Hardware implications on cache design

* (Caches are basically the thing that make real workloads fast
 Thesize of a cache is inversely proportional to its speed

— Smaller caches are faster
* And every bit counts

* Thisis why caches use as few bits as possible to do their work
— This makes caches tricky to walk through as a human

A simple cache

address string:

4
8

12

00000100
00001000
00001100
00000100
00001000
00010100
00000100
00001000
00010100
00011000
00001100
00001000
00000100

the tag identifies
the address of
the cached data

tag data

4 entries, each block holds one word, any block
can hold any word.

* Acachethat can put a line of data anywhere is called
* The most popular replacement strategy is LRU (

A simple cache., e

N
address gtrin / the tag identifies
00000190/ the address of

—> M4 ¢

> M8 06001@_@_@_‘\, the cached data
—> M 12 (00001100 . e

- W\ 4 00000100)f(_;f, t dat (’61"“"55\
> H 8 00001600 e ata

Soooot L { \

S M 20 .eeelaﬁae 4 vooort | EHY miin]

> U 4 eooee1pe ./ vV [ooooie |jmigd

>v 8 000010P0 J &2’5&

>+ 20 |eee101po et | wgrey M)
—>mM 24 |eeetipo / el e s

~ M 12 |000011p0 cone \ M)
~ H 8 000010po 4 entries, each block holds one word, any block
= M4 |eeeeeipe can hold any word.

e — A —

* Acachethat can put a line of data anywhere is called Fullx Associative
* The most popular replacement strategy is LRU (Least Recently Used).

A

A simpler cache

address string:

4
8
12
4
8
20
4
8
20
24
12
8
4

A cache that can put a line of data in exactly one place is called

00000100
00001000
00001100
00000100
00001000
00010100
00000100
00001000
00010100
00011000
00001100
00001000
00000100

00000100

an index is used
to determine
which line an address
might be found in

tag data

v

4 entries, each block holds one word, each word
in memory maps to exactly one cache location.

Advantages/disadvantages vs. fully-associative?

A simpler cache . .
Nl
addr‘egs(str/’[ng;/

> ™ 4 00060100]
- M 8 00001090
— ™M 12 00001100
—H 4 000009100
> H 8 00001000
> M 20 00010100
= "\ 4 00000100
> H 8 00001000
= M\ 20 00010100
M 24 00011000

12 00001100

8 00001000

4 00000100

w
(3
o~

00000100

ool M(E

0=\

an index is used
to determine

which line an address

might be found in

tag

data

¢
\

¢
3

MMME

Lee8

AEEX (20}

0o 0O

A

My)

3

4 entries, each block holds one word, each word
in memory maps to exactly one cache location.

A cache that can put a line of data in exactly one place is called direct mapped
Advantages/disadvantages vs. fully-associative?

A set-associative cache

address string:

4
8
12
4
8
20
4
8
20
24
12
8
4

A cache that can put a line of data in exactly n places is called n-way

00000100
00001000
00001100
00000100
00001000
00010100
00000100
00001000
00010100
00011000
00001100
00001000
00000100

00000100

tag

data tag data

L

4 entries, each block holds one word, each word
in memory maps to one of a set of n cache lines

The cache lines/blocks that share the same index are a cache

A set-associative cache ~

o T e o 2 SRS
agdres] stfing;” o~
—> M 8 0PeRLI00
— M 12 00001100
00000{800
—> ‘\j 4 00000100 ol . data e e)
\) __; M 29 gggié—gg ‘m mf“‘l ha oal | M L) -SQ,UP (
- \ Y N ‘e'
L’R = H a2 00000100 — e CR Y, oooe | e 3 Ces
— +H 8 eee01000 0 Mr&o.bboo L
-gg " %7? gggi?_gg 4entries,‘@ch block holds one word,[each word
- (r:\\ 12 00001100 in memory maps to onc ot a setoi(zicache lines
> ¥ 8 00001000 i
= W 4 00000100

* Acachethat can put a line of data in exactly n places is called n-way set-associative.
* Thecache lines/blocks that share the same index are a cache set.

Longer Cache Blocks

address string:
4 00000100
8 00001000 00000100

ta ata
12 00001100 L, . -
4 00000100
8 00001000
20 00010100
4 00000100
8 00001000
20 00010100
24 00011000 4 entries, each block holds two words, each word
12 00001100 in memory maps to exactly one cache location
8 00001000 (this cache is twice the total size of the prior caches).

4 00000100

» Large cache blocks take advantage of spatial locality.
* Too large of a block size can waste cache space.
* Longer cache blocks require less tag space

Longer Cache Blocks

address string:

4 00000100

8 00001000 00000100 ¢, data (now 64 bits)
12 00001100 L
4 00000100

8 00001000

20 00010100

4 00000100

8 00001000

20 00010100

24 000116600 4 entries, each block holds two words, each word
12 00001100 in memory maps to exactly one cache location
8 00001000 (this cache is twice the total size of the prior caches).

4 00000100

* Large cache blocks take advantage of spatial locality.
« Too large of a block size can waste cache space.
* Longer cache blocks require less tag space

