move data from

further level to closer

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 17

Cache Fundamentals

• cache hit -- an access where the data is
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache
• miss penalty -- time to move data from

further level to closer
• hit ratio -- percentage of time the data is

found in the cache

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 18

Cache Fundamentals

• cache hit -- an access where the data is
found in the cache.

• cache miss -- an access which isn’t
• hit time -- time to access the cache
• miss penalty -- time to move data from

further level to closer
• hit ratio -- percentage of time the data is

found in the cache
• miss ratio -- (1 - hit ratio)

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 19

Cache Fundamentals, cont.

• cache block size or cache line size–
the amount of data that gets
transferred on a cache miss.

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 20

Cache Fundamentals, cont.

• cache block size or cache line size –
the amount of data that gets
transferred on a cache miss.

• instruction cache – cache that only
holds instructions.

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 21

Cache Fundamentals, cont.

• cache block size or cache line size –
the amount of data that gets
transferred on a cache miss.

• instruction cache – cache that only
holds instructions.

• data cache – cache that only caches
data.

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 22

Cache Fundamentals, cont.

• cache block size or cache line size – the
amount of data that gets transferred
on a cache miss.

• instruction cache – cache that only
holds instructions.

• data cache – cache that only caches
data.

• unified cache – cache that holds both.

cpu

lowest-level
cache

next-level
memory/cache

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 23

Cacheing Issues

• On a memory access -
– How do I know if this is a hit or miss?

• On a cache miss -
– where to put the new data?
– what data to throw out?
– how to remember what data this is?

cpu

lowest-level
cache

next-level
memory/cache

access

miss

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 24

Hardware implications on cache design

• Caches are basically the thing that make real workloads fast
• The size of a cache is inversely proportional to its speed

– Smaller caches are faster

• And every bit counts

• This is why caches use as few bits as possible to do their work
– This makes caches tricky to walk through as a human

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 25

A simple cache

• A cache that can put a line of data anywhere is called __________________________
• The most popular replacement strategy is LRU ().

tag data

the tag identifies
the address of
the cached data

4 entries, each block holds one word, any block
can hold any word.

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 26

A simple cache

• A cache that can put a line of data anywhere is called Fully Associative
• The most popular replacement strategy is LRU (Least Recently Used).

tag data

the tag identifies
the address of
the cached data

4 entries, each block holds one word, any block
can hold any word.

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 27

A simpler cache

• A cache that can put a line of data in exactly one place is called __________________.
• Advantages/disadvantages vs. fully-associative?

an index is used
to determine

which line an address
might be found in

4 entries, each block holds one word, each word
in memory maps to exactly one cache location.

00000100
tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 28

A simpler cache

• A cache that can put a line of data in exactly one place is called direct mapped
• Advantages/disadvantages vs. fully-associative?

an index is used
to determine

which line an address
might be found in

4 entries, each block holds one word, each word
in memory maps to exactly one cache location.

00000100
tag data

address string:
4 00000100
8 00001000
12 00001100
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000
12 00001100
8 00001000
4 00000100

