Annhouncements

* Midterm is graded
— Will release grades early afternoon today
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— If you scored <40, strongly encourage you to come talk with me about
technigues to help you better prepare for the rest of the class

» Come to OH, or e-mail for Private Appointment (MWF, 11-1: or any other time)



The Pipeline with flushing for taken branches
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 Notice the IF/ID flush line added.



Eliminating the Branch Stall

A cute idea, but not one used by any modern core

* There's no rule that says we have to see the effect of the branch
immediately. Why not wait an extra instruction before branching?

* The original SPARC and MIPS processors each used a single
branch delay slot to eliminate single-cycle stalls after branches.

* Theinstruction after a conditional branch is always executed in those
machines, regardless of whether the branch is taken or not!
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Branch delay slot instruction (next instruction after a branch) is executed even
if the branch is taken.
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Filling the branch delay slot b@@

 The branch delay slot is only useful if you can find so ing to put
there.

* Ifyou can’t find anything, you must put a nop to ensure correctness.
*  Whergdo wefinddnstructions to fill the branch delay slot?
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Filling the branch delay slot
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Branch Delay Slots



Branch Delay Slots

* Thisworks great for this implementation of the architecture, but
becomes a permanent part of the ISA.
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* What about the MIPS R10000, which has a 5-cycle branch penalty, and
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Branch Delay Slots

* Thisworks great for this implementation of the architecture, but
becomes a permanent part of the ISA.

* What about the MIPS R10000, which has a 5-cycle branch penalty, and
executes 4 instructions per cycle??

 What about the Pentium 4, which has a 21-cycle branch penalty and
executes up to 3 instructions per cycle???



Early resolution of branch + branch delay slot

«  Worked well for MIPS R2000 (the 5-stage pipeline MIPS)

e Early resolution doesn't scale well to modern architectures
— Better to always have execute happen in execute
— Forwarding into branch instruction?

* Branch delay slot
— Doesn't solve the problem in modern pipelines
— Stillin ISA, so have to make it work even though it doesn't provide any
significant advantage.

— Violates important general principal - (unless you really only want a single
generation of your product) do not expose current technology limitations to

the ISA.



Okay, then...

e \What do we do in modern architectures???



Branch Prediction

* Always assuming a branch is not taken is a crude form of
branch prediction.
* What about loops that are taken 95% of the time?

— we would like the option of assuming not taken for some branches, and
assuming taken for others, depending on 2?7



Branch Prediction

Historically, two broad classes of branch predictors:
« Static predictors - for branch B, always make the same prediction.

* Dynamic predictors - for branch B, make a new prediction every time the
branch is fetched.

* Tradeoffs?

* Modern CPUs all have sophisticated dynamic branch prediction.
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Branch Prediction
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Two-bit predictors give better loop prediction hes
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Branch History Table
(bimodal predictor)

* has limited size
« 2bitsby N (e.g. 4K)
* uses low bits of branch address to choose entry -

| branch address |
 J

» 00

 what about even/odd branch?
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* For the following loop, what will be the prediction accuracy of the
bimodal predictor for the conditional branch that closes the loop?

for (i=0; i< 2; 1i++) //two iterations per 1loop

{ z=. 1}
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2-bit bimodal prediction accuracy
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Is this good enough?



Can We Do Better?

* (Can we get more information dynamically than just the recent bias of
this branch?



Can We Do Better? PL: Yood e

* (Can we get more information dynamically than just the recent bias of
this branch?

* We can look at patterns (2-level local predictor) for a particular branch.
— last eight branches 00100100, then it is a good guess that the next one is “1"
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