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CSE 141: Introduction to Computer Architecture

The Single Cycle Machine
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Zooming out for a moment…

The major building blocks of a computer

Processor

Memory

Control

Datapath

Input/Output

“A Computer”
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The Big Picture: The Performance Perspective

• Processor design (datapath and control) will determine:

– Clock cycle time

– Clock cycles per instruction

• Starting today:

– Single cycle processor:

• Advantage: One clock cycle per instruction

• Disadvantage: long cycle time

• ET = Insts * CPI * Cycle Time

Execute an

entire instruction
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Review: Synchronous and Asynchronous logic

• All storage elements are clocked by the same clock edge

Clk

Don’t Care

Setup Hold

.

.

.

.

.

.
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.

.

.

.

.

Setup Hold
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The Processor:  Datapath & Control

• We're ready to look at a simplified MIPS with only:

– memory-reference instructions:  lw, sw

– arithmetic-logical instructions:  add, sub, and, or, slt

– control flow instructions:  beq

• Generic Implementation:

– use the program counter (PC) to supply instruction address

– get the instruction from memory

– read registers

– use the instruction to decide exactly what to do
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Recall…

Computing is much more than just 

executing instructions!

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction
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…but to start, let’s look at 

how we execute an instruction

32

32

32

operation

result

a

b

ALU

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction
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Recall: 2’s complement

• Need a number system that provides

– obvious representation of 0,1,2...

– uses an adder for both unsigned and 
signed addition

– single value of 0

– equal coverage of positive and 

negative numbers

– easy detection of sign

– easy negation

binary unsigned signed

0001

14

-8
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“Arithmetic Logic Units” are the computing part of 

computers — how do they work?

A
L
U

N

N

N

A

B

Result

Overflow

Zero

3
ALUop

CarryOut

ALU Control Lines 
(ALUop)

Function

000 And

001 Or

010 Add

110 Subtract

111 Set-on-less-than
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Start small: A one-bit ALU

• This 1-bit ALU will perform AND, OR, and ADD

0
      1

           2
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Recall: Binary addition works just like “normal” 

(base 10), but you end up “carrying” more often

• A 4-bit ALU can be made from four 1-bit ALUs

1 1 0 0

1 1 1 0+

1 0 1 0

1

- 4

- 2

- 6

1 0 0
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And if you keep going… 32 bit math!
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Selection Choices

A 1 alone

B Both 1 and 2

C Both 3 and 4

D Both 2 and 5

E None of the above

Poll Q: We’d like to implement a means of doing A-B (subtract) 

but with only minor changes to our hardware.  How?

1. Provide an option to use bitwise NOT A

2. Provide an option to use bitwise NOT B

3. Provide an option to use bitwise A XOR B

4. Provide an option to use 0 instead of the first CarryIn

5. Provide an option to use 1 instead of the first CarryIn

Hint: A-B is the same as A + (-B)
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The full ALU

sign bit (adder output from bit 31)

Binvert CarryIn Oper-

ation

and

or

add

sub

beq

slt
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The Disadvantage of Ripple Carry

• The adder we just 
built is called a 

“Ripple Carry Adder”

– The carry bit may 

have to propagate 

from LSB to MSB

– Worst case delay for 

an N-bit RC adder: 

2N-gate delay

A0

B0

1-bit

ALU
Result0

CarryOut0

A1

B1

1-bit

ALU
Result1

CarryIn1

CarryOut1

A2

B2

1-bit

ALU
Result2

CarryIn2

A3

B3

1-bit

ALU
Result3

CarryIn3

CarryOut3

CarryOut2

CarryIn0

CarryIn

CarryOut

A

B

The point: ripple carry adders are slow. Faster addition schemes are possible that accelerate the 

movement of the carry from one end to the other. Optimizing this is digital logic (CSE 140).
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Why doesn’t our (simplified) single-cycle machine support 

multiplication or division?

• How does a computer multiply?

– How do you multiply?

123

x 321

The point: Multiplication (and division) is a lot of work to try to do in a single cycle
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Poll Q: Which of these real-world processors supports 

single-cycle multiply?

A) “Biggest, best” Intel [core i7]

– ~$500

B) “Smallest” ARM [Cortex M0]

– ~$0.50

48 Mhz
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Modern Concerns about Execute

(aka, why is no one angry that an i7 can’t do single-cycle multiply?)

• Hardware designers have done an excellent job optimizing multiply/FP 

hardware, but additions are still faster, than, say multiply. Divides are 

even slower and have other problems.

• More complex topics in later lectures will show how multiply/FP/divide 

may not be on the “critical path” and hence may not hurt performance 

as much as expected.

• More recent years have taught us that even “slow” multiply is not nearly 

as important as cache/memory issues we’ll discuss in later lessons.
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Now we know how to execute 

instructions…

32

32

32

operation

result

a

b

ALU

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction
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…so let’s look at the rest of the 

machine!

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction
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Our previous view of a computer had no organization

• From Part I…
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Think about how a MIPS machine executes instructions…

Which correctly describes the order things must happen in?

A. The ALU always performs an operation before 

accessing data memory

B. The ALU sometimes performs an operation 

before accessing data memory

C. Data memory is always accessed before 

performing an ALU operation

D. Data memory is sometimes accessed before 

performing an ALU operation

E. None of the above.

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction
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So what does this tell us about what the machine might 

look like?
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Storage Element: Register

• Review: D Flip Flop

• New: Register

– Similar to the D Flip Flop except

• N-bit input and output

• Write Enable input

– Write Enable:

• 0: Data Out will not change

• 1: Data Out will become Data In (on the clock edge)

Clk

Data In

Write Enable

N N

Data Out
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A register file is a structure that holds many registers.

What kinds of signals will we need for our MIPS register file?

Number of bits for 

register output

Number of bits for 

register selection

Control Inputs? Control 

Outputs?

A 5 32 clk read/write

B 5 5 clk, read/write clk

C 32 5 clk, read/write (none)

D 32 32 clk, read/write clk, 

read/write

E 32 5 read/write (none)
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Let’s try to make a Register File

Clk

Write Data

RegWrite

32

32

Read Data 1

32

Read Data 2

32 32-bit

Registers

5

5

5

RR1

RR2

WR
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Which of these describes our memory interface (for now)?

A One 32-bit 

output

One 5-bit 

input

One 32-bit 

input

Clk input Two 1-bit 

control inputs

B One 32-bit 

output

Two 5-bit 

inputs

Clk input Two 1-bit 

control inputs 

C One 32-bit 

output

Two 32-bit 

inputs

Clk input Two 1-bit 

control inputs

D One 32-bit 

output

One 32-bit 

input

Clk input Two 1-bit 

control inputs

E None of these are correct
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Let’s describe the signals to interface to Memory

Clk

Write Data 

MemWrite

32 32

Read Data

Address

MemRead

32
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Can we layout a high-level 

design to do everything?
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Putting it All Together: A Single Cycle Datapath

• We have everything except control signals (later)
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Ignoring control –

which instruction 
does this active 
datapath represent

A. R-type

B. lw
C. sw
D. Beq

E. None of the above

Active Single-Cycle Datapath
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Active Single-Cycle Datapath

Ignoring control –

which instruction 
does this active 
datapath represent

A. R-type

B. lw
C. sw
D. Beq

E. None of the above
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Active Single-Cycle Datapath

Ignoring control –

which instruction 
does this active 
datapath represent

A. R-type

B. lw
C. sw
D. Beq

E. None of the above
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Active Single-Cycle Datapath

Ignoring control –

which instruction 
does this active 
datapath represent

A. R-type

B. lw
C. sw
D. Beq

E. None of the above
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Key Points

• CPU is just a collection of state and combinational logic

• We just designed a very rich processor, at least in terms of functionality

• ET = IC * CPI * Cycle Time

– where does the single-cycle machine fit in?
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“The Control Path”

aka, what controls which wires are green?
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Control signals are all the parts in red
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Where might we get control signals?

• Ideas?
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Where do we get control signals?
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Select the true statement for MIPS

A Registers can be read in parallel with control signal generation

B Instruction Read can be done in parallel with control signal generation

C Registers can be written in parallel with control signal generation

D The main ALU can execute in parallel with control signal generation

E None of the above
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Recall: The full ALU

sign bit (adder output from bit 31)

Binvert CarryIn Oper-

ation

and x x 0

or x x 1

add 0 0 2

sub 1 1 2

beq 1 1 2

slt 1 1 3
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ALU control bits

• Recall:  5-function ALU

• based on opcode (bits 31-26) and function code (bits 5-0) from instruction

• ALU doesn’t need to know all opcodes!

– Can summarize opcode with ALUOp (2 bits): 00 - lw,sw 01 - beq 10 - R-format

ALU control input Function Operations 
000 And and 

001 Or or 

010 Add add, lw, sw 

110 Subtract sub, beq 

111 Slt slt 
 

 

Main

Control

op
6

ALU

Control

func

2

6
ALUop

ALUctr
3

Note – book presents a 6-function 
ALU and a fourth ALU control 

input bit that never gets used

(in simplified MIPS machine).

Don’t let that confuse you.
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Generating ALU control

Instruction
opcode

ALUOp Instruction
operation

Function
code

Desired
ALU
action

ALU
control
input

lw 00 load word xxxxxx add 010

sw 00 store word xxxxxx add 010

beq 01 branch eq xxxxxx subtract 110

R-type 10 add 100000 add 010

R-type 10 subtract 100010 subtract 110

R-type 10 AND 100100 and 000

R-type 10 OR 100101 or 001

R-type 10 slt 101010 slt 111

ALU

Control
Logic



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 55

Generating individual ALU signals

ALUop Function ALUCtr 

signals 

00 xxxx 010 

01 xxxx 110 

10 0000 010 

10 0010 110 

10 0100 000 

10 0101 001 

10 1010 111 
 

 

ALUctr2 = (!ALUop1 & ALUop0) | (ALUop1 & Func1)

ALUctr1 = !ALUop1 | (ALUop1 & !Func2) 

ALUctr0 =       ALUop1       & ( Func0 |  Func3)

Main

Control

op
6

ALU

Control

func

2

6
ALUop

ALUctr
3
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R-Format Instructions (e.g., Add)

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0

lw 0 0

sw 0 0

beq 0 1
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ALUSrc RegDst MemtoReg

A 0 0 0

B 1 X 0

C 1 0 1

D 1 1 1

E None of the above

lw instruction 

control signals?
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lw Control

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 0

sw 0 0

beq 0 1
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ALUSrc RegDst MemtoReg

A 0 0 0

B 1 X 0

C 0 0 X

D 1 X 1

E None of the above

sw instruction 

control signals?



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 60

sw Control

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw 0 0

beq 0 1
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beq Control

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq 0 1
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Control Truth Table

R-format lw sw beq

Opcode 000000 100011 101011 000100

RegDst 1 0 x x

ALUSrc 0 1 1 0

MemtoReg 0 1 x x

RegWrite 1 1 0 0

Outputs MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

R-format Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO
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Which wire – if always ZERO – would break add?

C
B A

D
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Which wire – if always ONE – would break lw?

C
B A

D



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 65

Single-Cycle CPU Summary

• Easy, particularly the control

• Which instruction takes the longest?  By how much?  Why is that a 

problem?

• ET = IC  *  CPI  *  CT

• What else can we do?

• When does a multi-cycle implementation make sense?

– e.g., 70% of instructions take 75 ns, 30% take 200 ns?

– suppose 20% overhead for extra latches

• Real machines have much more variable instruction latencies than this.
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Let’s think about this multicycle processor…

• (a very brief introduction…)
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Why a Multiple Clock Cycle CPU?

• the problem => single-cycle cpu has a cycle time long enough to 
complete the longest instruction in the machine

• the solution => break up instruction execution into smaller tasks, each 
task taking one cycle

– different instructions require different numbers of tasks (of cycles)

• other advantages => reuse of functional units (e.g., alu, memory)
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High-level View
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So Then,

• How many cycles does it take to execute

– Add

– BNE

– LW

– SW

• What about control logic?

• ET =  IC * CPI * CT
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Summary of instruction execution steps
“step” == “task” == “__________”

Step R-type Memory Branch 

Instruction Fetch IR = Mem[PC] 

PC = PC + 4 

Instruction Decode/ 

register fetch 

A = Reg[IR[25-21]] 

B = Reg[IR[20-16]] 

ALUout = PC + (sign-extend(IR[15-0]) << 2) 

Execution, address 

computation, branch 

completion 

ALUout = A op B ALUout = A + 

sign-

extend(IR[15-0]) 

if (A==B) then  

   PC=ALUout 

Memory access or R-

type completion 

Reg[IR[15-11]] = 

ALUout 

memory-data = 

Mem[ALUout] 

or 

Mem[ALUout]=

B 

 

Write-back  Reg[IR[20-16]] = 

memory-data 

 

 
 What is the fastest, slowest class of instruction in this MC machine?
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Multicycle Questions

• How many cycles will it take to execute this code? 

lw $t2, 0($t3)

lw $t3, 4($t3)

beq $t2, $t3, Label  #assume not taken
add $t5, $t2, $t3

sw $t5, 8($t3)
Label: ...

How many cycles to execute these 5 instructions?

A 5

B 25

C 22

D 21

E None of the above
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Multicycle Implications

lw $t2, 0($t3)

lw $t3, 4($t3)

#assume not taken

beq $t2, $t3, Label
add $t5, $t2, $t3

sw $t5, 8($t3)
Label: ...

• What is the CPI of this program?

• What about a program that is 

20% loads, 10% stores, 

50% R-type, and 20% branches?
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Single-Cycle, Multicycle CPU Summary

• Single-cycle CPU

– CPI = 1, CT = LONG, simple design, simple control

– No one has built a single-cycle machine in many decades

• Multi-cycle CPU

– CPI > 1, CT = fairly short, complex control

– Common up until maybe early 1990s, and dominant for many decades before 

that.


