Can We Do Better? PL: Yood e

* (Can we get more information dynamically than just the recent bias of

this branch?
 We can look at patterredictor) for a particular branch.

— last eight branches 00100100, then it is a good guess that the next one is “1"
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Can We Do Better?

« Correlating Branch Predictors also look at other branches for clues
: . _ (
if (i ==10)

if (i >g§ g
« Typically use two indexes
gister --> history of last m branches (e.g., 0100011)

— branch address



Correlating Branch Predictors

» The global history register (ghr) is a shift register that records the last n
branches (of any address) encountered by the processor.
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Two-level correlating branch predictors

* (Canuse both the PC address and the GHR ok et fe
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* Most common - gshare: use xor as the combining function.



Are we happy yet????

* Combining branch predictors use multiple schemes and a voter to decide
which one typically does better for that branch.
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Aliasing in Branch Predictors

* Branch predictors will always be of finite size, while code size is relatively

unlimited. Dr\pot 3
0¥ Y* &«

\ O/g A \9((_)"\ C/R
54 -
%



Aliasing in Branch Predictors

* Branch predictors will always be of finite size, while code size is relatively
unlimited.

* What happens when (in the common case) there are more branches
than entries in the branch predictor?



Aliasing in Branch Predictors

* Branch predictors will always be of finite size, while code size is relatively
unlimited.

* What happens when (in the common case) there are more branches
than entries in the branch predictor?

*  We call these conflicts aliasing.

« We can have negative aliasing (when biases are different) or neutral
aliasing (biases same). Positive aliasing is unlikely.
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Local Predictor Aliasing
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Gshare aliasing
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Branch Prediction

» Latest branch predictors significantly more sophisticated, using more
advanced correlating techniques, larger structures, and soon possibly
using Al techniques.

* Remember from earlier....
— Presupposes what two pieces of information are available at fetch time?

— Branch Target Buffer supplies this information.



Pipeline performance
(And defining CSE141 “standard parameters”)

loop:

lw $15, 1000(%2)

add $16, $15, $12
lw $18, 1004(%2)

add $19, %18, $12
beq $19, $0, loop
nop

What is the steady-state CPI of this code?
Assume branch taken many times.
Assume 5-stage pipeline, forwarding,

early branch resolution, branch delay slot

Always assume this architecture if not
given the details

Can we improve this?



Putting it all together.

For a given program on our 5-stage MIPS pipeline processor:
20% of insts are loads, 50% of instructions following a

load are arithmetic instructions depending on the load
20% of instructions are branches.

We manage to fill 80% of the branch delay slots with
useful instructions.

What is the CPI of your program?

N
A

m O O @

0.76
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Given our 5-stage MIPS pipeline...
What is the steady state CPI for the following code?

Loop: 1w r1, © (r2)
add r2, r3, r4 A 1
sub r5, rl, r2 £ 1.25
C 1.5
beq r5, %$zero, Loop 5 s
nop E None of the above



CSE 141

That was a lot.

Seriously!
Loosely, we just covered ~30 years of processor design in 4 weeks
— (The good ideas are always more obvious in hindsight...)

CC BY-NC-ND Pat Pannuto - Many slides adapted from Dean Tullsen
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Pipelining Key Points

e ET=IC*CPI*CT
* Achieve high without reducing instruction

» Pipelining exploits a special kind of parallelism (parallelism between
functionality required in different cycles by different instructions).

» Pipelining uses combinational logic to generate (and registers to
propagate) control signals.

* Pipelining creates potential hazards.

CSE 141 CC BY-NC-ND Pat Pannuto - Many slides adapted from Dean Tullsen
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Data Hazard Key Points

* Pipelining provides high throughput, but does not handle data
dependences easily.

« Data dependences cause data hazards.
* Data hazards can be solved by:
— software (nops)

— hardware stalling
— hardware forwarding

* Our processor, and indeed all modern processors, use a combination of
forwarding and stalling.

e ET=IC*CPI*CT

CSE 141 CC BY-NC-ND Pat Pannuto - Many slides adapted from Dean Tullsen 22



Control Hazard Key Points

CSE 141

Control (branch) hazards arise because we must fetch the next
instruction before we know:

— if we are branching
— where we are branching
Control hazards are detected in hardware.
We can reduce the impact of control hazards through:
— early detection of branch address and condition
— branch prediction
— branch delay slots

CC BY-NC-ND Pat Pannuto - Many slides adapted from Dean Tullsen

23



