Can We Do Better? PL: Yood e

* (Can we get more information dynamically than just the recent bias of

this branch?
 We can look at patterredictor) for a particular branch.

— last eight branches 00100100, then it is a good guess that the next one is “1"

(taken) Dottecn HsFo
= BHT
T & Pow mong
000000 |~ v 00 09
110111 _@1 e NN~ .
001001 N
000000 ol . ?’(?
A N
-\
* even/odd branch? /3{)00\\\- -
y (018 11

Can We Do Better?

Can We Do Better?

« Correlating Branch Predictors also look at other branches for clues
: . _ (
if (i ==10)

if (i >g§ g
« Typically use two indexes
gister --> history of last m branches (e.g., 0100011)

— branch address

Correlating Branch Predictors

» The global history register (ghr) is a shift register that records the last n
branches (of any address) encountered by the processor.

= Sk is e Wre 6
N]j S'\nzmz*ﬂ;;?éji)j

Two-level correlating branch predictors

* (Canuse both the PC address and the GHR ok et fe
— L
e S
- 00 A
\ ‘\\pﬁ '\) 01
| lj —1_2-bit predictors

P —
= combinin &J' 5o o X '\f_\
function

11

* Most common - gshare: use xor as the combining function.

Are we happy yet????

* Combining branch predictors use multiple schemes and a voter to decide
which one typically does better for that branch.

G TS

C ﬁse P2

M e Ay P T e

2
Compaq/Digital Alpha 21264 ¥

. Global @
Local Predictor Predictor

PC
10 3 > Lomr] 2

A12

<

@/ v
Branch Prediction

&E =
N

Aliasing in Branch Predictors

* Branch predictors will always be of finite size, while code size is relatively

unlimited. Dr\pot 3
0¥ Y* &«

\ O/g A \9((_)"\ C/R
54 -
%

Aliasing in Branch Predictors

* Branch predictors will always be of finite size, while code size is relatively
unlimited.

* What happens when (in the common case) there are more branches
than entries in the branch predictor?

Aliasing in Branch Predictors

* Branch predictors will always be of finite size, while code size is relatively
unlimited.

* What happens when (in the common case) there are more branches
than entries in the branch predictor?

* We call these conflicts aliasing.

« We can have negative aliasing (when biases are different) or neutral
aliasing (biases same). Positive aliasing is unlikely.

Beones AL (e = .18

qoj\o %, OK QOL’\ DT
T—rf(- - .
:];T::j:,’_i [—
I 1's

PHT77 aqs 7 =

Bimodal aliasing +

Beondn a

L
S =) Nexd

Oy
=
\petsee™

\BACV“/A{S 'lg/
: e \o80 S

Local Predictor Aliasing

BHT

000000

» 00

111111

00

v

001001

000000

Gshare aliasing

—_

1

TTTTT
|

|

T RN
TTI e

]
—

VAV VY o s

& e ®

00

01

L W N o R S

)-bit predictors

11

Branch Prediction

» Latest branch predictors significantly more sophisticated, using more
advanced correlating techniques, larger structures, and soon possibly
using Al techniques.

* Remember from earlier....
— Presupposes what two pieces of information are available at fetch time?

— Branch Target Buffer supplies this information.

Pipeline performance
(And defining CSE141 “standard parameters”)

loop:

lw $15, 1000(%2)

add $16, $15, $12
lw $18, 1004(%2)

add $19, %18, $12
beq $19, $0, loop
nop

What is the steady-state CPI of this code?
Assume branch taken many times.
Assume 5-stage pipeline, forwarding,

early branch resolution, branch delay slot

Always assume this architecture if not
given the details

Can we improve this?

Putting it all together.

For a given program on our 5-stage MIPS pipeline processor:
20% of insts are loads, 50% of instructions following a

load are arithmetic instructions depending on the load
20% of instructions are branches.

We manage to fill 80% of the branch delay slots with
useful instructions.

What is the CPI of your program?

N
A

m O O @

0.76
0.9
1.0
1.1
1.14

Given our 5-stage MIPS pipeline...
What is the steady state CPI for the following code?

Loop: 1w r1, © (r2)
add r2, r3, r4 A 1
sub r5, rl, r2 £ 1.25
C 1.5
beq r5, %$zero, Loop 5 s
nop E None of the above

CSE 141

That was a lot.

Seriously!
Loosely, we just covered ~30 years of processor design in 4 weeks
— (The good ideas are always more obvious in hindsight...)

CC BY-NC-ND Pat Pannuto - Many slides adapted from Dean Tullsen

20

Pipelining Key Points

e ET=IC*CPI*CT
* Achieve high without reducing instruction

» Pipelining exploits a special kind of parallelism (parallelism between
functionality required in different cycles by different instructions).

» Pipelining uses combinational logic to generate (and registers to
propagate) control signals.

* Pipelining creates potential hazards.

CSE 141 CC BY-NC-ND Pat Pannuto - Many slides adapted from Dean Tullsen

21

Data Hazard Key Points

* Pipelining provides high throughput, but does not handle data
dependences easily.

« Data dependences cause data hazards.
* Data hazards can be solved by:
— software (nops)

— hardware stalling
— hardware forwarding

* Our processor, and indeed all modern processors, use a combination of
forwarding and stalling.

e ET=IC*CPI*CT

CSE 141 CC BY-NC-ND Pat Pannuto - Many slides adapted from Dean Tullsen 22

Control Hazard Key Points

CSE 141

Control (branch) hazards arise because we must fetch the next
instruction before we know:

— if we are branching
— where we are branching
Control hazards are detected in hardware.
We can reduce the impact of control hazards through:
— early detection of branch address and condition
— branch prediction
— branch delay slots

CC BY-NC-ND Pat Pannuto - Many slides adapted from Dean Tullsen

23

