Annhouncements

* Midterm is graded
— Will release grades early afternoon today

u U
10 20 30 40 50 70

60.75 80.0 59.95 1.4

— If you scored <40, strongly encourage you to come talk with me about
technigues to help you better prepare for the rest of the class

» Come to OH, or e-mail for Private Appointment (MWF, 11-1: or any other time)

The Pipeline with flushing for taken branches

[unit) \ Ex >
M
Control : 1 i J
| Jif T e
6) g
-y
Registers 6 1 :_ Data L
- memory
- JG
T
> R e il)
@ ¢ ’
ﬂﬁ‘

 Notice the IF/ID flush line added.

Eliminating the Branch Stall

A cute idea, but not one used by any modern core

* There's no rule that says we have to see the effect of the branch
immediately. Why not wait an extra instruction before branching?

* The original SPARC and MIPS processors each used a single
branch delay slot to eliminate single-cycle stalls after branches.

* Theinstruction after a conditional branch is always executed in those
machines, regardless of whether the branch is taken or not!

Branch Delay Slot b(&;;';\?\“”\

CCl1 cC2 CC3 CC4 CCs CCeé CcC7 CC8

beq $4, $0, there | IM Reg DM Reg

Reg :97 DM Reg

VN
QX M Reg DM |—
M Reg :97

and $12, $2, $5

Branch delay slot instruction (next instruction after a branch) is executed even
if the branch is taken.

S @
Filling the branch delay slot b@@

 The branch delay slot is only useful if you can find so ing to put
there.

* Ifyou can’t find anything, you must put a nop to ensure correctness.
* Whergdo wefinddnstructions to fill the branch delay slot?
— oY Aden
R

Filling the branch delay slot

, $7 * Which instructions could be

’ ii used to replace the nop?

, there ? = \‘\Qﬁ

<
hele’) 3 0o
vl Y > o

-~ o bt (C\QQAUU«% V\a>
> \o
ERT)

Branch Delay Slots

Branch Delay Slots

* Thisworks great for this implementation of the architecture, but
becomes a permanent part of the ISA.

Branch Delay Slots

* Thisworks great for this implementation of the architecture, but
becomes a permanent part of the ISA.

* What about the MIPS R10000, which has a 5-cycle branch penalty, and
executes 4 instructions per cycle??

Branch Delay Slots

* Thisworks great for this implementation of the architecture, but
becomes a permanent part of the ISA.

* What about the MIPS R10000, which has a 5-cycle branch penalty, and
executes 4 instructions per cycle??

 What about the Pentium 4, which has a 21-cycle branch penalty and
executes up to 3 instructions per cycle???

Early resolution of branch + branch delay slot

« Worked well for MIPS R2000 (the 5-stage pipeline MIPS)

e Early resolution doesn't scale well to modern architectures
— Better to always have execute happen in execute
— Forwarding into branch instruction?

* Branch delay slot
— Doesn't solve the problem in modern pipelines
— Stillin ISA, so have to make it work even though it doesn't provide any
significant advantage.

— Violates important general principal - (unless you really only want a single
generation of your product) do not expose current technology limitations to

the ISA.

Okay, then...

e \What do we do in modern architectures???

Branch Prediction

* Always assuming a branch is not taken is a crude form of
branch prediction.
* What about loops that are taken 95% of the time?

— we would like the option of assuming not taken for some branches, and
assuming taken for others, depending on 2?7

Branch Prediction

Historically, two broad classes of branch predictors:
« Static predictors - for branch B, always make the same prediction.

* Dynamic predictors - for branch B, make a new prediction every time the
branch is fetched.

* Tradeoffs?

* Modern CPUs all have sophisticated dynamic branch prediction.

Dynamic Branch Prediction @ gnin }(2 e

Tl

* What information is available/to make an int

NS mgl.

Branch Prediction

Fb_(7{_ program/counter
\""‘ﬁ&(k (Yo o
beg ©
e 09
o
R

e 0%
Two-bit predictors give better loop prediction hes

T N T T
(5) T s
Nottaken - for (i=+) {

Predict taken
~—~—

Taken

Not taken Taken }

Not taken ‘
(Predict not taken

Taken

w add $i, $i, #1
S

5 P) beq $i. #10, loop
This state machine also referred to as a saturating @ B H!

counter — it counts down (on not takens) to 00 or up 1T
(on takens) to 11, but does not wrap around. g P | et / m

Branch History Table
(bimodal predictor)

* has limited size
« 2bitsby N (e.g. 4K)
* uses low bits of branch address to choose entry -

| branch address |
 J

» 00

 what about even/odd branch?

. . Brandh TO&%W\' T MT'\S’]/M’TM @
bimodal predictor £ XHAL S EX DD,

* For the following loop, what will be the prediction accuracy of the
bimodal predictor for the conditional branch that closes the loop?

for (i=0; i< 2; 1i++) //two iterations per 1loop

{ z=. 1}
T T A 100%
» 00 7/»(10 B @]
4o C 0%
60‘1‘ Maybe 0%,
maybe 50%
—E other

2-bit bimodal prediction accuracy

1%
nasa7 0%
; 0% [4096 entries:
matrix300
= 0% 2 bits per entry
O Unlimited entries:

tomeatv :):f 2 bits per entry

o

SPEC89
benchmarks

12%

5%
espresso 5%‘:
18%
eqntott 8%
10%
10%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions

© 2003 Elsevier Science (USA). All rights reserved.

Is this good enough?

Can We Do Better?

* (Can we get more information dynamically than just the recent bias of
this branch?

Can We Do Better? PL: Yood e

* (Can we get more information dynamically than just the recent bias of
this branch?

* We can look at patterns (2-level local predictor) for a particular branch.
— last eight branches 00100100, then it is a good guess that the next one is “1"

(ta ken) "] ?{,‘_5«&(’\ R\S‘!’b"‘f
L T\ ¢ ,B;T & Pouws My
000000 ,
/ K eJ/\hr-bLSj\/{Nk
K R0 ~
[o™ 000000 o 56
A N
 even/odd branch? /){)oom-

\ (o018

