
CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 1

Poll Q: How many stalls?
type (no enter) into Zoom chat

• Suppose EX is the longest (in time) pipeline stage

• To reduce CT, we split it in half. Given the following (new) pipeline:

IF ID EX1 EX2 M WB
Assume the input data must be available at the start of EX1 and the
output is available after EX2

• How many hardware stalls would be required in the following code
(assuming hardware forwarding wherever possible)?

add r1, r2, r3

add r4, r1, r3

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 2

Poll Q: How many stalls?
type (no enter) into Zoom chat

• Suppose EX is the longest (in time) pipeline stage

• To reduce CT, we split it in half. Given the following (new) pipeline:

IF ID EX1 EX2 M WB
Assume the input data must be available at the start of EX1 and the
output is available after EX2

• How many hardware stalls would be required in the following code
(assuming hardware forwarding wherever possible)?

lw r1, 0(r3)
add r2, r1, r3

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 3

Datapath with Hazard-Detection

if (ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or

(ID/EX.RegisterRt = IF/ID.RegisterRt)))

then stall the pipeline

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 4

Hazard Detection

and $4, $2, $5 lw $2, 20($1)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 5

Hazard Detection

and $4, $2, $5 nop (bubble) lw $2, 20($1)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 6

What other hazards might we have to watch out for?

• Data hazards are when the result of one computation is used in a later

computation

• Is there other re-use?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 7

Control Dependence

• Just as an instruction will be dependent on other instructions to provide
its operands (data dependence), it will also be dependent on other
instructions to determine whether it gets executed or not
(control dependence, aka, branch dependence).

• Control dependences are particularly critical with conditional branches.

add $5, $3, $2

sub $6, $5, $2

beq $6, $7, somewhere

and $9, $6, $1

...

somewhere: or $10, $5, $2

add $12, $11, $9

...

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 8

Branch Hazards

• Branch dependences can result in branch hazards (when they are too

close to be handled correctly in the pipeline)

– (sound familiar?)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 9

Given our current pipeline, let’s assume we stall until we know

the branch outcome (i.e., until the PC is known to be correct).

How many cycles will we lose per branch?

Stalling the pipeline

cycles

A 0

B 1

C 2

D 3

E 4

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 10

Branch Hazards

IM Reg

A
L

U DM Reg

IM Reg

A
L

U DM

IM Reg
A

L
U DM Reg

IM Reg

A
L

U DM Reg

IM Reg

A
L

U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

beq $2, $1, here

here: lw ...

sub ...

lw ...

add ...

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 11

Dealing With Branch Hazards

• Ideas??

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 12

Dealing With Branch Hazards

• Hardware

– stall until you know which direction

– reduce hazard through earlier computation of branch direction

– guess which direction

• assume not taken (easiest)

• more educated guess based on history

– (requires that you know it is a branch before it is even decoded!)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 13

Dealing With Branch Hazards

• Hardware

– stall until you know which direction

– reduce hazard through earlier computation of branch direction

– guess which direction

• assume not taken (easiest)

• more educated guess based on history

– (requires that you know it is a branch before it is even decoded!)

• Hardware/Software

– nops

– instructions that get executed either way (delayed branch).

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 14

Stalling for Branch Hazards

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble BubbleBubble

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 15

Stalling for Branch Hazards

• Seems wasteful, particularly when the branch isn’t taken.

• Makes all branches cost 4 cycles.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 16

Assume Branch Not Taken

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

• works pretty well when you’re right!

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 17

Assume Branch Not Taken

beq $4, $0, there

and $12, $2, $5

or ...

add ...

there: sub $12, $4, $2

IM Reg

IM Reg

IM

IM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Flush

Flush

Flush

• same performance as stalling when you’re wrong

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 18

Assume Branch Not Taken

• Performance depends on percentage of time you guess right

• Flushing an instruction means to prevent it from changing any
permanent state (registers, memory, PC)

– sounds a lot like a bubble...

– But notice that we need to be able to insert those bubbles later in the pipeline

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 19

Branch Hazards – What if we predict taken instead?

IM Reg

A
L

U DM Reg

IM Reg

A
L

U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

beq $2, $1, here

here: lw

Required information to predict Taken:

1. Whether an instruction is a branch (before decode)

2. The target of the branch

3. The outcome of the branch condition

Required

knowledge

A 2,3

B 1,2,3

C 1,2

D 2

E None of the above

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 20

Branch Target Buffer
aka, how to know it’s a branch before you know it’s a branch

• Keeps track of the PCs of recently seen branches and their targets.

• Consult during Fetch (in parallel with Instruction Memory read) to
determine:

– Is this a branch?

– If so, what is the target

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 21

Reducing the Branch Delay

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 22

Reducing the Branch Delay

•can easily get to 2-cycle stall

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 23

Stalling for Branch Hazards

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

BubbleBubble

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 24

Reducing the Branch Delay

•Harder, but possible, to get to 1-cycle stall

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 25

Stalling for Branch Hazards

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 26

The Pipeline with flushing for taken branches

• Notice the IF/ID flush line added.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 27

Eliminating the Branch Stall
A cute idea, but not one used by any modern core

• There’s no rule that says we have to see the effect of the branch

immediately. Why not wait an extra instruction before branching?

• The original SPARC and MIPS processors each used a single

branch delay slot to eliminate single-cycle stalls after branches.

• The instruction after a conditional branch is always executed in those

machines, regardless of whether the branch is taken or not!

