Poll Q: How many D flip flops are in this pipeline?

add \$10, \$1, \$2 Instruction

Instruction Decode/ Register Fetch Execute/ Address Calculation Memory Access

Write Back

The Pipeline in Execution add \$10, \$1, \$2 Instruction Fetch sub \$15, \$4, \$1 lw \$12, 1000(\$4) Write Back EX/MEM MEM/WB PC Address Read register 1 register 2 Registers Read Instruction Read data Write

((bluser)

Instruction Fetch

Instruction Decode/ Register Fetch Execute/ Address Calculation sub \$15, \$4, \$1

lw \$12, 1000(\$4)

The Pipeline, with controls But....

 I told you multicycle control was messy. We would expect pipelined control to be messier.

- I told you multicycle control was messy. We would expect pipelined control to be messier.
 - Why?

- I told you multicycle control was messy. We would expect pipelined control to be messier.
 - Why?
- But it turns out we can do it with just...

- I told you multicycle control was messy. We would expect pipelined control to be messier.
 - Why?
- But it turns out we can do it with just...
- Combinational logic!
 - Signals generated once
 - Follow instruction through the pipeline

Recall: Control signals in the single-cycle machine

So, really it is combinational logic and some registers to propagate the signals to the right stage.

The Pipeline with Control Logic

Pipelined Control Signals

	Execution Stage Control Lines				Memory Stage Control Lines			Write Back Stage Control	
								Lines	
Instruction	RegDst	ALUOp1	ALUOp0	ALUSrc	Branch	MemRead	MemWrite	RegWrite	MemtoReg
R-Format	1	1	0	0	0	0	0	1	0
lw	0	0	0	1	0	1	0	1	1
sw	X	0	0	1	0	0	1	0	X
beq	X	0	1	0	1	0	0	0	X

Pipelined Control Signals

	Execution Stage Control Lines				Memory Stage Control Lines			Write Back Stage Control Lines	
Instruction	RegDst	ALUOp1	ALUOp0	ALUSrc	Branch	MemRead	MemWrite	RegWrite	MemtoReg
R-Format	1	1	0	0	0	0	0	1	0
lw	0	0	0	1	0	1	0	1	1
SW	X	0	0	1	0	0	1	0	X
beq	X	0	1	0	1	0	0	0	X

Let's just do one.

Republes - X

Is it really that easy?

What happens when...

```
add $3, $10, $11
lw $8, 1000($3)
sub $11, $8, $7
```