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Can We Do Better?

• Can we get more information dynamically than just the recent bias of 
this branch?

• We can look at patterns (2-level local predictor) for a particular branch.

– last eight branches 00100100, then it is a good guess that the next one is “1” 
(taken)

• even/odd branch?
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Can We Do Better?
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Can We Do Better?

• Correlating Branch Predictors also look at other branches for clues

if (i == 0)

...

if (i > 7) 

...

• Typically use two indexes

– Global history register --> history of last m branches (e.g., 0100011)

– branch address
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Correlating Branch Predictors

• The global history register (ghr) is a shift register that records the last n
branches (of any address) encountered by the processor.
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Two-level correlating branch predictors

• Can use both the PC address and the GHR

• Most common – gshare: use xor as the combining function.

ghr

2-bit predictors

00
01

11

00
PC

combining
function



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 6

Are we happy yet????

• Combining branch predictors use multiple schemes and a voter to decide 

which one typically does better for that branch.
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Aliasing in Branch Predictors

• Branch predictors will always be of finite size, while code size is relatively 

unlimited.
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Aliasing in Branch Predictors

• Branch predictors will always be of finite size, while code size is relatively 

unlimited.

• What happens when (in the common case) there are more branches 

than entries in the branch predictor?
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Aliasing in Branch Predictors

• Branch predictors will always be of finite size, while code size is relatively 
unlimited.

• What happens when (in the common case) there are more branches 
than entries in the branch predictor?

• We call these conflicts aliasing.

• We can have negative aliasing (when biases are different) or neutral 
aliasing (biases same).  Positive aliasing is unlikely.
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Bimodal aliasing
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Local Predictor Aliasing
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Gshare aliasing

ghr

2-bit predictors
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Branch Prediction

• Latest branch predictors significantly more sophisticated, using more 

advanced correlating techniques, larger structures, and soon possibly 

using AI techniques.

• Remember from earlier….

– Presupposes what two pieces of information are available at fetch time?

•

•

– Branch Target Buffer supplies this information.
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Pipeline performance
(And defining CSE141 “standard parameters”)

loop: lw $15, 1000($2)

add $16, $15, $12

lw $18, 1004($2)

add $19, $18, $12

beq $19, $0, loop

nop

What is the steady-state CPI of this code?

Assume branch taken many times.

Assume 5-stage pipeline, forwarding, 

early branch resolution, branch delay slot

Always assume this architecture if not 

given the details

Can we improve this?
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Putting it all together.

For a given program on our 5-stage MIPS pipeline processor:

• 20% of insts are loads, 50% of instructions following a 

load are arithmetic instructions depending on the load

• 20% of instructions are branches.

• We manage to fill 80% of the branch delay slots with 

useful instructions.

• What is the CPI of your program?

CPI

A 0.76

B 0.9

C 1.0

D 1.1

E 1.14
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Given our 5-stage MIPS pipeline…

What is the steady state CPI for the following code?

Selection CPI

A 1

B 1.25

C 1.5

D 1.75

E None of the above

Loop:  lw r1, 0 (r2)

add r2, r3, r4

sub r5, r1, r2

beq r5, $zero, Loop

nop
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That was a lot.

• Seriously!

• Loosely, we just covered ~30 years of processor design in 4 weeks

– (The good ideas are always more obvious in hindsight…)
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Pipelining Key Points

• ET = IC * CPI * CT

• Achieve high throughputwithout reducing instruction latency

• Pipelining exploits a special kind of parallelism (parallelism between 
functionality required in different cycles by different instructions).

• Pipelining uses combinational logic to generate (and registers to 
propagate) control signals.

• Pipelining creates potential hazards.
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Data Hazard Key Points

• Pipelining provides high throughput, but does not handle data 
dependences easily.

• Data dependences cause data hazards.

• Data hazards can be solved by:

– software (nops)

– hardware stalling

– hardware forwarding

• Our processor, and indeed all modern processors, use a combination of 
forwarding and stalling.

• ET = IC * CPI * CT
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Control Hazard Key Points

• Control (branch) hazards arise because we must fetch the next 
instruction before we know:

– if we are branching

– where we are branching

• Control hazards are detected in hardware.

• We can reduce the impact of control hazards through:

– early detection of branch address and condition

– branch prediction

– branch delay slots


