
CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 1

“The Control Path”

aka, what controls which wires are green?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 2

Control signals are all the parts in red

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 3

Where might we get control signals?

• Ideas?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 4

Where do we get control signals?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 5

Select the true statement for MIPS

A Registers can be read in parallel with control signal generation

B Instruction Read can be done in parallel with control signal generation

C Registers can be written in parallel with control signal generation

D The main ALU can execute in parallel with control signal generation

E None of the above

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 6

Recall: The full ALU

sign bit (adder output from bit 31)

Binvert CarryIn Oper-

ation

and 0 x 0

or 0 x 1

add 0 0 2

sub 1 1 2

beq 1 1 2

slt 1 1 3

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 7

ALU control bits

• Recall: 5-function ALU

• based on opcode (bits 31-26) and function code (bits 5-0) from instruction

• ALU doesn’t need to know all opcodes!

– Can summarize opcode with ALUOp (2 bits): 00 - lw,sw 01 - beq 10 - R-format

ALU control input Function Operations
000 And and

001 Or or

010 Add add, lw, sw

110 Subtract sub, beq

111 Slt slt

Main

Control

op
6

ALU

Control

func

2

6
ALUop

ALUctr
3

Note – book presents a 6-function
ALU and a fourth ALU control

input bit that never gets used

(in simplified MIPS machine).

Don’t let that confuse you.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 8

Generating ALU control

Instruction
opcode

ALUOp Instruction
operation

Function
code

Desired
ALU
action

ALU
control
input

lw 00 load word xxxxxx add 010

sw 00 store word xxxxxx add 010

beq 01 branch eq xxxxxx subtract 110

R-type 10 add 100000 add 010

R-type 10 subtract 100010 subtract 110

R-type 10 AND 100100 and 000

R-type 10 OR 100101 or 001

R-type 10 slt 101010 slt 111

ALU

Control
Logic

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 9

Generating individual ALU signals

ALUop Function ALUCtr

signals

00 xxxx 010

01 xxxx 110

10 0000 010

10 0010 110

10 0100 000

10 0101 001

10 1010 111

ALUctr2 = (!ALUop1 & ALUop0) | (ALUop1 & Func1)

ALUctr1 = !ALUop1 | (ALUop1 & !Func2)

ALUctr0 = ALUop1 & (Func0 | Func3)

Main

Control

op
6

ALU

Control

func

2

6
ALUop

ALUctr
3

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 10

R-Format Instructions (e.g., add $d, $s0, $s1)

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0

lw 0 0

sw 0 0

beq 0 1

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 11

ALUSrc RegDst MemtoReg

A 0 0 0

B 1 X 0

C 1 0 1

D 1 1 1

E None of the above

lw instruction

control signals?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 12

lw Control

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 0

sw 0 0

beq 0 1

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 13

ALUSrc RegDst MemtoReg

A 0 0 0

B 1 X 0

C 0 0 X

D 1 X 1

E None of the above

sw instruction

control signals?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 14

sw Control

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw 0 0

beq 0 1

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 15

beq Control

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq 0 1

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 16

Control Truth Table

R-format lw sw beq

Opcode 000000 100011 101011 000100

RegDst 1 0 x x

ALUSrc 0 1 1 0

MemtoReg 0 1 x x

RegWrite 1 1 0 0

Outputs MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

R-format Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 17

Which wire – if always ZERO – would break add?

C
B A

D

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 18

Which wire – if always ONE – would break lw?

C
B A

D

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 19

Single-Cycle CPU Summary

• Easy, particularly the control

• Which instruction takes the longest?

– By how much? Why is that a problem?

• ET = IC * CPI * CT

• What else can we do?

• When does a multi-cycle implementation make sense?

– e.g., 70% of instructions take 75 ns, 30% take 200 ns?

– suppose 20% overhead for extra latches

• Real machines have much more variable instruction latencies than this.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 20

Let’s think about this multicycle processor…

• (a very brief introduction…)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 21

Why a Multiple Clock Cycle CPU?

• the problem => single-cycle cpu has a cycle time long enough to
complete the longest instruction in the machine

• the solution => break up instruction execution into smaller tasks, each
task taking one cycle

– different instructions require different numbers of tasks (of cycles)

• other advantages => reuse of functional units (e.g., alu, memory)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 22

High-level View

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 23

So Then,

• How many cycles does it take to execute

– Add

– BNE

– LW

– SW

• What about control logic?

• ET = IC * CPI * CT

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 24

Summary of instruction execution steps
“step” == “task” == “__________”

Step R-type Memory Branch

Instruction Fetch IR = Mem[PC]

PC = PC + 4

Instruction Decode/

register fetch

A = Reg[IR[25-21]]

B = Reg[IR[20-16]]

ALUout = PC + (sign-extend(IR[15-0]) << 2)

Execution, address

computation, branch

completion

ALUout = A op B ALUout = A +

sign-

extend(IR[15-0])

if (A==B) then

 PC=ALUout

Memory access or R-

type completion

Reg[IR[15-11]] =

ALUout

memory-data =

Mem[ALUout]

or

Mem[ALUout]=

B

Write-back Reg[IR[20-16]] =

memory-data

 What is the fastest, slowest class of instruction in this MC machine?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 25

Multicycle Questions

• How many cycles will it take to execute this code?

lw $t2, 0($t3)

lw $t3, 4($t3)

beq $t2, $t3, Label #assume not taken
add $t5, $t2, $t3

sw $t5, 8($t3)
Label: ...

How many cycles to execute these 5 instructions?

A 5

B 25

C 22

D 21

E None of the above

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 28

Multicycle Implications

lw $t2, 0($t3)

lw $t3, 4($t3)

#assume not taken

beq $t2, $t3, Label
add $t5, $t2, $t3

sw $t5, 8($t3)
Label: ...

• What is the CPI of this program?

• What about a program that is

20% loads, 10% stores,

50% R-type, and 20% branches?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 29

Single-Cycle, Multicycle CPU Summary

• Single-cycle CPU

– CPI = 1, CT = LONG, simple design, simple control

– No one has built a single-cycle machine in many decades

• Multi-cycle CPU

– CPI > 1, CT = fairly short, complex control

– Common up until maybe early 1990s, and dominant for many decades before

that.

