CSE 141: Introduction to Computer Architecture

The Single Cycle Machine



Zooming out for a moment...

The major building blocks of a computer

7

Memory

\

7

Processor

Control

Datapath

\

“A Computer”

Input/Output




The Big Picture: The Performance Perspective

» Processor design (datapath and control) will determine:

— Clock cycle time

— Clock cycles per instruction
e Starting today:

— Single cycle processor:

* Advantage: One clock cycle per instruction .
« Disadvantage: long cycle time
entire instruction

* ET=Insts* CPI* Cycle Time




Review: Synchronous and Asynchronous logic

A

Clk

1 1
Setup | Hold Setup ! Hold

< Ll < vt >

i Don’t Care 1

3

v

1 - 2=
_'.$ > —>

* All storage elements are clocked by the same clock edge

1..



The Processor: Datapath & Control

* We're ready to look at a simplified MIPS with only:
— memory-reference instructions: 1w, sw
— arithmetic-logical instructions: add, sub, and, or, slt
— control flow instructions: beqg

e Generic Implementation:
— use the program counter (PC) to supply instruction address
— get the instruction from memory
— read registers
— use the instruction to decide exactly what to do



Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

I

Recall...

Computing is much more than just
executing instructions!



I
Instruction ...but to start, let's !ook at .
Fetch how we execute an instruction

Instruction
Decode

operation

Operand ‘l\

Fetch

ALU

> result

32

Execute

Result
Store

o o
f&’\l\ 8

Next

Instruction
ﬁ




Recall: 2's complement

 Need a number system that provides

obvious representation of 0,1,2...

uses an adder for both unsigned and
signed addition

single value of O

equal coverage of positive and
negative numbers

easy detection of sign
easy negation

binary

unsigned

signed

0001

14




“Arithmetic Logic Units” are the computing part of

computers — how do they work?

A N// >
—> Zero
>
E T’ Result 001
— Qverflow 010
B
N 110
CarryOut

111

ALUo ALU Control Lines | Function
\pt (ALUop)
000 And

Or
Add
Subtract

Set-on-less-than



Start small: A one-bit ALU

e This 1-bit ALU will perform AND, OR, and ADD

Operation
Carryln |
.
a—e— \
> o
*~——>
.—D = » Result
. l
b : i ™
———> /

v

CarryOut



Recall: Binary addition works just like “normal”
(base 10), but you end up “carrying” more often

e A 4-bit ALU can be made from four 1-bit ALUs

1 1 0 0
\1\1\0\0 4
+ 1 1 1 0 -2
1 0 1 0 -6




And if you keep going... 32 bit math!

Operation .-
Carryln /,/’/
!
a —-o—»ﬂ G_\
o/

—_
A Y
A

» Result L’

+ 4—|
\
N

2
./ .

v

CarryOut

Carryln Operation

L

Carryln
ALUO
CarryOut

v

\2hi

Carryln

v

ALU1
CarryOut

¥ v

a2 —»|

b2 —>

Carryln

ALU2
CarryOut]

l :

A

a3l —

b31 —»

Carryln
ALU31

Result0

Result1

Result2

[—— ResuIt31



voas W

Hint: A-Bis the same as A + (-B)
Poll Q: We'd like to implement a means of doing A-B (subtract)

but with only minor changes to our hardware. How?

Provide an option to use bitwise NOT A

Provide an option to use bitwise NOT B

Provide an option to use bitwise A XOR B

Provide an option to use O instead of the first Carry,,
Provide an option to use 1instead of the first Carry,,

1 alone

Both 1 and 2
Both 3 and 4
Both 2 and 5

None of the above

moow>|

Carryln Operation

a0 —»

b0 —

A A 4
Carryln
ALUO
CarryOut|

» Result0

al —

b1 —»

A A
Carryln
ALU1
CarryOut|

» Result1

a2 —»

b2 —»

A A4
Carryln
ALU2
CarryOut|

» Result2

l :

a3l —»

b31 —

A4
Carryln

—
ALU31 Result31




Binvert Operation

Carryin l Binvert Calryln Operation T h e fu ll A L U

a "
0

A y

a0 — Carryln
4 ! b0 —»{ ALUO » Result0
F—> Result > CLGS% t
pt—1o ) | arryou Carry,, | Oper-
1 .
IR ation
- 3\/ al — Carryln
b1 —> ALU1 » Result1
CarryOut 0 —>»| Less and
CarryOut]
or
v v¥v
a2 —»| Carryin
Binvert Operation b2 > ALU2 > Result2 add
Carlryln | 0 —»| Less
CarryOut]
. r‘\ y sub
| ' Do o : beq
| lCarryIn |
F—> Result
e | T Lh slt
1 a31 —>{ Carryln f—————> ReslUIt31
Less >3 b31 —»| ALU31 Set
./ 0 —| Less » Overflow
Set
f;:ft'{;“nv Overflow sign bit (adder output from bit 31)




The Disadvantage of Ripple Carry

Carrylnq
 The adder we just AQ pype
built is called a so—L_ALU Resuld
"Ripple Carry Adder” Carry|n1TCarryOut0
— Thecarry bit may Al XE’S — Result1
have to propagate B1
from LSB to MSB CarryszCarryOuH
Al 1bit | Reguir2
— Worst case delay for ss—_ALU
glr\wl N-bit CFjiCL adder: Carry|n3TCarryOut2
_gate elay A3y 1A_El|} - Result3
B3
CarryOut3

Carryln

O

-

CarryOut

The point: ripple carry adders are slow. Faster addition schemes are possible that accelerate the
movement of the carry from one end to the other. Optimizing this is digital logic (CSE 140).



Why doesn’t our (simplified) single-cycle machine support

multiplication or division?

 How does a computer multiply?

— How do you multiply?

4—
123 —
Multiplicand
X 321 Shift left |«
64 bits
v y _b
hd / Multiplier
64-bit ALU / Shift right |«
32 bits
Product ’\fi
Wiite Control test
64 bits

The point: Multiplication (and division) is a lot of work to try to do in a single cycle



Poll Q: Which of these real-world processors supports
single-cycle multiply?

A) "Biggest, best” Intel [core i7] B) “Smallest” ARM [Cortex MO]
- ~$500 - ~S0.50

10™ GEN INTEL" CORE™ PROCESSORS

10th Generation Intel Core Processor based on Ice Lake »om A S 1M32

iform regsize mask Throughput Latency ’
3
IMUL_GPRv_GPRv 16 no 1.0 3.0 § o
IMUL_GPRv_GPRv 32 no 1.0 3.0 L
IMUL_GPRv_GPRv 64 no 1.0 3.0 E! j
IMUL_GPRv_MEMv 16 no 1.0 8.0 o Ll
IMUL_GPRv_MEMv 32 no 1.0 8.0 ¥
IMUL_GPRv_MEMv 64 no 1.0 8.0 L2
IMUL_GPRv_MEMv_IMMb 16 no 1.0 9.0 5 A .
R 48 Mhz

IMUL_GPRv_MEMv_IMMb 32 no 1.0 8.0
IMUL_GPRv_MEMv_IMMb 64 no 1.0 8.0 The Cortex-MO0 processor is built on a highly area and power optimized 32-bit processor
IMUL_GPRv_MEMv_IMMz 16 no 1.0 9.0 core, with a 3-stage pipeline von Neumann architecturg. The processor d'elivers e?(cgptional

energy efficiency through a small but powerful instruction set and extensively optimized
IMUL_GPRv_MEMv_IMMz 32 no 1.0 8.0 . - . . . " . ecote

design, providing high-end processing hardware including a single-cycle multiplier.
IMUL_GPRv_MEMv_IMMz 64 no 1.0 8.0



Modern Concerns about Execute
(aka, why is no one angry that an i7 can’t do single-cycle multiply?)

Hardware designers have done an excellent job optimizing multiply/FP
hardware, but additions are still faster, than, say multiply. Divides are
even slower and have other problems.

More complex topics in later lectures will show how multiply/FP/divide
may not be on the “critical path” and hence may not hurt performance
as much as expected.

More recent years have taught us that even “slow” multiply is not nearly
as important as cache/memory issues we'll discuss in later lessons.



Instruction Now we know how to execute
Fetch iInstructions...

Instruction
Decode

operation

Operand
Fetch \l\

ALU

> result

32

Execute

Result
Store

o o
f&’\l\ 8

Next

Instruction
ﬁ




Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

I

...SO let’s look at the rest of the
machine!



Our previous view of a computer had no organization

e From Partl...

(&)

Review — Instruction Execution in a CPU

Registers,, Program
RO P Counter,, ‘ R
% 59933 Iﬂ, Address;, Memory,
%2 133 20000 10001100010000110100111000100000
RS 12 Instruction Buffer 20004 00000000011000010010100000100000
80000 00000000000000000000000000111001
op s rt rd shamt
immediate/disp ’5
£
(%
| | =
in; in,
operation ALU addr]
out Load/Store
Unit <
data




Think about how a MIPS machine executes instructions...
Which correctly describes the order things must happen in?

A. The ALU always performs an operation before —
. Instruction
accessing data memory Fetoh
: : I
B. The ALU sometimes performs an operation Instruction
0 Decod
before accessing data memory o
. Operand
C. Datamemory is always accessed before ( Fotch
performing an ALU operation [ Execute |
: . '
D. Data memory is sometimes accessed before Result
. . . Store
performing an ALU operation !
Next
E. None of the above. Instruction




So what does this tell us about what the machine might
look like?



Storage Element: Register

« Review: D Flip Flop
* New: Register
— Similar to the D Flip Flop except
e N-bitinput and output
* Write Enable input
— Write Enable:

* 0O: Data Out will not change
» 1: Data Out will become Data In (on the clock edge)

Ol

Write Enable
Data In Data Out
N N’

Clk



A register file is a structure that holds many registers.
What kinds of signals will we need for our MIPS register file?

Number of bits for | Number of bits for | Control Inputs? Control
register output register selection Outputs?

A 5 read/write

B 5 5 clk, read/write  clk

C 32 5 clk, read/write  (none)

D 32 32 clk, read/write  clk,
read/write

E 32 5 read/write (none)



Let’s try to make a Register File

RegWrite
Read Data 1
Write gZata 32 32-bit 32
32 Registers
RR1 Read Data 2
I 32
RRO
b




Which of these describes our memory interface (for now)?

One 32-bit  One 5-bit One 32-bit Clk input Two 1-bit

output input input control inputs
One 32-bit  Two 5-bit Clk input Two 1-bit
output inputs control inputs
@l One 32-bit Two 32-bit Clk input Two 1-bit
output inputs control inputs
One 32-bit One 32-bit Clk input Two 1-bit
output input control inputs

None of these are correct



Let’s describe the signals to interface to Memory

MemWrite +Address

32

Write ggata

32

Clk
T2

Read Datg

32

MemRead



C l. h. h I. I. We're ready to look at a simplified MIPS with only:
an We ayOUt a Ig - eve — memory-reference instructions: 1w, sw
4 H P — arithmetic-logical instructions: add, sub, and, or, slt
dESIgn to do everythlng° — control flow instructions: beqg




Putting it All Together: A Single Cycle Datapath

We have everything except control signals (later)

Add

PCSr

Read
ad address

Instruction
[31 0]

Instruction
memory

Instruction [25 21]

Instruction [20 16]

—

Instruction [15 11] | %
G—— |

L

M

0

RegDst
Instruction [15 0]

oxcZ =~

MemWrite
l

ALU ALU

Add
RegWrite
]

Read
register 1 Read
Read data 1
register 2 ALUSIC

ead
Write data 2 1
register M
Write . ¥
data  Registers 0

16 [ sign |32

Instruction [5 0]

1 extend

ALUOp

Address Read
data

Write Data
data memory
T

MemtoReg

oxXcg =

|
MemRead




Active Single-Cycle Datapath

Ignoring control -

monNnw 2

which instruction
does this active
datapath represent

R-type

lw

SW

Beq

None of the above

address
Instruction
[31 0]

Instruction
memory

Instruction [25 21

RegWrite

]
Read
register 1 Read
Read data 1
register 2

Read

Write data 2
register
Write .
data  Registers

Instruction [5 0]

MemWrite
|

Write  Data
data Mmemory
1

MemtoReg

1
MemRead




Active Single-Cycle Datapath

Ignoring control -

monNnw 2

which instruction
does this active
datapath represent

R-type

lw

SW

Beq

None of the above

address
Instruction
[31 0]

Instruction
memory

Instruction [25 21

nstruction [15 11

RegDst

MemWrite
|

ALUSrc MemtoReg

Read
Address data

(2

RegWrite
]
Read
register 1 Read
Read data 1
register 2
Read
Write data 2
register
Write .
data  Registers
16 sign |32
extend

Instruction [5 0]

Write Data ’
data memory

MemRead

ALUOp



Active Single-Cycle Datapath

Ignoring control -

monNnw 2

which instruction
does this active
datapath represent

R-type

lw

SW

Beq

None of the above

Read
address

Instruction
[31 0]

Instruction
memory

Instruction [25 21

nstruction [15 11]

RegDst

c =

X
o]

RegWrite

|
Read
register 1 Read
Read data 1
register 2

Read

Write data 2
register
Write .
data  Registers

16 32
\_/

Instruction [5 0]

result

MemWrite
|

ALUOp

Address

Write

Read
data

Data

data memory
1

MemtoReg

oxXcg =~

1
MemRead




Active Single-Cycle Datapath

Ignoring control -

monNnw 2

which instruction
does this active
datapath represent

R-type

lw

SW

Beq

None of the above

address
Instruction
[31 0]

Instruction
memory

Instruction [25 21

v

RegWrite

|
Read
register 1 Read
Read data 1
register 2

Read

Write data 2
register
Write .
data  Registers

Instruction [5 0]

ALUOp

MemWrite

Read
Address data
Write Data

MemtoReg

oxXcg =~

1
MemRead




Key Points

 (CPUisjust a collection of state and combinational logic
* We just designed a very rich processor, at least in terms of functionality
« ET=IC*CPI*CycleTime

— where does the single-cycle machine fit in?



“The Control Path”

aka, what controls which wires are green?

Active Single-Cycle Datapath

Ignoring control -
which instruction
does this active
datapath represent

A. R-type

B. w

C. sw

D. Beq

E. None of the above

AL
Add rosu
Regurte
1t etz
instnuction 25 21 Read
regster 1 Vemrte
heeg | datal e |
regisier 2 >
7 Read| Aw ALyl
e ¥ sk ppelacaress R
retucton s 17| %[[(e0 4
O) [Pléata__ Registers J
|write _Data
RegOs| data_memory
MemRead

MemtoReg

Active Single-Cycle Datapath

Ignoring control -
which instruction
does this active
datapath represent

RegWrte
1

Memwrte
1

Active Single-Cycle Datapath

Ignoring control -
which instruction
does this active
datapath represent

A. R-type
B. w
C sw

D. Beq
E. None of the above

RegWite
1

instruction (5 0]

MemWrite
ALUS L
ALUSre P

0 AW ALY Raad)
resunepmAddress %63

i
wrte _Data
- data._memory
MemRead

MemtoReg

MemtoR
A. R-type e
B. lw Ly i
C. sw o
Dat:
D. Beq 5 memory
E. None of the above
MemRead
uznciou 2 o @
Woutesa
OUG O} )6 IPOAE [OaeoTTe o
3 LRI 9 IOy £ =
C M wewouh o) P % o
< g | [ x| | oo A
:. ::" e S s amo s 3 Sven V| e
™ T 25 I P o
oo 4 -
qofabsgp Lebrezeus ey i ]
qo62 fp12 9ChING LI
MpICP 1U26LNCEIOU
|1BUOLIUB cougLof - v
vaa

VCEIAG 21U8B[6-CAce pIssbagp




Control signals are all the parts in red

PCSr

ALUSrc

—— |
Add
4 w—p
RegWrite
1
Instruction [25 21] Read
Read " | register 1 Read
address Instruction [20 16] Read data 1
; register 2
Instruction| | L1 g Read
[31 0] V1 || Write data 2
: u register
Instruction Instruction [15 111 [x [ |\write
memory >0 data  Registers
RegDst
Instruction [15 0] 16 [ sign
| extend

Instruction [5 0]

oxXcg —~

ALU

Add result

Zero
ALU ALU

v

oxXcZ =~

MemWrite
|

result

32

ALUOPp

Address Read
dal

Write  Data
data Mmemory
| |

MemtoReg

oxcZ =

I
MemRead




Where might we get control signals?

e |deas?



Where do we get control signals?

Instruction [31 -26]

RegDst
Branch

xc=Z ©

-

MemRead

MemtoReg

Control

ALUOp

} MemWrite

/ ALUSrc

Instruction [31-26]

RegDst
Branch

\ MemRead

PCSrc

l MemtoReg

/ RegWrite

Instruction
1-70]

-

| memory

16
A

‘e

Instruction [5-0]

_ \32
Sign |\

extend|

F---

Instruction [25 21] =
=3

Control ' ALUOPp

l MemWrite

/ ALUSIc

RegWrite

Read

-
Ipstrdiction [20 -16]

register 1 Read

Read data 1

Instruction [15 -11]

Instruction [15 -0]

register 2
Registers Read

Wiite
register

data 2

Write

data

= - = _
16 / . \32
A Sign

Address

Write
data

Read
data

Data
memory

AN

N “lextend

Instruction [5-0]

\

Oxeczx™




m g Q w >

Instruction [31-26]
— ey

Instruction [25 -21]

MW
\LUSrc

Instruction [20 18]

Add
4
Read
address
Instruction
[31 Q]
Instruction
memory

Instruction [15 -11]

Instruction [15 -0]

Read
register 1 Read
Read data 1
register 2

Registers Read
Wiite data 2
register
Write
data

Add ALY

xeg ©

result

16 /\32
A\ Sign | \

Instruction [5-0]

@ \ -
r ontrol

Read
Address data

Data

memol
Write v

data

Select the true statement for MIPS

Registers can be read in parallel with control signal generation

Instruction Read can be done in parallel with control signal generation

Registers can be written in parallel with control signal generation

The main ALU can execute in parallel with control signal generation

None of the above



Binvert Operation

Carmyin | Binvert Carryln Operation ll' h f ll
i l Recall: The full ALU
a N
0
v A 4
a0 —>»{ Carryln
4 ! b0 —»| ALUO > Result0
» Less
F—> Result
b o\ + 1 CarryOut]
1
v v v
e 3\/ al —>| Carryin
b1 —| ALU1 » Result1
CarryOut 0 —>»| Less and X X O
CarryOut]
or X X 1
v v¥v
a2 —»| Cairryln
Binvert Operation b2 ——>] ALJZ » Result2 add O O 2
Carryln | o Less
CarryOut]
. A Y sub T T 2
.| 1 D Do : beq 1 1 2
| lCarryIn |
F—> Result
- Ow TP A4 v Sl.t 1 1 3
! a31 —{ Carryln f——> Result31
Less s b31 —»{ ALU31 Set
-/ 0 —»| Less » Overflow
Set

g:;lizv,: Overflow sign bit (adder output from bit 31)




Note — book presents a 6-function

ALU co ntrO'. bits ALU and a fourth ALU control

input bit that never gets used
(in simplified MIPS machine).

e Recall: 5-function ALU Don’t let that confuse you.
ALU control input | Function | Operations
000 And and
001 Or or
010 Add add, Iw, sw
110 Subtract | sub, beq
111 Slt slt

* based on opcode (bits 31-26) and function code (bits 5-0) from instruction
 ALU doesn’t need to know all opcodes!
— Can summarize opcode with ALUOp (2 bits): 00 - lw,sw  01-beq 10 - R-format

. s~ INTS
op—/—s! Main 6 FALLcg
6 Control ”;I," »| Control 3




Generating ALU control

Instruction | ALUOp | Instruction | Function | Desired | ALU
opcode operation code ALU control
action input
lw 00 load word | XXXXXX add 010
SW 00 store word | XXXXXX add 010
beq 01 brancheq | XXXXXX subtract | 110
R-type 10 add 100000 | add 010
R-type 10 subtract 100010 subtract | 110
R-type 10 AND 100100 | and 000
R-type 10 OR 100101 or 001
R-type 10 slt 101010  |slt 111

ALU
Control
Logic




Generating individual ALU signals

ALUop | Function ALUCtr
signals
00 XXXX 010
01 XXXX 110
10 0000 010
10 0010 110
10 0100 000
10 0101 001
10 1010 111

Qp—/—»| Main

ALUctr?2

ALUctrl

ALUctr@

Control

Al llowy

v

ALU | AT IIc;A:

Control 3

(!'ALUopl & ALU0pO)

'ALUopl

ALUopl

| (ALUopl &

Funcl)

| (ALUopl & !Func2)

& ( FuncO

Func3)



R-Format Instructions (e.g., Add)

0
M
u
X
ALU
Add result 4
Add
PCSrc
RegDst
4 Branch
\ MemRead
Instruction [31 -26] l MemtoReg
Control l/—\LUOp
] MemWrite
/ ALUSrc
RegWrite
]
Instruction [25 -21] Read
Read i
PC address register 1 Read
Instruction [20 -16] Read data 1
register 2
|nStI’[l§(1)t\06\] g Registers Read
) Wite data 2 Address Read 1
Instruction register data M
memory Instruction [15-11 u
L Instruction [ ] \é\g;e Data y
Write memofy 0
data
Instruction [15 -0] 16 Sign 32 :
A} @ <
Instruction [5-0]
Memto-| Reg Mem Mem
Instruction| RegDst | ALUSrc| Reg Write Read Write | Branch | ALUOp1| ALUpO
R-format 1 0
1w 0 0
sw 0 0
beqg 0 1




PC

1w instruction
control signals?

Add

4
Read
address

Instruction

[31 Q]
Instruction
memory

Instruction [31 -26]

Instruction [25 -21]

RegDst
Branch

ALU
Add result

\ MemRead

xcg ©

N

\ MemtoReg

Control ' ALUOp

/ MemWiite

/ ALUSrc

RegWrite

Read

Instruction [20 -16]

register 1 Read

Read data 1

Instruction [15 <11]

T ALusre | Regst | MemtoRes
A 0 0

C 0
D 1
E None of the above

0

B 1 X
1
1

0
1
1

Instruction [15 -0]

register 2
Registers Read

Write data 2

Write
data

result

register
16 msz
\ Sign |\

\@\

Instruction [5-0]

Read

Address data

Data

memo
Write v

data

Oxcz ™




lw Control

0
M
u
X
ALU
Add result 4
Add
PCSrc
RegDst
4 Branch
\ MemRead
Instruction [31 -26] l MemtoReg
Control lALUC‘p
] MemWrite
/ ALUSrc
RegWrite
]
Read Instruction [25 -21] Read
ca i
PC address register 1 Read
Instruction [20 -16] Read data 1
register 2
Instr[l;(;t\og] _ Registers Read
) Wite data 2 Address Read 1
Instruction register data M
memory | Instruction [15 -11] \é\;?;e Data )l(l
Wirite memory 0
data
Instruction [15 -0] 16 Sign 32 !
A} @ <
Instruction [5-0]
Memto-| Reg Mem Mem
Instruction| RegDst | ALUSrc| Reg Write Read Write | Branch | ALUOp1| ALUpO
R-format 1 0 0 1 0 0 0 1 0
1w 0 0
sw 0 0
beqg 0 1




PC

SW instruction
control signals?

Add

4
Read
address

Instruction

[31 Q]
Instruction
memory

Instruction [31 -26]

Instruction [25 -21]

RegDst
Branch

ALU
Add result

\ MemRead

xcg ©

N

\ MemtoReg

Control ' ALUOp

/ MemWiite

/ ALUSrc

RegWrite

Read

Instruction [20 -16]

register 1 Read

Read data 1

™ ALUSre | Regbst | MemtoRes
A 0 0

B X
C 0
D X

E None of the above

- O = O

0
X
1

Instruction [15 <11]

Instruction [15 -0]

register 2
Registers Read

Write data 2

Write
data

result

register
16 m 32
\ Sign |\

\@\

Instruction [5-0]

Read
Address data

Data

memo
Write v

data

Ox:g-—\




sw Control

0
M
u
X
ALU
Add result 4
Add
PCSrc
RegDst
4 Branch
\ MemRead
Instruction [31 -26] l MemtoReg
Control lALUC‘p
] MemWrite
/ ALUSrc
RegWrite
]
Instruction [25 -21] Read
Read i
pC| adec?ress register 1 Read
Instruction [20 -16] Read data 1
register 2
Instr[l;(;t\og] g Registers Read
) Wite data 2 Address Read 1
Instruction register data M
memory | Instruction [15 -11] \é\;?;e Data )l(l
Wirite memory 0
/\ data
. 16 32
Instruction [15 -0] Sign !
A} @ <
Instruction [5-0]
Memto-| Reg Mem Mem
Instruction| RegDst | ALUSrc| Reg Write Read Write | Branch | ALUOp1| ALUpO
R-format 1 0 0 1 0 0 0 1 0
1w 0 1 1 1 1 0 0 0 0
sw 0 0
beqg 0 1




beq Control

RegDst
Branch

ALU
Add result

\ MemRead

xcg ©

PCSrc

Instruction [31 -26] l MemtoReg

Control ' ALUOp

] MemWrite

| ALUSrc

RegWrite

Instruction [25 -21] Read
register 1

Instruction [20 -16] Read
register 2

Add
4
Read
PC address
Instruction
[31 Q]
Instruction
memory

Write
register

Instruction [15 -11]

Write
data

Registers Read

Read

data 1

data 2

Instruction [15 -0] 16 @ 32

Address

Data

memo
Wite v

Instruction [5-0]

\@\

data

Read
data

Oxeczg™

Memto-| Reg Mem Mem
Instruction| RegDst | ALUSrc| Reg Write Read Write | Branch | ALUOp1| ALUpO
R-format 1 0 0 1 0 0 0 1 0
1w 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beqg 0 1




Control Truth Table

ALUOp

ALU control block

|ALUOpo
ALUOp1

R-format | Iw SW beq
Opcode 000000 100011 | 101011 | 000100
RegDst 1 0 X X
ALUSrc 0 1 1 0
MemtoReg 0 1 X X
RegWrite 1 1 0 0
Outputs | MemRead 0 1 0 0
MemWrite 0 0 1 0
Branch 0 0 0 1
ALUOpl 1 0 0 0
ALUOpO 0 0 0 1

3 Operation2 X
» Operation
F2 - Operation1
F (5-0) 1 f
T [F1
Operation0
FO
Inputs
Op5
Op4
Op3
Op2
Op1
Op0 II I
[o] oool uul ooot%
[ ] kj KJ [ j Outputs
R-format Iw sw beq RegDst
) ALUSrc
MemtoReg
) RegWrite
MemRead
MemWrite
Branch
ALUOp1

ALUOpO



Which wire - if always ZERO — would break add?

Add
4
Read
address
Instruction
[31 Q]
Instruction
memory

RegDst
Branch

ALU
Add result

\ MemRead

xcg ©

PCSrc

Instruction [31 -26] [ MemtoReg

Control ' ALUOp

/ MemWite

/ ALUSrc

RegWirite

Instruction [25 -21] Read

register 1 Read
Instruction [20 18] Read data 1
register 2

Registers Read

Write data 2
register

Instruction [15 -11] Write

data

Instruction [15 -0]

L
(o]

Sign

32
AN

N Tlextend

Instruction [5-0]

\

Address

Write
data

Read
data

Data
memory

Oxcz~




Which wire — if always ONE — would break Iw?

Instruction [31-26]

RegDst
Branch

ALU
Add result

MemRead

xcg ©

o

PCSrc

MemtoReg

Add
4
Read
address
Instruction
[31 0]
Instruction
memory

Instruction [25 21]

Control

ALUOp

MemWiite

/ ALUSIc

RegWrite

Read

Instruction [20 -16]

register 1 Read
Read data 1

Instruction [15 <11]

register 2

Registers Read
Write data 2
register

Write
data

Instruction [15 -0]

L
o

Sign

32
AN

N “lextend

Instruction [5-0]

\

Address

Write
data

Read
data

Data
memory

Oxczx—




Single-Cycle CPU Summary

e Easy, particularly the control

* Which instruction takes the longest? By how much? Why is that a
problem?

e ET=IC *CPI *CT
e \What else can we do?

* When does a multi-cycle implementation make sense?
— e.g., /0% of instructions take 75 ns, 30% take 200 ns?
— suppose 20% overhead for extra latches
* Real machines have much more variable instruction latencies than this.



Let’s think about this multicycle processor...

» (avery brief introduction...)



Why a Multiple Clock Cycle CPU?

A
—

* the problem => single-cycle cpu has a cycle time long enough to
complete the longest instruction in the machine

* the solution => break up instruction execution into smaller tasks, each
task taking one cycle

— different instructions require different numbers of tasks (of cycles)
« other advantages => reuse of functional units (e.g., alu, memory)



High-level View

Add

PCSr

4 w—p

b Read

address

Instruction

Instruction
memory

=1

ALUSrc
1

>Add AL
result

Registers
Read
register 1 Read
Read data 1
> register 2
| Write Read
register  data 2
Write
| data
RegWrite]
1\6 Sign

1 extend

xcZ

3 ALU operation

xXc

MemWrite

Address  Read

v

data

Data

Write memory

32

\ 4

data

MemtoReg

|

MemRead




So Then,

 How many cycles does it take to execute
— Add
— BNE
— LW
— SW

 What about control logic?

e ET=IC*CPI*CT



Summary of instruction execution steps

n n”

"Step" —— "taSk" ——

Step R-type | Memory | Branch
Instruction Fetch IR = Mem[PC]
PC=PC+4
Instruction Decode/ A =Reg[IR[25-21]]
register fetch B =Reg[IR[20-16]]
ALUout = PC + (sign-extend(IR[15-0]) << 2)
Execution, address ALUout=AopB ALUout=A + |if (A==B) then
computation, branch sign- PC=ALUout
completion extend(IR[15-0])
Memory access or R- Reg[IR[15-11]] = memory-data =
type completion ALUout Mem[ALUout]
or
Mem[ALUout]=
B
Write-back Reg[IR[20-16]] =
memory-data

What is the fastest, slowest class of instruction in this MC machine?



Multicycle Questions

How many cycles will it take to execute this code?

lw $t2,
lw $t3,
beq $t2,
add $t5,
sw $t5,
Label:

0($t3)
4(%$t3)
$t3, Label
$t2, $t3
8($t3)

#assume not taken

How many cycles to execute these 5 instructions?

A 5
B 25
C 22
D 21
E

None of the above




Multicycle Implications

* What s the CPI of this program?
lw  $t2, 0($t3)
w $t3, 4($t3)

#assume not taken
beg $t2, $t3, Label

add $t5, $t2, $t3 * What about a program that is
] bSIW $t5, 8(%t3) 20% loads, 10% stores,
abeL: ...

50% R-type, and 20% branches?




Single-Cycle, Multicycle CPU Summary

* Single-cycle CPU

— (CPI =1, CT = LONG, simple design, simple control

— No one has built a single-cycle machine in many decades
e Multi-cycle CPU

— CPI>1, CT = fairly short, complex control

— Common up until maybe early 1990s, and dominant for many decades before
that.



