
CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 1

Announcements

• Midterm is next week on Tuesday
– 90 minute slot (for an 80 minute exam)
– Available 8am-8pm US/Pacific time

• Need to start by 6:30pm!

– Forward progress only!
– Monday class will be a review session

• There is also a review session hosted by Prof. Tullsen at 6:30pm tonight

• Midterm covers material through HW4
– I.e. through data hazards (does not include control hazards, or prediction)

• Next week Wednesday is Veteran’s Day (UCSD holiday)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 2

The Pipeline with flushing for taken branches

• Notice the IF/ID flush line added.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 3

Eliminating the Branch Stall
A cute idea, but not one used by any modern core

• There’s no rule that says we have to see the effect of the branch
immediately. Why not wait an extra instruction before branching?

• The original SPARC and MIPS processors each used a single
branch delay slot to eliminate single-cycle stalls after branches.

• The instruction after a conditional branch is always executed in those
machines, regardless of whether the branch is taken or not!

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 4

Branch Delay Slot

beq $4, $0, there

and $12, $2, $5

there: or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Branch delay slot instruction (next instruction after a branch) is executed even
if the branch is taken.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 5

Filling the branch delay slot

• The branch delay slot is only useful if you can find something to put
there.

• If you can’t find anything, you must put a nop to ensure correctness.
• Where do we find instructions to fill the branch delay slot?

–
–
–

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 6

Filling the branch delay slot

1 add $5, $3, $7
2 add $9, $1, $3
3 sub $6, $1, $4
4 and $7, $8, $2
5 beq $6, $7, there

nop /* branch delay slot */
6 add $9, $1, $4
7 sub $2, $9, $5

...
there:

8 mult $2, $10, $11
...

• Which instructions could be
used to replace the nop?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 7

Branch Delay Slots

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 8

Branch Delay Slots

• This works great for this implementation of the architecture, but
becomes a permanent part of the ISA.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 9

Branch Delay Slots

• This works great for this implementation of the architecture, but
becomes a permanent part of the ISA.

• What about the MIPS R10000, which has a 5-cycle branch penalty, and
executes 4 instructions per cycle??

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 10

Branch Delay Slots

• This works great for this implementation of the architecture, but
becomes a permanent part of the ISA.

• What about the MIPS R10000, which has a 5-cycle branch penalty, and
executes 4 instructions per cycle??

• What about the Pentium 4, which has a 21-cycle branch penalty and
executes up to 3 instructions per cycle???

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 11

Early resolution of branch + branch delay slot

• Worked well for MIPS R2000 (the 5-stage pipeline MIPS)
• Early resolution doesn’t scale well to modern architectures

– Better to always have execute happen in execute
– Forwarding into branch instruction?

• Branch delay slot
– Doesn’t solve the problem in modern pipelines
– Still in ISA, so have to make it work even though it doesn’t provide any

significant advantage.
– Violates important general principal – (unless you really only want a single

generation of your product) do not expose current technology limitations to
the ISA.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 12

Okay, then…

• What do we do in modern architectures???

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 13

Branch Prediction

• Always assuming a branch is not taken is a crude form of
branch prediction.

• What about loops that are taken 95% of the time?
– we would like the option of assuming not taken for some branches, and

assuming taken for others, depending on ???

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 14

Branch Prediction

• Historically, two broad classes of branch predictors:

• Static predictors – for branch B, always make the same prediction.

• Dynamic predictors – for branch B, make a new prediction every time the
branch is fetched.

• Tradeoffs?

• Modern CPUs all have sophisticated dynamic branch prediction.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 15

Dynamic Branch Prediction

• What information is available to make an intelligent prediction?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 16

Branch Prediction

1
0
1

program counter

for (i=0;i<10;i++) {
...
...
}

...

...
add $i, $i, #1
beq $i, #10, loop

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 17

Two-bit predictors give better loop prediction

for (i=0;i<10;i++) {
...
...
}

...

...
add $i, $i, #1
beq $i, #10, loop

This state machine also referred to as a saturating
counter – it counts down (on not takens) to 00 or up
(on takens) to 11, but does not wrap around.

