* Midterm is next week on Tuesday
— 90 minute slot (for an 80 minute exam)

— Available 8am-8pm US/Pacific time
* Need to start by 6:30pm!

— Forward progress only!

— Monday class will be a review session
* Thereis also a review session hosted by Prof. Tullsen at 6:30pm tonight

* Midterm covers material through HW4
— l.e. through data hazards (does not include control hazards, or prediction)
* Next week Wednesday is Veteran’s Day (UCSD holiday)

The Pipeline with flushing for taken branches

(u)
T \:J |—V(Fcnwarding\<_—I _—|
k unit)
@y

Q\b

bl

 Notice the IF/ID flush line added.

Eliminating the Branch Stall

A cute idea, but not one used by any modern core

* There's no rule that says we have to see the effect of the branch
immediately. Why not wait an extra instruction before branching?

* The original SPARC and MIPS processors each used a single
branch delay slot to eliminate single-cycle stalls after branches.

* Theinstruction after a conditional branch is always executed in those
machines, regardless of whether the branch is taken or not!

a4 Vo)
< ad
b

SV

Branch Delay Slot b(&;‘;\?\“”\

CCl1 cC2 CC3 CC4 CCs CCeé cC7 CC8

beq $4, $0, there | IM Reg DM Reg

Reg :97 DM Reg

VN
QY M Reg DM |—
M Reg :97

and $12, $2, $5

Branch delay slot instruction (next instruction after a branch) is executed even
if the branch is taken.

A @
Filling the branch delay slot b@@

* The branch delay slot is only useful if you can find so ing to put
there.

* Ifyou can’t find anything, you must put a nop to ensure correctness.
* Whergdo wefinddnstructions to fill the branch delay slot?
— oY Adden
R

Filling the branch delay slot

, $7 * Which instructions could be

’ ii used to replace the nop?

, there ? = \‘\Qﬁ

<
hele) 3 0o
vl Y > o

-~ o bt (C\QQAUU«% V\a>
> o
ERT)

Branch Delay Slots

Branch Delay Slots

* Thisworks great for this implementation of the architecture, but
becomes a permanent part of the ISA.

Branch Delay Slots

* Thisworks great for this implementation of the architecture, but
becomes a permanent part of the ISA.

* What about the MIPS R10000, which has a 5-cycle branch penalty, and
executes 4 instructions per cycle??

Branch Delay Slots

* Thisworks great for this implementation of the architecture, but
becomes a permanent part of the ISA.

* What about the MIPS R10000, which has a 5-cycle branch penalty, and
executes 4 instructions per cycle??

 What about the Pentium 4, which has a 21-cycle branch penalty and
executes up to 3 instructions per cycle???

Early resolution of branch + branch delay slot

« Worked well for MIPS R2000 (the 5-stage pipeline MIPS)

e Early resolution doesn't scale well to modern architectures
— Better to always have execute happen in execute
— Forwarding into branch instruction?

* Branch delay slot
— Doesn't solve the problem in modern pipelines
— Stillin ISA, so have to make it work even though it doesn't provide any
significant advantage.

— Violates important general principal - (unless you really only want a single
generation of your product) do not expose current technology limitations to

the ISA.

Okay, then...

e \What do we do in modern architectures???

Branch Prediction

* Always assuming a branch is not taken is a crude form of
branch prediction.
* What about loops that are taken 95% of the time?

— we would like the option of assuming not taken for some branches, and
assuming taken for others, depending on 2?7

Branch Prediction

Historically, two broad classes of branch predictors:
« Static predictors - for branch B, always make the same prediction.

* Dynamic predictors - for branch B, make a new prediction every time the
branch is fetched.

* Tradeoffs?

* Modern CPUs all have sophisticated dynamic branch prediction.

Dynamic Branch Prediction

 What information is available to make an intelligent prediction?

\/\'\Q’ls zﬂ@{\ %T% 1 V/R/\%Y
Vi Lo

: 290 7/,

Branch Prediction o8
) \&\55(66\5/ A (/L U % a
program/counter \!
o for (i=0;i<10;i++) { %47“7»
b L
n
RNy %
e \
A ¢
/f/ AT e S
\/\W<b add $i, $i, #1
—>beq $i, #10, loop

N -
AT T TTRT T

pee 407

Two-bit predictors give better loop prediction —

ST

Not taken <
{ Predict taken
Taken

Not taken Taken

SC

Not taken

(Predict not taken

Taken

N

This state machine also referred to as a saturating
counter — it counts down (on not takens) to 00 or up
(on takens) to 11, but does not wrap around.

T N T T
LA
.

for (i=+) {
v

add $i, $i, #1
beq $i, #10, loop

