Reminders / Announcements

Final Exam is on Saturday
— Exam is comprehensive; expect it to be ~50% longer
— Logistics much like the midterm:
* Available 8am-8pm US/Pacific
 Single-shot, forward progress only
* 3 hour time limit (100% more time; should reduce time pressure)
Friday lecture will be an exam review session
— Come with questions! | stop when you do* [*or at 2pm]
One, final optional participation quiz from this week’s content
— Will be posted after today’s lecture, deadline Tuesday, as always
— Will count as a make-up for any missed participation quiz

HW Solutions?
— HW?7 solutions will be posted right after the deadline

VIRTUAL MEMORY

Virtual Memory
It's just another level in the cache/memory hierarchy

Virtual memory is the name of the technique that allows
us to view main memory as a cache of a larger memory

space (on disk).

cpu

S
[$]

cacheing

cache

cacheing

n

emory

AN

Lﬁ

virtual n

| disk J22H

[

Virtual Memory

* isjust cacheing, but uses different terminology (and different
storage/lookup techniques)

cache VM

block page

cache miss page fault
address virtual address

index physical address (sort of)

N 9*—5’ i%}w s T o0 (L5
C/ oW
Virtual Memory iﬁv ‘ﬂ @Si (o 2
27\ A

« What happens if another program in the processor uses the same addresses
that yours does?

* What happens if ram uses addresses that don't exjstin the
machine? @

 What happens to "holes” in the address space your program yses?

e So, virtual memory provides
— performance (through the cacheing eﬁcecw

— protection ,\
— ease of programming/compilation ’ (X

— efficient use of memory \/\\\10‘/\//4 ///%{_YV\E‘/H \\\\

6

Virtual Memory...

Virtyal Page
Number

Page table)
:l Physical page or Physical memory
Valid disk address

1]

Disk storage

4
NEINNEIENEEENEEE

\ﬁii(>/

...is just a mapping function from virtual memory addresses to physical
memory locations, which allows cacheing of virtual pages in physical memory.

What makes VM different than memory caches

* MUCH higher miss penalty (millions of cycles)!
* Therefore
— large pages [equivalent of cache line] (4 KB to MBs)
— associative mapping of pages (typically fully associative)
— software handling of misses (but not hits!!)
— write-through not an option, only write-back

Virtual Memory mapping

bt 22
virtual addresses O x /
v -

2

~
e S
%5,7% \

physical addresses
]

L

P virtual adgfCs
O¥

\7

7

o

e
|

Virtual Address Translation

* We do not need to translate/change all bits of the address.

« We'll only change high order bits, and leave the low order bits alone -
the number of low bits we do not change defines the “page size”.

— Page size (virtual memory) is analogous to block size (caches) - it is the chunk
of memory that gets moved as a unit on a miss.

. ﬂ' kn"\ g

: . S ey wh K

Address translation via the page table, .» » ¢ e 135@‘@\‘% ﬁa{ﬁ
e { o4

° All page mappings are in the page Page table register |
Virtual address

tab[e, SO h|t/m|ss |S determ|ned 81 80 29 28 2Twcscisesmeucisiainiss 15 14 13 12§11 10 9 8 eeeer 3210

Virtual page number Page offset

solely by the valid bit T, (%
* Sowhy is this fully associative???

1o

— Where are our "tag” "index” and

"block offset"? e »fﬁ
: 0
* Biggest problem - this is slow. /’W@fﬁm' POl
W hY? (i/ If 0 then page is not

present in memory

29 28 27-eerririiiiiiiiii, .15 14 13 12 11 10 9 84---3 2 1 0

Physical page number Page offset

Physical address

V\b)\\/q.c
€ 0

Making Address Translation Fast W e

v

A cache for address translations: translation

lookaside buffer (TLB)

/ TLB accessed first, page table only
accessed on TLB miss.

Physical memory

/

Virtual page ' "™ Physical page
number alid Tag address
1 ~
1 -~
1
1 -~
0
' ~ i
QN

Page table
Physical page

Valid or disk address

RN

N
AN

alol==lal=]=]c]=]-]-]-

i

Disk storage

!

TLBs and caches

WO W

2

\
v
c/ff”&w

313029 cocacecaccnns

<S

|

15141312111098% ... 3210 3 - . r:c\é(z

Virtual page number Y Page offset J |
12

NI4

NES L|
{5 Valid Dirty Tag Physical page number
/<\/ . O g §
\} 2 ¢ TLB hit«—fe O \X/ 5 (%'C)
O
W \»’ L/\I . C/-'
[
S
1! Physical page number Page offset f Block —
I P e [ocC —_ —
—_ - Physical address tag | Cache index |
e offset
416 Jd14 2 =
N N
Valid Tag Data
Cache
4
Ve \\32
Cache hit+{ | Data

Virtual Memory & Caches

* (Cachelookupis now a serial process
1. V->P translation through TLB
2. Get index
3. Read tag from cache
4. Compare
* How can we make this faster?
1.
2.

Virtual Caches

* Which addresses are used to lookup data in cache/store in tag?
— Virtual Addresses?
— Physical Addresses?
* Pros/Cons?
— Virtual
— Physical

Fast Index Translation

« Cando
1. V->P translation through TLB
2. Getindex
in parallel, if the v->p translation does not change the index.
virtual page number page offset e VA
tag | index B.O. = ol
I—
virtual page number page offset <« VA

ta ind B.O. e pl¥
g index o

TLBs and caches

Valid Dirty

313029

--------- 151413121110

98 ... 3210

Virtual page number

Page offset |

Vi

Tag Physical page number

) SR

TLB

TLB hit«—e

T

| Y,

—

Physical page number
Ph

Physical address tag

Page offset Block

ical address
Cache index Byte—
offset

Jze -

75

Valid

—

ag

Data

Cache

Cache hit

Data

Virtual Memory Key Points g
« How does virtual memory provide: WP ﬁ

— protection?

— sharing?

— performance?

CSE 141

— illusion of large main memory?

Virtual Memory requires twice as many memory accesses, so we cache
page table entries in the TLB.

Three things can go wrong on a memor access: cache miss, TLB miss,

=~ THINKS | CPOES |

CC BY-NC-ND Pat Pannuto - Many slides adapted from Dean Tullsen 17

