Announcements

* Reminder: Clocks change on Sunday
— You get 2am twice!
* Midterm logistics

— Following the path-of-most-success from other faculty

Will be on canvas
* Will be timed
* Will allow forward progress only

— N.b. This is how many standardized tests you will encounter (e.g. GRE) work

* We will give you, in advance, a list of questions and suggested timing
» Will not use the (IMHO creepy) remote proctoring, etc services
» Open book, not open Google [but you will not have time to look everything up!]

— The participation quizzes will be configured this way so you can get comfortable
» Only difference is participation quizzes will let you see correct answers when you're done

A brief aside: CSE 141in the real world

 Literally, in the hour before lecture, during the TockOS project call...

Q8. The PowerPC ISA supports the load_indexed instruction, as in load_indexed $rd, $rs, $rt which means
R[Srd] = M[Srs+Srt]. In what ways would we need to change the processor (e.g., Fig 4.15, P&H) to support that
instruction? Just consider the datapath, not control logic, and describe the changes.

We've settled on syscall.rs and what return types look like and are now looking at the generated assembly. We've done a few tweaks to try to trim it down. He's
° R | S C V d t t doing Cortex-M and I'm doing RISC-V. Here's what syscall.rs looks like:
oes not suppor .
. . . The major issue 'm seeing in RISC-V is not great support for switch/case tables. This, for example, is some of the generate assembly of encode_sys¢fl_retd
which serializes the Rust enum for the return type into registers. The key thing here are 0x58a0 to 0x58d0: | guess there is no table mechanism (unlike tbb in
a b ra n C h I n d e X e d I n S t r u Ct I O n] ARM), so it just a series of if-elses. This suggests that we might want to think about the ordering of values so common cases are early.
2000589c _ZN6kernel7sysc} TicoyscallReturnValug21encode_syscall_return17h7fa68817240ce495E:
o o 2000589c: 83 28 05 00 Iw a7, 0(a0)
WhICh makes SWItCh/Case 20005840: 63 82 08 04 beqz a7, 68
200058a4: 05 48 addi a6, zero, 1
200058a6: 63 83 08 05 beq a7,a6, 70
. . . . 200058aa: 09 48 addi a6, zero, 2 \
200058ac: 63 85 08 05 beq a7, a6, 74
expensive in code size, which [z | o
/ 200058b2: 63 8¢ 08 05 beq a7, a6, 88
200058b6: 91 47 addi a5, zero, 4
200058b8: 63 84 8 06 beq a7, a5, 104
may change how our OS works =z, [<<
y g 200058be: 63 85 f8 06 beq a7, a5, 106
200058c2: 99 47 addi a5, zero, 6
200058c4: 63 8b f8 08 beq a7,a5, 150
200058¢8: 9d 47 addi a5, zero, 7
200058ca: 63 85 8 06 beq a7,a5, 106
200058ce: a1 47 addi a5, zero, 8
200058d0: 63 80 f8 08 beq a7,a5, 128
200058d4: 03 28 c5 00 Iw a6, 12(a0)
200058d8: 1c 45 lw a5, 8(a0)
B 200058da: 83 28 45 00 lw a7, 4(al)

Is it really that easy?

* What happens when...
add $3, $10, ST1
lw $8, 1000(S3)
sub $11, S8, S7

The Pipeline in Execution

Iw $8, 1000($3) add $3, $10, $11 Execute/ Memory Access Write Back
VN~ .
Address Calculation
>
IF/ID EX/MEM MEM/WB
Add
4
" A\
Address % Read
L | % register 1 dR;:d1
= Read .
Instruction (‘> ragismrﬁzegisters _— (\\ Read |, |
memory ~ Write d;: 5 0 Address data —
register M Data
Write : memory
data 1
Write
data
1? Sign- 3%

The Pipeline in Execution

sub $11, $8, $7 Iw $8, 1000($3) add $3, $10, $11 Memory Access Write Back
\

oY

IF/ID ID/EX EX/MEM MEM/WB
Add
4
s
Address -2 [Read
Fp—
2 register 1 Read
2 data 1
] Read
Instruction register2
memory i Repleters’ Rad Address i::?: > —
¢ er.ie data 2|
register Dita
_— Write TSmO
data
Write
data

The Pipeline in Execution

add $10, $1, $2 sub $11, $8, $7 Iw $8, 1000($3) add $3, $10, $11 Write Back

IF/ID ID/EX EX/MEM MEM/WB

Add
4
§
Address 5 Read
o
2 register 1 Plead 1 ;
3 data 1 /
e Read = Zero >
Instruction register2 LU A R
Registers ead
memory Virie 9 Read ° vesit } Address data T >
5 data 2| M
register Data
Write memory
data
Write TN
data /

ign-
\ @ \‘ \

!
i
e

Data Hazards

sub $2, $1, $3

When a result is needed in the pipeline before it is
available, a data hazard occurs. What can we do?

\

and $12, $2, $5

or $13, $6, $2
add $14, $2, $2

sw $15, 100($2)

CC1 CcC2 CC3
M Re
gl Ce
M /(C} Reg
R2 Needed IM

R2 Available \
CC4 CC5 / CCo6 CcC7 CC8 \
W ¢
DM Reg \>\
e,
DM Reg &\,3 -
c
Reg DM Reg
™M Reg DM Reg
[~
M Reg % DM
—

sub $2, $1, $3
and $4, %2, $5
or $8, %2, %6
add $9, %4, $2
st $1, %6, $7

Data Hazards

» DataHazards are caused by data dependences
* Not all data dependences result in data hazards

 Adatahazard results when there is a data dependence between two
instructions that appear too close together in the pipeline

* We will define a data hazard as any data dependence that requires either
the software or hardware to take special action to get correct

Dealing With Data Hazards - What can we do...

e ..inSoftware? L
2)
_add nomep (nopd ey
<
« ..in Hardware? s et .
' Jelot N
_ U ConTy %‘;3\/\4&% Ay e H% o
- k\maorwad“ AR é\‘l\(’kk -
(R

Data Hazards are caused by instruction dependences. For example,

the add is data-dependent on the subtract:
subi 4, #45
add $8,95),52 f
plm Ew =

Dealing with Data Hazards in Software

CCl1

sub $2, $1, $3

M

cCc2

\

and $12, $2, $5

Reg

CC3

CC4

DM

CCs

M

Reg

Reg

>

DM

CCeé

cC7

CC8

Dealing with Data Hazards in Softhre~

CCl1
sub $2, $1,$3| M
)
nop
nop
nop

and $12, $2, $5

cCc2 CC3 CC4 CCs CCeé cC7 CC8
Reg DM Reg
|
M Reg DM Reg
c
M Reg DM Reg
c
™M Reg DM Reg
()
\ P
M Reg DM
)

How Many No-ops?

sub $2, $1,53
and $4, $2,55
or $8,$2,56
add $9, $4,52
slt $1, 56,57

Are No-ops Really Necessary?

sub $2, $1,53
and $4, $2,55
or $8,$3,56
add $9, $2,$8
slt $1, 56,57

Dealing with Data Hazards in Hardware
Part Il-Pipeline Stalls

CCl1 cC2 CC3 CC4 CCs CCeé cC7 CC8

sub $2, $1, $3| IM Reg :5}7 DM Reg

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part Il-Pipeline Stalls

CCl1 cC2 CC3 CC4 CCs CCeé cC7 CC8

sub $2, $1, $3| IM Reg :97 DM Reg

and $12, $2, $5 IM |—

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part Il-Pipeline Stalls

CCl1 cC2 CC3 CC4 CCs CCeé cC7 CC8

sub $2, $1, $3| IM Reg :97 DM Reg

and $12, 82, $5 IM

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware

Part Il-Pipeline Stalls

@&CJK CCl

cC2

CC3 CC4 CCs

sub $2, $1, $3| IM

Reg

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

M

CCeé

cC7

Reg

CC8

=

DM

Reg

Dealing with Data Hazards in Hardware
Part Il-Pipeline Stalls

CCl1 cC2 CC3 CC4 CCs CCeé cC7 CC8

sub $2, $1, $3| IM Reg :97 DM

Reg
and $12, $2, S5 IM _

or $13, $6, $2 M

Reg

DM Reg

:5)7 DM|——
sw $15, 100($2) M Reg _97

add $14, $2, $2

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé cCc7 CC8

sub $2, $1, $3| IM [—

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé cC7 CC8

sub $2, $1, $3| IM Reg

and $12, $2, $5 IM |—

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé cC7 CC8

sub $2, $1, $3| IM Reg :97

and $12, 82, $5 M
Ay

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé cC7 CC8

sub $2, $1, $3| IM Reg :97 DM|—

and $12, 82, $5 M

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé cC7 CC8

sub $2, $1, $3| IM Reg :97 DM

and $12, 82, $5 IM _

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé cC7 CC8

sub $2, $1, $3| IM Reg :97 DM Reg
\/

and $12, 52,55 M — Reg|

S
or $13, $6, $2 IM p—

add $14, $2, $2

sw $15, 100($2)

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

CCl1 cC2 CC3 CC4 CCs CCeé cC7 CC8

sub $2, $1, $3| IM Reg :97 DM

and $12, 82, $5 IM _

or $13, $6, $2 IM —

Reg

DM Reg

add $14, $2, $2

sw $15, 100($2) M Reg _97

Poll Q: Try it yourself

CC1 cC2 CC3 CC4 CCs CCé6 CC7 CC8

sub $2, 81,83 IF ID EX M WB

l
()
add $12, $3, $5 bubbles?
A 5
or $13, $6, $2 B 6
Cc 7
add $14, $12, $2 ~Ta
E None of the above

sw $14, 100(52)

M Reg :97 DM Reg

IF ID EX M WB

Working this example...

Lo o
ccl cc2 o3 occa cos . ocoe leeroccs
21
/sgb SIL$3 IF ID EX M WB
ad$3,$~5 rf L_EO_J l_Ei_! &J L\'jj:_{ |
or $13 $6L@ L}é’J‘_JQ‘LD_Jﬁ,)L&
19 83, 300

sw $14, 100($2) L
e L

Poll Q: How to actually implement this in hardware?

Once you detect the hazard in ID - what must you do to insert the nop and “stall"?
@ Flush all instructions in the pipeline (set control signals to 0).
@ Set all control signals going to ID/EX register to zero.
Set PCWrite to zero.

Set IF/ID register write to zero.
N~

1

None of the above

A 1,3,4

B 1,2,3
@ 2,3,4

D

E

Pipeline Stalls

« To ensure proper pipeline execution in light of register dependences, we
must:

— detect the hazard
— stall the pipeline

r\

AN

Knowing When to Stall

CCl1

M

cCc2 CC3
Re
: _@
M Reg
M

6 types of data hazards

two reg reads * 3 reg writes

CC4 CCs CCeé cC7 CC8
DM Reg
DM Re
% g
Reg %7 DM Reg
M Reg DM Reg
[~
M Reg DM

Knowing When to Stall

CCl1

M

CC4

cCc2 CC3

Re
g_%

M Reg

M

CCs

CCeé

6 types of data hazards

two reg reads * 3 reg writes

cC7

CC8

Reg

DM

The Pipeline

PCSre
[¢]
M
u
X
|
IF/ID ID/EX EX/MEM MEMAMB
Add
A resutt
Branch
Shift
RegWiite left 2 \
J/
I3 Read MemWrite
Address 2 register 1 Read |
2 data 1 -
% Read ALUSrc
Instruction £ register 2 zero
= — Registers Read AW ALy
memory Write data 2 [o result Address Read |, |
register M data
u Data
Write X
| data K memory
Write
data
Instruction T
16 "
115 0] Sign ALU |
extend control MemRead
Instruction
[20 18]
0
M ALUOp
Instruction u
[15 11] X
1
RegDst

MemtoReg

Oxecx

What comparisons tell us when to stall?

