CSE 141: Introduction to Computer Architecture

Pipelines

First things first:
Pipelines are the coolest.

* Seriously, this idea is everywhere

Dog Cat Mouse
Dog Dog Cat

Dog Cat Duck

Cat, 1

Dog Cat Mouse
Dog Dog Cat
Dog Cat Duck

cat, 2
Dog, 3
Duck, 1

Mouse, 1

Esophagus

Pancreas

Rectum

Anal sphincters

- VAT Mg T ALY
and swallowing)

« Chemical digestion of
carbohydrates

* Mechanical digestion (peristaltic
mixing and propulsion)

« Chemical digestion of proteins

« Absorption of lipid-soluble
substances, such as aspirin

* Mechanical digestion (mixing
and propulsion, primarily
by segmentation)

« Chemical digestion of
carbohydrates, lipids, proteins,
and nucleic acids

« Absorption of peptides, amino
acids, glucose, fructose, lipids,
water, minerals, and vitamins

* Mechanical digestion
(segmental mixing, mass
movement for propulsion)

« No chemical digestion except
by bacteria

« Absorption of ions, water,
minerals, vitamins, and small
organic molecules produced
by bacteria

THE key idea of pipelining

 Throughput >>> latency

« Computers are very useful because they do a lot of things well
— Itis much less important how well any one thing is done

* Which is faster?
— A machine with average CPIl of 2.0 running at 48 MHz
— A machine with average CPIl of 10.0 running at 4 GHz

Review -- Single Cycle CPU

Add
4
Read
address
Instruction
[31 0]
Instruction
memory

Instruction [31 -28]

RegDst
Branch

ALU
Add result

\ MemRead

xcg ©

-

PCSrc

I MemtoReg

Instruction [25 -21]

Control (ALUOp

l MemWiite

/ ALUSrc

RegWrite

Read

Instruction [20 -18]

register 1 Read

Read data 1

Instruction [15 -11]

register 2
Registers Read

Wite data 2
register

Write
data

Instruction [15 -0]

|
[

) 32
Sign 1\

Instruction [5-0]

N lextend| M

Address

Write
data

Read
data

Data
memory

Oxcxg~

(not quite) Review -- Multiple Cycle CPU

PC\NmeCond/\ PCSource

PCWrite /
TorD | Outputs\ALUOp
ALUSrcB
MemRead
Memwrite| Control l ALUSIcA
MemtoReg RegWrite
IRWrite [sOpo]
0
3 ;)
Jump u
Instruction [25 0] 2 @2\8 0 v
M\let2 % 2
Instruction
0\ - 0 PC[31-28]
M Instruction Read 0
u | Address 25 21] e 1 u
X
Instruction Read Read M
1 Memory 20 16] register 2 data 1 1
Membasa i . Registers ALUOUL
Instruction L4 Wite Read
i (15 0] Instruction register gt o
> ats Instruction [15 11] Wiite
register s
Instruction 0
15 0] M
u
X
Memory 1
data \“ s son
register 3
? N lextend
Instruction [5 0]

Review -- Instruction Latencies

| I [

Single-Cycle CPU

Load] Ifetch IReg/DecI Exec I Mem I Wr

Multiple Cycle CPU Cycle 1§Cycle 2 Cycle 3 Cycle 4 ;Cycle 5

Load] Ifetch IReg/DecI Exec I Mem I Wr

Add | Ifetch IReg/DecI Exec I Wr

Instruction Latencies and Throughput

Single-Cycle CPU

Multiple Cycle CPU

Pipelined CPU

[| J
Load [Ifetch Reg/Ded Exec | Mem | Wr |

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
M L L 1L 1
Load [Ifetch Reg/Ded Exec | Mem | Wr |

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Instruction Latencies and Throughput

. | I |
Single-Cycle CPU Load [Ifetch Reg/Ded Exec | Mem | Wr |

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
M L L 1L 1
Load [Ifetch Reg/Ded Exec | Mem | Wr |

Multiple Cycle CPU

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
PipelinedCPU M - - - L L L 1

Load | Ifetch Reg/Ded Exec | Mem | Wr |

Instruction Latencies and Throughput

. | I |
Single-Cycle CPU Load [Ifetch Reg/Ded Exec | Mem | Wr |

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
M L L 1L 1
Load [Ifetch Reg/Ded Exec | Mem | Wr |

Multiple Cycle CPU

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
Pipe]inedCPU M - - - L L L 1

Load | Ifetch Reg/Ded Exec | Mem | Wr |
Load | Ifetch Reg/Ded Exec | Mem | Wr |

Instruction Latencies and Throughput

. [| J
Slngle-Cycle CPU Load [Ifetch Reg/Ded Exec | Mem | Wr |

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
M L L 1L 1
Load [Ifetch Reg/Ded Exec | Mem | Wr |

Multiple Cycle CPU

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Pipelined CPU M -4 =—J —J =4 = I 1
Load | Ifetch Reg/Ded Exec | Mem | Wr |

Load [Ifetch Reg/Ded Exec | Mem | Wr |
Load [Ifetch Reg/Ded Exec | Mem | Wr |
Load [Ifetch Reg/Ded Exec | Mem | Wr |

Pipelining Advantages

* Higher maximum throughput
 Higher utilization of CPU resources

* But, more complicated datapath, more complex control(?)

Poll Q: What affects throughput?
Peak throughput depends on...

| SingleCyde | MultiCycde | Pipeline
Longest Instruction Cycle Time Average Instruction
E Longest Instruction Cycle Time Longest Instruction
Longest Instruction Average Instruction Cycle Time

ﬂ Average Instruction Longest Instruction Cycle Time

None of the above

Pipelining in Modern CPUs

 CPU Datapath

e Arithmetic Units

e System Buses

» Software (at multiple levels)
* etc...

A Pipelined Datapath

IF Instruction fetch
1D Instruction decode and register fetch
EX Execution and effective address calculation

MEM Memory access
WB Write back

]

Pipelined Datapath (roughly)

IF: Instruction fetch

ID: Instruction decode/

register file read

EX: Execute/
address calculation

Instruction
Fetch

¥

Instruction
Decode

v

Operand
Fetch

v

Execute

!

Result
Store

Next
Instruction

S—

PC

MEM: Memory access

Address

Data
Memory

Write
data

Read |

data

WB: Write back

Add
¢ App Add
result
Shift
left 2
Read Read
register 1
b Address Rg) data 1 Zer
ea
register 2 ALY ALlI‘:
i resul
Instruction Registers 0
Write Read M
Instruction register data 2 u
memory) X
5| Write [1
data
16
Sign-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
—'—‘
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

@

d Data

line

ipe

P

ionina

Execut

S g

|||||||||||||| |||||||+

m g 8 2 m%lcu g

e ||||||;|;|||-

¢ 42 T2] AN |2

S M el |;|||||||

5 gzl 7|z

|||||| ||;|;|||||||||||

g xﬁm&wcmm g =

||||+|+||| |||||||||||||||||

g §5 2|49z

s 5
E E E E E

d Data

line

ipe

P

ionina

Execut

state

3 g

5 g1 |z

|||||||||||||| |||||||+|+||

m g 2 2 m%lcu g

I ||||||;|;|||-

s 429z A0\ 2] |2

||||||||||||| |;|||||||||||.

S gzl gz

|||||| ||;|;|||||||||||||||.

g xﬁm&wcmm g g

||||+|+||| |||||||||||||||||

g §5 2|49z

ol
Z Z Z Z Z

line

ipe

in the Pi

IoONS In

Mixed Instruct

Iw
add

line

ipe

in the Pi

IoONS In

Mixed Instruct

N &0
o &
O
S z
e
E ks

line

ipe

in the Pi

Ions in

Mixed Instruct

o~ | o
s 2|z
3)
S
e}
-

line

ipe

in the Pi

Ions in

Mixed Instruct

o~ | o
o
s &z
3)
S
o]
2 3

Mixed Instructions in the Pipeline

CC1 cC2 cca | occs I cee

Iw M

I
I
I
I
I
l
I
I
I
add :
I
I
I
I
I
I
I

This is called a structural hazard — too many instructions want to
use the same resource.

In our pipeline, we can make this hazard disappear (next slide).
In more complex pipelines, structural hazards are again possible.

Pipeline Principles

« Allinstructions that share a pipeline should have the same stages in the
same order.

— therefore, add does nothing during Mem stage
— swdoes nothing during WWB stage

* Allintermediate values must be latched each cycle.

IF ID EX MEM WB

™M Reg % DM |— Reg

Pipeline stages

* What s the performance implication of making every instruction go
through all 5 stages? (e.g., instead of 4 for add, 3 for beq, etc.)

(Choose BEST answer)

Decreases peak throughput by 20%

Increases program latency by 20%

No significant impact on peak throughput or program latency

Depends on how many R-type instructions, beq, etc.

m| O ol = >

None of the above

Pipelined Datapath

Instruction Fetch Instruction Decode/ Execute/ Memory Access
Register Fetch Address Calculation
IF/ID ID/EX EX/MEM MEM/WB
Add
4
1
Address 'g Read
2 register 1 Read
L 2 data 1
Instruction k geg?:te' 2 . [Read
memory » Write Registers 2:,2‘12 Address data [
register Data
<o Write memory
data
Write
data
1€, siom | % -
A} @ Ay

Write Back

“xc=2°

Pipelined Datapath

Instruction Fetch

Instruction Decode/
Register Fetch

/

registers!

Execute/
Address Calculation

Memory Access

Ly

IF/ID

EX/MEM

Address

Instruction
memory

| _Instruction

Read
register 1

Read
register 2

Registers goag

Write
register

Write

data

Read

data 1

data 2|

16

q 32
Sign- N

A\
‘ @ ‘

'

Address

Write
data

Data

memory

Read
data

MEM/WB

Write Back

“xc=2°

Ly

IF/ID

ID/EX

Add
4
Address
Instruction
memory

EX/MEM

s
S Read
2 register 1 Read
2 data 1
4 Hegd
register2
|4 Registers o
Write data 2|
register
Write
data
16 Sign- 3

2
\

A\
‘ @ ‘

'

Address

Write
data

Data
memory

Read
data

Poll Q: How many D flip flops are in this pipeline?

MEM/WB

“xc=2°

The Pipeline in Execution

add $10, $1, $2 Instruction Decode/ Execute/ Memory Access Write Back
Register Fetch Address Calculation
IF/ID ID/EX EX/MEM MEM/WB
Add
4
| &
Address 'g Read
2 register 1 Read
L 2 data 1
= Read [~
Instructi register2
nrrs!;::\%r;n iiie Registers g:;dz 0 Address i::?: > —
register M Data
. Write : memory
data [1
Write
data
© [sion | % |

The Pipeline in Execution

Iw $12, 1000($4)

add $10, $1, $2

Execute/

Address Calculation

Ly

EX/MEM

IF/ID ID/EX
Add
4
s
Address = Read
S i Read
£ register 1
2 data 1
I i K geg?:ter 2
nstruction z
memory |4) Registers o
Write data 2|
register
Write
—
data
16 Sign- 3%

A\
A @ X

Memory Access
MEM/WB
>
Read
Address d;taa il
Data
memory
Write
data

Write Back

“xc=2°

The Pipeline in Execution

sub $15, $4, $1

Iw $12, 1000(34)

add $10, $1, $2

Memory Access

L |

EX/MEM

'

IF/ID ID/EX
Add
4
s
Address S Read
= register 1 Fead
3 data 1
= Read
register 2
In:‘:x‘t::xn B Registers goag
Write data 2| OM
register u
Write X
data 1
16 i 32
% Sign- N

@

r

Address
Data

memory

Write
data

Read
data

MEM/WB

Write Back

The Pipeline in Execution

Write Back

Instruction Fetch sub $15, $4, $1 Iw $12, 1000(54) add $10, $1, $2
IF/ID EX/MEM MEM/WB
Add
4
L
s
Address k] Read
% register 1 g:':"’1
= Read b
Instructi register2
n"s‘ ;’l::; r;n N Registers geadz 5 Address ?’:‘:‘: - 5
regis!er @ ”: Data
Z\g;n;e 1x memory
Write
data
1? Sign- 3%

The Pipeline in Execution

Instruction Fetch Instruction Decode/ sub $15, $4, $1 Iw $12, 1000($4) add $10, $1, $2
Register Fetch
IF/ID EX/MEM MEM/WB
Add
4
L/
Address 'g Read
2 register 1 Read
L 2 data 1
= Read =
Instructi register2
nrrs!;::\%r;n iiie Registers g:;dz 0 Address i::?: > —
register 'lvll Data
| Write X memory
data 1
Write
data
1? Sign- 3%

The Pipeline in Execution

Iw $12, 1000(34)

MEM/WB

Instruction Fetch Instruction Decode/ Execute/ sub $15, $4, $1
Register Fetch Address Calculation
IF/ID ID/EX EX/MEM
Add
4
Lo
Address 'g Read
2 register 1 Read
L 2 data 1
= Read =
Instructi register2
n"s‘ ;’l::; r;n ey Registers g:;dz 5 Address ’Z:‘:‘:
register M Data
Write : memory
data < 1
Write
data
LI AL

The Pipeline, with controls

But....

MemtoReg

Ox sz~

RegDst

PCSrc
IF/ID ID/EX EX/MEM MEM/WB
Branch
RegWrite
1
5 Read
S register 1 5;?1 Mem\ante
2 ?e%?gter 5 ALUSrc
Instruction . Read
—| —4 Registers
memory Write 9 Read iddress data ™
register data 2 Data
—| Write memory
data L
Write
: data
Instruction I
(15-0) 16 [gign. | 32 8 [aw T
N extend [T control MemRead
Instruction
(20-16)
0)| ALUOp
M
Instruction L
(15—-11) 1
—_—

Pipelined Control

e |told you multicycle control was messy. We would expect pipelined
control to be messier.

Pipelined Control

e |told you multicycle control was messy. We would expect pipelined
control to be messier.

— Why?

Pipelined Control

e |told you multicycle control was messy. We would expect pipelined
control to be messier.

— Why?
e Butitturns out we can do it with just...

Pipelined Control

e |told you multicycle control was messy. We would expect pipelined
control to be messier.

— Why?
e Butitturns out we can do it with just...
* Combinational logic!

— Signals generated once

— Follow instruction through the pipeline

Recall: Control signals in the single-cycle machine

Where do we get control signals?

RegDst Y
Branch ™ h

MemRead
Instruction [31-26] MemtoReg

x @

»| Control okt I o Contt [

ALUOp
MemWiite
/ ALUSrc

/ RegWrite

18 / . \32
\ Sign |
h Utend hY

Instructicn [5-0]

Pipelined Control

Instruction

IF/ID

Control

WB

==F

EX

[TT]

ID/EX

wB
M —- wB
EX/MEM MEM/WB

Pipelined Control

WB L
Instruction
Control M wB
EX [M —-- WB|
IF/ID ID/EX EX/MEM MEM/WB

So, really it is combinational logic and some registers to
propagate the signals to the right stage.

The Pipeline with Control Logic

RegDst

PCSrc
ID/EX
e Lex/MEM
Control M | wB S—
EX M WB
IF/ID E—
Add V\
4 Add Add
Branch
£
2
b
0 o 2
. Add < Tead S g
u ress = =
1x '§ P register 1 d':teaa? I 2 %
%
? Read] 2
2 g—p-| O
Instruction = register 2 rond
memory 1 Wiits Registers goag || Address Read | |+ 7%
register data 2 Data ,IV‘|
Write ieiG ¥
| data Y 1
Write
data
Instruction |
[15-0] 16 [sign- | 32
N extend control MemRead
Instruction
[20-16]
Instruction
[15-11]

Pipelined Control Signals

Execution Stage Control Lines Memory Stage Control Lines Write Back Stage Control
Lines
Instruction | RegDst | ALUOpl | ALUOpO | ALUSrc | Branch [MemRead [MemWrite [RegWrite | MemtoReg
R-Format | 1 1 0 0 0 0 0 1 0
Iw 0 0 0 1 0 1 0 1 1
SW X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Pipelined Control Signals

Execution Stage Control Lines Memory Stage Control Lines Write Back Stage Control
Lines
Instruction | RegDst | ALUOpl | ALUOpO | ALUSrc | Branch [MemRead [MemWrite [RegWrite | MemtoReg
R-Format | 1 1 0 0 0 0 0 1 0
Iw 0 0 0 1 0 1 0 1 1
SW X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

Let’s just do one.

The Pipeline with Control Logic

RegDst

PCSrc
ID/EX
e Lex/MEM
Control M | wB S—
EX M WB
IF/ID E—
Add V\
4 Add Add
Branch
£
2
b
0 o 2
. Add < Tead S g
u ress = =
1x '§ P register 1 d':teaa? I 2 %
%
? Read] 2
2 g—p-| O
Instruction = register 2 rond
memory 1 Wiits Registers goag || Address Read | |+ 7%
register data 2 Data ,IV‘|
Write ieiG ¥
| data Y 1
Write
data
Instruction |
[15-0] 16 [sign- | 32
N extend control MemRead
Instruction
[20-16]
Instruction
[15-11]

Is it really that easy?

* What happens when...
add $3, $10, ST1
lw $8, 1000(S3)
sub $11, S8, S7

The Pipeline in Execution

Iw $8, 1000($3)

add $3, $10, $11

Address Calculation

Execute/

Memory Access

L |

EX/MEM

IF/ID ID/EX
Add
4
s
Address S Read
= register 1 Fead
3 data 1
= Read
register 2
In:‘:x‘t::xn B Registers goag
Write data 2| OM
register u
Write X
data 9 1
16 i 32
4 Sign- N —

@

r

'

Address

Write
data

Data
memory

Read
data

MEM/WB

Write Back

The Pipeline in Execution

sub $11, $8, $7

Iw $8, 1000($3)

add $3, $10, $11

Memory Access

L |

EX/MEM

'

IF/ID ID/EX
Add
4
s
Address S Read
= register 1 Fead
3 data 1
= Read
register 2
In:‘:x‘t::xn B Registers goag
Write data 2| OM
register u
Write X
data 1
16 i 32
% Sign- N

@

r

Address
Data

memory

Write
data

Read
data

MEM/WB

Write Back

The Pipeline in Execution

add $10, $1, $2 sub $11, $8, $7 Iw $8, 1000($3) add $3, $10, $11 Write Back

L |

IF/ID EX/MEM MEM/WB
Add
4
s
Address -2 Read
3 i Read
= register 1
2 data 1
= Read —
Instruction register2
Registers goag Add Read | _ |
memol . ress >
o er.ie data 2| OM data

regls!er % Dita

Wit X memory

data 1

Write
data
16 i
K4 Sign- 3%
@ ‘

When a result is needed in the pipeline before it is

Data Hazards available, a data hazard occurs. What can we do?

R2 Available

CCl1 cCc2 CC3 CC4 CCs / CCe6 cC7 CC8

sub 82, $1, $3 | IM Reg % DM Reg
and $12, $2, $5 IM/V Reg % DM Reg
or $13, $6, $2 R2 Needed M Reg DM Reg

™M Reg DM Reg

add $14, $2, $2 [y

M Reg DM
sw $15, 100($2) -

sub $2, $1, $3
and $4, %2, $5
or $8, $%$2, %6
add $9, %4, $2
st $1, %6, $7

Data Hazards

» DataHazards are caused by data dependences
* Not all data dependences result in data hazards

* A data hazard results when there is a data dependence between two
instructions that appear too close together in the pipeline

* We will define a data hazard as any data dependence that requires either
the software or hardware to take special action to get correct

Dealing With Data Hazards - What can we do...

e ..in Software?

e ...in Hardware?

Data Hazards are caused by instruction dependences. For example,
the add is data-dependent on the subtract:

subi S5, $4, #45

add S8, S5, S2

Dealing with Data Hazards in Software

cCc2

CCl1
sub $2, $1,$3| IM
and $12, $2, $5

Reg

CC3

M

Reg

>

Cc4 CCs
DM Reg
DM

CCe6

cC7

CC8

Dealing with Data Hazards in Software

cCc2

Reg

CC1
sub $2, 81,83 | IM
nop
nop
nop

and $12, $2, $5

CC3

M

Reg

M

CC4 CCs CCe6 cC7 CC8
DM Reg
DM Re
= g
Reg DM Reg
™M Reg DM Reg
c
M Reg DM
)

How Many No-ops?

sub $2, $1,53
and $4, $2,55
or $8,52,56
add $9, $4,52
slt $1, 56,57

Are No-ops Really Necessary?

sub $2, $1,53
and $4, $2,55
or $8,$3,56
add $9, $2,$8
slt $1, 56,57

Dealing with Data Hazards in Hardware
Part ll-Pipeline Stalls

CCl1 cC2 CC3 CC4 CCs CCeé CcC7 CC8

sub $2, $1, $3| IM Reg :5}7 DM Reg

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part ll-Pipeline Stalls

CCl1 cC2 CC3 CC4 CCs CCeé CcC7 CC8

sub $2, $1, $3| IM Reg :97 DM Reg

and $12, $2, $5 IM |—

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part ll-Pipeline Stalls

CCl1 cC2 CC3 CC4 CCs CCeé CcC7 CC8

sub $2, $1, $3| IM Reg :97 DM Reg

and $12, 82, $5 IM

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware

Part ll-Pipeline Stalls

CCl1

cC2

CC3 CC4 CCs

sub $2, $1, $3| IM

Reg

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

M

CCeé

CcC7

Reg

CC8

=

DM

Reg

Dealing with Data Hazards in Hardware
Part ll-Pipeline Stalls

CCl1 cC2 CC3 CC4 CCs CCeé CcC7 CC8

sub $2, $1, $3| IM Reg :97 DM

and $12, $2, $5 IM _

or $13, $6, $2 M

Reg

DM Reg

:5)7 DM|——
sw $15, 100($2) M Reg _97

add $14, $2, $2

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé cCc7 CC8

sub $2, $1, $3| IM [—

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé CcC7 CC8

sub $2, $1, $3| IM Reg

and $12, $2, $5 IM |—

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé CcC7 CC8

sub $2, $1, $3| IM Reg :97

and $12, 82, $5 M

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé CcC7 CC8

sub $2, $1, $3| IM Reg :97 DM|—

and $12, 82, $5 M

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé CcC7 CC8

sub $2, $1, $3| IM Reg :97 DM

and $12, 82, $5 IM _

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé CcC7 CC8

sub $2, $1, $3| IM Reg :97 DM Reg \

and $12, $2, $5 M — Reg|

or $13, $6, $2 IM p—

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé CcC7 CC8

sub $2, $1, $3| IM Reg :97 DM

and $12, $2, $5 IM _

or $13, $6, $2 IM —

Reg

DM Reg

add $14, $2, $2

sw $15, 100($2) M Reg _97

Poll Q: Try it yourself

CC1 cC2 CC3 CC4 CCs CCo6 CC7 CC8

sub $2, 81,83 IF ID EX M WB

l
()
add $12, $3, $5 bubbles?
A 5
or $13, $6, $2 B 6
Cc 7
add $14, $12, $2 ~Ta
E None of the above

sw $14, 100(52)

M Reg :97 DM Reg

IF ID EX M WB

Working this example...

CCl1 cC2 CC3 CC4

sub $2,$1,83 IF 1D) EX M

add $12, $3, $5

or $13, $6, $2

add $14, $12, $2

sw $14, 100($2)

CCs

WB

CCeé

CcC7

CC8

Poll Q: How to actually implement this in hardware?

Once you detect the hazard in ID - what must you do to insert the nop and “stall"?
Flush all instructions in the pipeline (set control signals to 0).

Set all control signals going to ID/EX register to zero.
Set PCWrite to zero.

Set IF/ID register write to zero.

1.

2.
3.
4.

Selection

mcom>|

1,3,4
1,2,3
2,3,4
1

None of the above

T =
) = g

eeeeeeee

ea
aaaaa

Rea
aaaaa

Pipeline Stalls

« To ensure proper pipeline execution in light of register dependences, we
must:

— detect the hazard
— stall the pipeline

Knowing When to Stall

CCl1

M

cCc2 CC3
Re
: _@
M Reg
M

6 types of data hazards

two reg reads * 3 reg writes

CC4 CCs CCe6 cC7 CC8
DM Reg
DM Re
% g
Reg %7 DM Reg
M Reg DM Reg
>
M Reg DM

Knowing When to Stall

CCl1

M

CC4

cCc2 CC3

Re
g_%

M Reg

M

CCs

CCe6

6 types of data hazards

two reg reads * 3 reg writes

cC7

CC8

Reg

DM

The Pipeline

PCSre
[¢]
M
u
X
|
IF/ID ID/EX EX/MEM MEMAMB
Add
A resutt
Branch
Shift
RegWiite left 2 N
J
c Read MemWrite
Address 2 register 1 Read |
2 data 1 -
% Read ALUSre
Instruction £ register 2 zero
= — Registers Read AW ALy
memory Write data 2 [o result Address Read |,
register M data
u Data
Write X
| data K memory
Write
data
Instruction T
16 "
115 0] Sign ALU |
extend control MemRead
Instruction
[20 18]
0
M ALUOp
Instruction u
[15 11] X
1
RegDst

MemtoReg

Oxecxz

What comparisons tell us when to stall?

Stalling the Pipeline

* Once we detect a hazard, then we have to be able to
stall the pipeline (insert a bubble).
« Stalling the pipeline is accomplished by

— (1) preventing the IF and ID stages from making progress

» the ID stage because it cannot proceed until the dependent
instruction completes

* the IF stage because we do not want to lose any instructions.

— (2) essentially, inserting "nops” in hardware

]

Instruction
Fetch

]

Instruction
Decode

Operand
Fetch

'

Execute

Result
Store

]

Next
Instruction

S—

Stalling the Pipeline

* Preventing the IF and ID stages from proceeding
— don't write the PC (PCWrite = 0)
— don't rewrite IF/ID register (IF/IDWrite = O)
* Inserting “nops”
— set all control signals propagating to EX/MEM/WB to zero

Can we do better? How else might we deal with (some?
data hazards?

PCSrc
0
M
u
X
o |
IF/ID ID/EX EX/MEM MEMAB
\
A rosult
Branch
Shift
Reg\Write left 2
c Read MemWrite
Address 2 register 1 Read |
E Read data 1| ALUSrc
Instruction E register 2 Zero MemtoReg
= — Registers Read ALU ALy
memery \hirite data2 [result Address Read q
register o data "
N ata u
Write
| data memory 8(
Write
data
Instruction T
15 0 16 y 32 6
1o % | sign \ ALU |
N |extend control MemRead
Instruction
[20 16]
0
M | ALUOp
Instruction u
[15 11] X
1
RegDst

Reducing Data Hazards Through Forwarding

add $2,$3,%4 | IM Reg % DM
add $5, $3, $2 M Reg %
ID/EX EX
Registers %}—
—> >
—»

MEM

Reg
DM Reg
MEM/WB
Data

[Memory

Reducing Data Hazards Through Forwarding

ID/EX EX/MEM MEM/WB

M

— —> u

X

Registers A

ALUSrc L
ALU —~|
> > h

M

u

M Data
-t | u > >
¥ ¥ memory j@
| ’/

Reducing Data Hazards Through Forwarding

EX Hazard: (similar for the MEM stage)
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd != 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

ID/EX
m ’—’E EX/MEM
Control M WB! MEM/WB
IF/ID U L EX |—> M L»WB—
] | M]]
M
— >l u
o — X
2
é Registers { ALU|— N
1%}
b Instruction = (M) :
memory N '\L’II Data
T X memory
=
IF/ID.RegisterRs Rs |
IF/ID.RegisterRt Rt
i [Rt] EX/MEM.RegisterRd
]F/ID.Reg!sterFlt Rt M 3 egisf |
IF/ID.RegisterRd Rd u
L LI d L L
\Forwarding < | | MEM/WB.RegisterRd
unit

Data Forwarding

* The Previous Data Path handles two types of data hazards
— EX hazard
— MEM hazard

* We assume the register file handles the third (WB hazard)

— if the register file is asked to read and write the same register in the same cycle,
we assume that the reg file allows the write data to be forwarded to the

output
— We're still going to call that forwarding.

Eliminating Data Hazards via Forwarding

CCl1

sub $2, $1, $3

™M

i}

and $6, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

cCc2
Rﬂ

>

CC4 CCs

DM

-

M

1

C
R«

> EE

|

L1
H

CCe6

DM

-

I

1
H

%_lw

I

L1}
H

cC7 CC8

HE-

Forwarding in Action

add $1, $12, $3

[3]

Instruction
memory

Memory Access

IF/ID

[Instruction

MEM/WB
WB—

Write Back

Data
memory

EX/MEM.RegisterRd

sub $12, $3, $4 add $3, $10, $11
ID/EX
m ”’E l EX/MEM
Control M WB
U L EX I—* M
ot o —
M
— >l u
— %
. —’U
Registers t ALUL|
~
|
M
| - | U
X
U
IF/ID.RegisterRs Rs
IF/ID.RegisterRt Rt
IF/ID.RegisterRt Rt m
IF/ID.RegisterRd Rd u
—

{ Forwarding

MEM/WB.RegisterRd

unit

xc =

Forwarding in Action

Instruction Fetch add $1, $12, $3 sub $12, $3, $4 add $3, $10, $11 Write Back
ID/EX
m ”’E l EX/MEM
Control L M WB MEM/WB
IF/ID EX I—» M L»WB—
Al Kl 4, — I
M
S
—»| %
S)
§ Registers t ALUL» - o
[}
Instruction = - M u
PC — M X
memory L u Data
| x memory
U
IF/ID.RegisterRs Rs > L
IF/ID.RegisterRt Rt
IF/ID.RegisterRt Rt m EX/MEM.RegisterRd
IF/ID.RegisterRd Rd u T
L L] :(J L] L
\Forwa_rding -~ || MEM/WB.RegisterRd
unit

Forwarding in Action

Instruction Fetch Instruction Decode add $1, $12, $3 sub $12, $3, $4 add $3, $10, $11
ID/EX
m ”’E l EX/MEM
Control L M WB MEM/WB
IF/ID EX |—> M L»WB—
Al Kl 4, — I
M
S
—»| %
S)
§ Registers t ALUL» - o
[}
Instruction = - M u
PC — M X
memory L u Data
| x memory
U
IF/ID.RegisterRs Rs > L
IF/ID.RegisterRt Rt
IF/ID.RegisterRt Rt m EX/MEM.RegisterRd
IF/ID.RegisterRd Rd u T
L L] :(J L] L
\Forwa_rding -~ || MEM/WB.RegisterRd
unit

Eliminating Every Data Hazard via Forwarding?

CCl1

lw $2, 10($1)

M

i}

CcC
IN

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

>

CC4

M

i
1

C
IN

CCs

>

I

L1
H

CCe6

>

DM

-

I

L1}
H

%_lw

I

L1}
H

cC7 CC8

HE-

Eliminating Data Hazards via Forwarding and
stalling

lw $2, 10($1)

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CCl1

cCc2

CC3

CC4

CCs

CCe6

cC7

CC8

Eliminating Data Hazards via Forwarding and

stalling

CCl1

lw $2, 10($1)

M

i}

CcC
IN

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

i}

M

1

CC3 CC4

M

i}

CCs

CCe6

cC7

CC8

Eliminating Data Hazards via Forwarding and

stalling

CCl1

lw $2, 10($1)

M

i}

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

s

CC4

M

1

] | e

M

CCs

CCe6

cC7

CC8

Eliminating Data Hazards via Forwarding and

stalling

CCl1

cCc2

lw $2, 10($1)

M

i}

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CC4

CCe6

cC7

CC8

Eliminating Data Hazards via Forwarding and

stalling

CCl1

CC4 CCs

Iw $2, 10($1)

M

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

i}

el

M

CCe6

e

1M
Just to be clear, let's review what
we mean by "bubble” particularly in
the context of this pipeline!

cC7

CC8

Eliminating Data Hazards via Forwarding and

stalling

CCl1

lw $2, 10($1)

M

i}

and $12, $2, $5

1

CC4 CCs

HHE

M

1

] | 682 Bog |

What is really happening during the bubble (for this particular pipeline)?

CCe6 cC7

DM

-

CC8

Eliminating Data Hazards via Forwarding and
stalling

CCl1 CC4 CCs CCe6 cC7 CC8

oo AR
e TS EHHE

What is really happening during the bubble (for this particular pipeline)?
* While Iw moves to the Mem stage in CC4, the and instruction repeats
the ID stage (important because the values the and reads in CC4 are

the ones it will carry forward).

Eliminating Data Hazards via Forwarding and
stalling

CCl1 CC4 CCs CCe6 cC7 CC8

oo [HI% - +[

What is really happening during the bubble (for this particular pipeline)?
* While Iw moves to the Mem stage in CC4, the and instruction repeats
the ID stage (important because the values the and reads in CC4 are

the ones it will carry forward).
* There is now no instruction in the EX stage. So we better make sure
that whatever is in the EX stage is safe.

Eliminating Data Hazards via Forwarding and
stalling

CCl1 CC4 CCs CCe6 cC7

oo [HI% - +[

What is really happening during the bubble (for this particular pipeline)?
* While Iw moves to the Mem stage in CC4, the and instruction repeats
the ID stage (important because the values the and reads in CC4 are

the ones it will carry forward).
* There is now no instruction in the EX stage. So we better make sure
that whatever is in the EX stage is safe.
» Safe = no state changes (PC, reg, memory), now or as it moves
through the pipeline.

CC8

Poll Q: Stalls & Forwards

 How many stalls occur and how many values require hardware
forwarding support to avoid stalling for our MIPS 5-stage pipeline?

add $3, %2, $1 Forwarded values
A 1 3

lw $4, 100(%$3)

and $6, $4, $3 5 : :
sub $7, $6, $2 e :
add %9, $3, $%6 E None of the above

Try this one...

 Show bubbles and forwarding for this code

add $3, $2, %1
Iw $4, 100($3)
and $6, %4, $3
sub $7, $%$6, $2
add $9, $3, %6

Another one...

 Show bubbles and forwarding for this code

Iw $9, 100(%6) IF ID EX M WB
addi $6, $9, #26
sub $7, $6, $9
add $6, $3, $6
add $3, $2, $6

Poll Q: How many stalls?
type (no enter) into Zoom chat

» Suppose EX is the longest (in time) pipeline stage
* Toreduce CT, we split it in half. Given the following (new) pipeline:

IF ID EXTEX2 M WB

Assume the input data must be available at the start of EX1and the
output is available after EX2

* How many hardware stalls would be required in the following code
(assuming hardware forwarding wherever possible)?

add rl, r2, r3
add r4, rl1, r3

Poll Q: How many stalls?
type (no enter) into Zoom chat

» Suppose EX is the longest (in time) pipeline stage
* Toreduce CT, we split it in half. Given the following (new) pipeline:

IF ID EXTEX2 M WB

Assume the input data must be available at the start of EX1and the
output is available after EX2

* How many hardware stalls would be required in the following code
(assuming hardware forwarding wherever possible)?

Iw rl, 0(r3)
add r2, rl, r3

Datapath with Hazard-Detection

PCWrite

Instruction
-~

memory

/m ID/EX.MemRead
detection

unit

IF/DWrite

ID/EX

-

WB

EX/MEM
wB

m %
Control u
X

L

M

e

EM/WB

IF/ID U 0 ™ WBI—
~
M
u
s x
g Registers (% | ol Ll
i A Naw
N M Data
u memory
X
/
1
IF/ID.RegisterRs
IF/ID.RegisterRt
IF/ID.RegisterRt Rt M
IF/ID.RegisterRd Rd :
L ID/EX.RegisterRt — M —_—
Rs Forwarding
Rt unit
if (ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt)))

then stall the pipeline

Hazard Detection

and $4, $2, $5

PCWrite

Instruction
memory

IF/DWrite

I.I

Hazard \
detection

unit

ID/EX.MemRead

®

xc=

T

ID/EX

Iw $2, 20(81)

wB

M

EX

[Instruction

Registers

IF/ID.RegisterRs

M\
M
u
X
N o>
;\— ALU|>|
M
u
X
N
—_—1

Data
memory

|IF/ID.RegisterRt

IF/ID.RegisterRt

Rt

IF/ID.RegisterRd

xc=)

ID/EX.RegisterRt

C

Rd,
Rs Forwarding \ |
Rt unit

Hazard Detection

and $4, $2, $5

PCWrite

Instruction
memory

IF/DWrite

I.I

Hazard \
detection

unit

®

xc=

™

nop (bubble) w $2, 20(81)
ID/EX.MemRead
ID/EX
W8 EX/MEM
M wB MEM/MWB
- L el

[Instruction

Registers

IF/ID.RegisterRs

M)
M
u
X
N ol
;\; ALU-
M
u
X
N/
e

Data
memory

|IF/ID.RegisterRt

|IF/ID.RegisterRt

Rt

IF/ID.RegisterRd

xc =)

ID/EX.RegisterRt

C

Rd,
Rs Forwarding
Rt unit

What other hazards might we have to watch out for?

« Data hazards are when the result of one computation is used in a later
computation

 |sthere otherre-use?

Control Dependence

Just as an instruction will be dependent on other instructions to provide
its operands (data dependence), it will also be dependent on other
instructions to determine whether it gets executed or not

(control dependence, aka, branch dependence).

Control dependences are particularly critical with conditional branches.

add $5,
sub $6,
beq $6,
and $9,

$3,
$5,
$7,
$6,

$2 somewhere: or $10, $5, $2
$2 add $12, $11, %9
somewhere

$1

Branch Hazards

« Branch dependences can result in branch hazards (when they are too
close to be handled correctly in the pipeline)

— (sound familiar?)

Stalling the pipeline
Given our current pipeline, let’s assume we stall until we know
the branch outcome (i.e., until the PC is known to be correct).

How many cycles will we lose per branch?

IFID ID/EX EX/MEM MEM/WB

Add
4 —) Add -
cycles shi T

—>(0 RegWrite —
(] - |
u PC Address S Read
b Read NemWrite
& g >| register 1 foad . i
2 Read " Tar0
I ; c o » ALUSTIc
1 Instruction = register 2
=" — Registers
memory Write Read —
register data 2
C 2 —-| Write
data
3 Instruction
(15-0) 16 Sign- | 32
extend
E 4 Instruction
(20-16)
Instruction
(15-11)

Branch Hazards

beq $2, $1, here

add ...

sub ...

Iw ...

here: lw ...

CCl1

M

cCc2 CC3 CC4 CCs CCe6 cC7 CC8
Reg DM Reg
M Reg DM Reg
c
M Reg DM Reg
™M Reg DM Reg
c
M Reg DM
=

Dealing With Branch Hazards

e |deas??

Dealing With Branch Hazards

* Hardware
— stall until you know which direction
— reduce hazard through earlier computation of branch direction

— guess which direction
¢ assume not taken (easiest)

* more educated guess based on history
— (requires that you know it is a branch before it is even decoded!)

Dealing With Branch Hazards

* Hardware
— stall until you know which direction
— reduce hazard through earlier computation of branch direction

— guess which direction
¢ assume not taken (easiest)

* more educated guess based on history
— (requires that you know it is a branch before it is even decoded!)

* Hardware/Software
— nops
— instructions that get executed either way (delayed branch).

Stalling for Branch Hazards

CC1 cC2 CC3 CC4 CCs CCo cCc7 CC8

beq $4, $0, there | IM Reg :97 DM Reg
and $12, $2, $5 M Reg 497 bM Reg

or . M Reg 97 DM Reg

add M Reg :97 DM
SW ... M Reg 497

Stalling for Branch Hazards

» Seems wasteful, particularly when the branch isn't taken.
* Makes all branches cost 4 cycles.

Assume Branch Not Taken

» works pretty well when you're right!

CCl1 cC2 CC3 CC4 CCs CCoé cC7 CC8

beq $4, $0, there | IM Reg :97 DM Reg

and $12, $2, $5 IM |——|Reg DM Reg

or . M Reg 97 DM Reg
add ... M — Reg :97 DM I—

sw M Reg 97

Assume Branch Not Taken

* same performance as stalling when you're wrong

CCl1 cC2 CC3 CC4 CCs CCoé cC7 CC8

beq $4, $0, there | IM Reg :97 DM Reg

and $12, $2, $5 IM [——|Reg

or ... M

add ...

there: sub $12, $4, $2

Reg 97

Assume Branch Not Taken

* Performance depends on percentage of time you guess right

* Flushing an instruction means to prevent it from changing any
permanent state (registers, memory, PC)
— sounds a lot like a bubble...
— But notice that we need to be able to insert those bubbles later in the pipeline

Branch Hazards - What if we predict taken instead?

CC1 cC2

beq $2, $1, here | IM Reg

CC3

-

CC4

DM

CCs

here: Iw M

Reg

Required information to predict Taken:

Reg

CCo6

DM

>

Reg

CC7

1. Whether an instruction is a branch (before decode)

2. The target of the branch

3. The outcome of the branch condition

A
B
C
D
E

CC8

Required
knowledge

2,3

2

None of the above

Branch Target Buffer

aka, how to know it’s a branch before you know it’s a branch

* Keeps track of the PCs of recently seen branches and their targets.
« Consult during Fetch (in parallel with Instruction Memory read) to
determine:
— Isthis a branch?
— If so, what is the target

Reducing the Branch Delay

Reducing the Branch Delay

PCSrc

“xc=®

PC

IF/ID

ID/EX

Address

Instruction
memory

. l Instruction

RegWrite
1

Read

i Read
register 1 Ay —

»| Read
register 2
Registers,
Write @ Read [——
>| register data 2

—»-| Write
data

Instruction
(15-0) 16 sign- | 32

extend

Instruction
(20-16)

EX/MEM

ALUSrc Zero
Add ALy
result

“xcz®

Branch

MemWrite
1

Read

Address data

ALU

Instruction
(15-11)

control

MemRead

MemtoReg

Oxecz™

ecan easily get to 2-cycle stall

Stalling for Branch Hazards

CC1 cC2 CC3 CC4 CCs CCo cCc7 CC8

beq $4, $0, there | IM Reg DM Reg
and $12, $2, $5 | M |— Reg :97 bM Reg
or . M Reg 97 DM Reg

add M Reg :97 DM |——
sw M Reg 97

Reducing the Branch Delay

EX/MEM

Branch

MemWrite
1

PCSrc

Address

Data
memory

Read
data

MemRead

MEM/WB

IF/D ID/EX
RegWrite
l
c
S Rea
L —{ Read
§ register 1 data 11
k7] Read
c o—> i
Instruction . ;4 reglsteFI;EZ isters,
memory Wite 0 Read
T register data 2
—>-| Write
data
Instruction
(15-0) 16 [sgign. | %2 &,/ AW
extend control
Instruction
(20-16)
0) ALUOp
M
Instruction :
(15-11) 1
—
E— RegDst

MemtoReg

Oxcz™

*Harder, but possible, to get to 1-cycle stall

Stalling for Branch Hazards

CC1 cC2 CC3 CC4 CCs CCo cCc7 CC8

beq $4, $0, there | IM Reg DM Reg

and $12, $2, $5 -@b IM |——|Reg 497 DM Reg
or ... M Reg :97 DM Reg

add M Reg :97 DM
SW ... M Reg 497

The Pipeline with flushing for taken branches

 Notice the IF/ID flush line added.

Eliminating the Branch Stall

A cute idea, but not one used by any modern core

* There's no rule that says we have to see the effect of the branch
immediately. Why not wait an extra instruction before branching?

* The original SPARC and MIPS processors each used a single
branch delay slot to eliminate single-cycle stalls after branches.

* Theinstruction after a conditional branch is always executed in those
machines, regardless of whether the branch is taken or not!

Branch Delay Slot

CCl1 cC2 CC3 CC4 CCs CCeé CcC7 CC8

beq $4, $0, there | IM Reg DM Reg
and $12, $2, $5 M Reg DM Reg
there: or ... IM Reg DM Reg
add ... M Reg DM f——
SW ... IM Reg

Branch delay slot instruction (next instruction after a branch) is executed even
if the branch is taken.

Filling the branch delay slot

* The branch delay slot is only useful if you can find something to put
there.

* Ifyou can’t find anything, you must put a nop to ensure correctness.
* Where do we find instructions to fill the branch delay slot?

Filling the branch delay slot

Ul W N B

N

add
add
sub
and
beq
nop
add
sub

$5,
$9,
$6,
$7,
$6

/* branch delay slot */

$9,
$2,

there:
mult $2,

$3,
51,
51,
$8,
$7,

51,
$9,

$7
$3
$4
$2
there

$4
$5

$10, $11

Which instructions could be
used to replace the nop?

Branch Delay Slots

Branch Delay Slots

* Thisworks great for this implementation of the architecture, but
becomes a permanent part of the ISA.

Branch Delay Slots

* Thisworks great for this implementation of the architecture, but
becomes a permanent part of the ISA.

* What about the MIPS R10000, which has a 5-cycle branch penalty, and
executes 4 instructions per cycle??

Branch Delay Slots

* Thisworks great for this implementation of the architecture, but
becomes a permanent part of the ISA.

* What about the MIPS R10000, which has a 5-cycle branch penalty, and
executes 4 instructions per cycle??

 What about the Pentium 4, which has a 21-cycle branch penalty and
executes up to 3 instructions per cycle???

Early resolution of branch + branch delay slot

« Worked well for MIPS R2000 (the 5-stage pipeline MIPS)

e Early resolution doesn't scale well to modern architectures
— Better to always have execute happen in execute
— Forwarding into branch instruction?

* Branch delay slot
— Doesn't solve the problem in modern pipelines
— Stillin ISA, so have to make it work even though it doesn't provide any
significant advantage.

— Violates important general principal - (unless you really only want a single
generation of your product) do not expose current technology limitations to

the ISA.

Okay, then...

e \What do we do in modern architectures???

Branch Prediction

* Always assuming a branch is not taken is a crude form of
branch prediction.
* What about loops that are taken 95% of the time?

— we would like the option of assuming not taken for some branches, and
assuming taken for others, depending on 2?7

Branch Prediction

Historically, two broad classes of branch predictors:
« Static predictors - for branch B, always make the same prediction.

* Dynamic predictors - for branch B, make a new prediction every time the
branch is fetched.

* Tradeoffs?

* Modern CPUs all have sophisticated dynamic branch prediction.

Dynamic Branch Prediction

 What information is available to make an intelligent prediction?

Branch Prediction

program counter
[T

for (i=0;i<10;i++) {

\

add $i, $i, #1
beq $i, #10, loop

\ 4
==

Two-bit predictors give better loop prediction

Not taken
(Predict taken
Taken

Not taken Taken

Not taken

(Predict not taken

Taken

N

This state machine also referred to as a saturating
counter — it counts down (on not takens) to 00 or up
(on takens) to 11, but does not wrap around.

for (1i=0;i<10;i++) {

\

add $i, $i, #1
beq $i, #10, loop

Branch History Table
(bimodal predictor)

* has limited size
« 2bitsby N (e.g. 4K)
* uses low bits of branch address to choose entry -

| branch address |
 J

» 00

 what about even/odd branch?

bimodal predictor

* For the following loop, what will be the prediction accuracy of the
bimodal predictor for the conditional branch that closes the loop?

for (i=0; i< 2; 1i++) //two iterations per 1loop

{ z = . 1}

A
B
C
D
E

| I

100%
50%
0%

Maybe 0%,
maybe 50%

other

v

Q0

2-bit bimodal prediction accuracy

1%
nasa7 0%
; 0% [4096 entries:
matrix300
= 0% 2 bits per entry
O Unlimited entries:

tomeatv :):f 2 bits per entry

o

doduc

spice
SPEC89
benchmarks

fpppp

gcc

espresso

18%
eqntott 18%
10%
10%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions

© 2003 Elsevier Science (USA). All rights reserved.

Is this good enough?

Can We Do Better?

* (Can we get more information dynamically than just the recent bias of
this branch?

Can We Do Better?

* (Can we get more information dynamically than just the recent bias of
this branch?

* We can look at patterns (2-level local predictor) for a particular branch.
— last eight branches 00100100, then it is a good guess that the next one is “1"

(taken)
BT
000000 ‘/////,i 88
11111
001001 \ >
000000

v

 even/odd branch?

Can We Do Better?

Can We Do Better?

* Correlating Branch Predictors also look at other branches for clues
if (i == 0)

if (i > 7)

* Typically use two indexes
— Clobal history register --> history of last m branches (e.g., 0100011
— branch address

Correlating Branch Predictors
» The global history register (ghr) is a shift register that records the last n
branches (of any address) encountered by the processor.

L

00
»| 01

2-bit predictors

00

11

Two-level correlating branch predictors

e (Canuse both the PC address and the GHR

|

00
01

2-bit predictors

\ 4 OO

T combinin
function

11

* Most common - gshare: use xor as the combining function.

Are we happy yet????

* Combining branch predictors use multiple schemes and a voter to decide

which one typically does better for that branch.
P1 P2

—> use P2

Compaq/Digital Alpha 21264

Global

; Chooser
e Local Predictor Predictor
10 3 > Lome 1 2
10 Yo
——{ < > —

Branch Prediction

Aliasing in Branch Predictors

* Branch predictors will always be of finite size, while code size is relatively
unlimited.

Aliasing in Branch Predictors

* Branch predictors will always be of finite size, while code size is relatively
unlimited.

* What happens when (in the common case) there are more branches
than entries in the branch predictor?

Aliasing in Branch Predictors

* Branch predictors will always be of finite size, while code size is relatively
unlimited.

* What happens when (in the common case) there are more branches
than entries in the branch predictor?

* We call these conflicts aliasing.

* We can have negative aliasing (when biases are different) or neutral
aliasing (biases same). Positive aliasing is unlikely.

Bimodal aliasing

PHT

v

Q0

Local Predictor Aliasing

BHT

000000

» 00

111111

00

v

001001

000000

Gshare aliasing

L
00
01
2-bit predictors
PC | ! 5
[y S
11

Branch Prediction

» Latest branch predictors significantly more sophisticated, using more
advanced correlating techniques, larger structures, and soon possibly
using Al techniques.

* Remember from earlier....
— Presupposes what two pieces of information are available at fetch time?

— Branch Target Buffer supplies this information.

Pipeline performance
(And defining CSE141 “standard parameters”)

loop:

lw $15, 1000(%2)

add $16, $15, $12
lw $18, 1004(%2)

add $19, %18, $12
beq $19, $0, loop
nop

What is the steady-state CPI of this code?
Assume branch taken many times.
Assume 5-stage pipeline, forwarding,

early branch resolution, branch delay slot

Always assume this architecture if not
given the details

Can we improve this?

Putting it all together.

For a given program on our 5-stage MIPS pipeline processor:
20% of insts are loads, 50% of instructions following a

load are arithmetic instructions depending on the load
20% of instructions are branches.

We manage to fill 80% of the branch delay slots with
useful instructions.

What is the CPI of your program?

N
A

m O O @

0.76
0.9
1.0
1.1
1.14

Given our 5-stage MIPS pipeline...
What is the steady state CPI for the following code?

Loop: 1w r1, © (r2)
add r2, r3, r4 A 1
sub r5, rl, r2 £ 1.25
C 1.5
beq r5, %$zero, Loop 5 s
nop E None of the above

That was a lot.

e Seriously!
* Loosely, we just covered ~30 years of processor design in 4 weeks
— (The good ideas are always more obvious in hindsight...)

CSE 141 CC BY-NC-ND Pat Pannuto - Many slides adapted from Dean Tullsen 166

Pipelining Key Points

e ET=IC*CPI*CT
* Achieve high without reducing instruction

» Pipelining exploits a special kind of parallelism (parallelism between
functionality required in different cycles by different instructions).

» Pipelining uses combinational logic to generate (and registers to
propagate) control signals.

* Pipelining creates potential hazards.

CSE 141 CC BY-NC-ND Pat Pannuto - Many slides adapted from Dean Tullsen

167

Data Hazard Key Points

* Pipelining provides high throughput, but does not handle data
dependences easily.

« Data dependences cause data hazards.
* Data hazards can be solved by:
— software (nops)

— hardware stalling
— hardware forwarding

* Our processor, and indeed all modern processors, use a combination of
forwarding and stalling.

e ET=IC*CPI*CT

CSE 141 CC BY-NC-ND Pat Pannuto - Many slides adapted from Dean Tullsen 168

Control Hazard Key Points

» Control (branch) hazards arise because we must fetch the next
instruction before we know:

— if we are branching
— where we are branching
* Control hazards are detected in hardware.
* We can reduce the impact of control hazards through:
— early detection of branch address and condition
— branch prediction
— branch delay slots

CSE 141 CC BY-NC-ND Pat Pannuto - Many slides adapted from Dean Tullsen 169

