
CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 1

Can We Do Better?

• Can we get more information dynamically than just the recent bias of
this branch?

• We can look at patterns (2-level local predictor) for a particular branch.

– last eight branches 00100100, then it is a good guess that the next one is “1”
(taken)

• even/odd branch?

000000

111111

001001

000000

address
BHT

00

00

11

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 2

Can We Do Better?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 3

Can We Do Better?

• Correlating Branch Predictors also look at other branches for clues

if (i == 0)

...

if (i > 7)

...

• Typically use two indexes

– Global history register --> history of last m branches (e.g., 0100011)

– branch address

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 4

Correlating Branch Predictors

• The global history register (ghr) is a shift register that records the last n
branches (of any address) encountered by the processor.

ghr

2-bit predictors

00
01

11

00

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 5

Two-level correlating branch predictors

• Can use both the PC address and the GHR

• Most common – gshare: use xor as the combining function.

ghr

2-bit predictors

00
01

11

00
PC

combining
function

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 6

Are we happy yet????

• Combining branch predictors use multiple schemes and a voter to decide

which one typically does better for that branch.

PC

P1 P2

use P2

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 7

Compaq/Digital Alpha 21264

PC

10 3 2 2GHR

12

Local Predictor
Global

Predictor
Chooser

Branch Prediction

10

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 8

Aliasing in Branch Predictors

• Branch predictors will always be of finite size, while code size is relatively

unlimited.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 9

Aliasing in Branch Predictors

• Branch predictors will always be of finite size, while code size is relatively

unlimited.

• What happens when (in the common case) there are more branches

than entries in the branch predictor?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 10

Aliasing in Branch Predictors

• Branch predictors will always be of finite size, while code size is relatively
unlimited.

• What happens when (in the common case) there are more branches
than entries in the branch predictor?

• We call these conflicts aliasing.

• We can have negative aliasing (when biases are different) or neutral
aliasing (biases same). Positive aliasing is unlikely.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 11

Bimodal aliasing

branch address

00

PHT

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 12

Local Predictor Aliasing

000000

111111

001001

000000

address
BHT

00

00

11

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 13

Gshare aliasing

ghr

2-bit predictors

00
01

11

00
PC

xor

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 14

Branch Prediction

• Latest branch predictors significantly more sophisticated, using more

advanced correlating techniques, larger structures, and soon possibly

using AI techniques.

• Remember from earlier….

– Presupposes what two pieces of information are available at fetch time?

•

•

– Branch Target Buffer supplies this information.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 15

Pipeline performance
(And defining CSE141 “standard parameters”)

loop: lw $15, 1000($2)

add $16, $15, $12

lw $18, 1004($2)

add $19, $18, $12

beq $19, $0, loop

nop

What is the steady-state CPI of this code?

Assume branch taken many times.

Assume 5-stage pipeline, forwarding,

early branch resolution, branch delay slot

Always assume this architecture if not

given the details

Can we improve this?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 16

Putting it all together.

For a given program on our 5-stage MIPS pipeline processor:

• 20% of insts are loads, 50% of instructions following a

load are arithmetic instructions depending on the load

• 20% of instructions are branches.

• We manage to fill 80% of the branch delay slots with

useful instructions.

• What is the CPI of your program?

CPI

A 0.76

B 0.9

C 1.0

D 1.1

E 1.14

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 17

Given our 5-stage MIPS pipeline…

What is the steady state CPI for the following code?

Selection CPI

A 1

B 1.25

C 1.5

D 1.75

E None of the above

Loop: lw r1, 0 (r2)

add r2, r3, r4

sub r5, r1, r2

beq r5, $zero, Loop

nop

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 20

That was a lot.

• Seriously!

• Loosely, we just covered ~30 years of processor design in 4 weeks

– (The good ideas are always more obvious in hindsight…)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 21

Pipelining Key Points

• ET = IC * CPI * CT

• Achieve high throughputwithout reducing instruction latency

• Pipelining exploits a special kind of parallelism (parallelism between
functionality required in different cycles by different instructions).

• Pipelining uses combinational logic to generate (and registers to
propagate) control signals.

• Pipelining creates potential hazards.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 22

Data Hazard Key Points

• Pipelining provides high throughput, but does not handle data
dependences easily.

• Data dependences cause data hazards.

• Data hazards can be solved by:

– software (nops)

– hardware stalling

– hardware forwarding

• Our processor, and indeed all modern processors, use a combination of
forwarding and stalling.

• ET = IC * CPI * CT

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 23

Control Hazard Key Points

• Control (branch) hazards arise because we must fetch the next
instruction before we know:

– if we are branching

– where we are branching

• Control hazards are detected in hardware.

• We can reduce the impact of control hazards through:

– early detection of branch address and condition

– branch prediction

– branch delay slots

