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“The Control Path”

aka, what controls which wires are green?
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Control signals are all the parts in red
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Where might we get control signals?

• Ideas?
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Where do we get control signals?
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Select the true statement for MIPS

A Registers can be read in parallel with control signal generation

B Instruction Read can be done in parallel with control signal generation

C Registers can be written in parallel with control signal generation

D The main ALU can execute in parallel with control signal generation

E None of the above
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Recall: The full ALU

sign bit (adder output from bit 31)

Binvert CarryIn Oper-

ation

and 0 x 0

or 0 x 1

add 0 0 2

sub 1 1 2

beq 1 1 2

slt 1 1 3
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ALU control bits

• Recall:  5-function ALU

• based on opcode (bits 31-26) and function code (bits 5-0) from instruction

• ALU doesn’t need to know all opcodes!

– Can summarize opcode with ALUOp (2 bits): 00 - lw,sw 01 - beq 10 - R-format

ALU control input Function Operations 
000 And and 

001 Or or 

010 Add add, lw, sw 

110 Subtract sub, beq 

111 Slt slt 
 

 

Main

Control

op
6

ALU

Control

func

2

6
ALUop

ALUctr
3

Note – book presents a 6-function 
ALU and a fourth ALU control 

input bit that never gets used

(in simplified MIPS machine).

Don’t let that confuse you.
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Generating ALU control

Instruction
opcode

ALUOp Instruction
operation

Function
code

Desired
ALU
action

ALU
control
input

lw 00 load word xxxxxx add 010

sw 00 store word xxxxxx add 010

beq 01 branch eq xxxxxx subtract 110

R-type 10 add 100000 add 010

R-type 10 subtract 100010 subtract 110

R-type 10 AND 100100 and 000

R-type 10 OR 100101 or 001

R-type 10 slt 101010 slt 111

ALU

Control
Logic
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Generating individual ALU signals

ALUop Function ALUCtr 

signals 

00 xxxx 010 

01 xxxx 110 

10 0000 010 

10 0010 110 

10 0100 000 

10 0101 001 

10 1010 111 
 

 

ALUctr2 = (!ALUop1 & ALUop0) | (ALUop1 &  Func1)

ALUctr1 =      !ALUop1       | (ALUop1 & !Func2) 

ALUctr0 =       ALUop1       & ( Func0 |  Func3)

Main

Control

op
6

ALU

Control

func

2

6
ALUop

ALUctr
3



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 10

R-Format Instructions (e.g., add $d, $s0, $s1)

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0

lw 0 0

sw 0 0

beq 0 1
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ALUSrc RegDst MemtoReg

A 0 0 0

B 1 X 0

C 1 0 1

D 1 1 1

E None of the above

lw instruction 

control signals?
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lw Control

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 0

sw 0 0

beq 0 1
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ALUSrc RegDst MemtoReg

A 0 0 0

B 1 X 0

C 0 0 X

D 1 X 1

E None of the above

sw instruction 

control signals?
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sw Control

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw 0 0

beq 0 1
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beq Control

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq 0 1
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Control Truth Table

R-format lw sw beq

Opcode 000000 100011 101011 000100

RegDst 1 0 x x

ALUSrc 0 1 1 0

MemtoReg 0 1 x x

RegWrite 1 1 0 0

Outputs MemRead 0 1 0 0

MemWrite 0 0 1 0

Branch 0 0 0 1

ALUOp1 1 0 0 0

ALUOp0 0 0 0 1

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

R-format Iw sw beq

Op0

Op1

Op2

Op3

Op4

Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO
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Which wire – if always ZERO – would break add?

C
B A

D
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Which wire – if always ONE – would break lw?

C
B A

D
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Single-Cycle CPU Summary

• Easy, particularly the control

• Which instruction takes the longest?

– By how much?  Why is that a problem?

• ET = IC  *  CPI  *  CT

• What else can we do?

• When does a multi-cycle implementation make sense?

– e.g., 70% of instructions take 75 ns, 30% take 200 ns?

– suppose 20% overhead for extra latches

• Real machines have much more variable instruction latencies than this.
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Let’s think about this multicycle processor…

• (a very brief introduction…)
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Why a Multiple Clock Cycle CPU?

• the problem => single-cycle cpu has a cycle time long enough to 
complete the longest instruction in the machine

• the solution => break up instruction execution into smaller tasks, each 
task taking one cycle

– different instructions require different numbers of tasks (of cycles)

• other advantages => reuse of functional units (e.g., alu, memory)
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High-level View



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen 23

So Then,

• How many cycles does it take to execute

– Add

– BNE

– LW

– SW

• What about control logic?

• ET =  IC * CPI * CT
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Summary of instruction execution steps
“step” == “task” == “__________”

Step R-type Memory Branch 

Instruction Fetch IR = Mem[PC] 

PC = PC + 4 

Instruction Decode/ 

register fetch 

A = Reg[IR[25-21]] 

B = Reg[IR[20-16]] 

ALUout = PC + (sign-extend(IR[15-0]) << 2) 

Execution, address 

computation, branch 

completion 

ALUout = A op B ALUout = A + 

sign-

extend(IR[15-0]) 

if (A==B) then  

   PC=ALUout 

Memory access or R-

type completion 

Reg[IR[15-11]] = 

ALUout 

memory-data = 

Mem[ALUout] 

or 

Mem[ALUout]=

B 

 

Write-back  Reg[IR[20-16]] = 

memory-data 

 

 
 What is the fastest, slowest class of instruction in this MC machine?
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Multicycle Questions

• How many cycles will it take to execute this code? 

lw $t2, 0($t3)

lw $t3, 4($t3)

beq $t2, $t3, Label  #assume not taken
add $t5, $t2, $t3

sw $t5, 8($t3)
Label: ...

How many cycles to execute these 5 instructions?

A 5

B 25

C 22

D 21

E None of the above
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Multicycle Implications

lw $t2, 0($t3)

lw $t3, 4($t3)

#assume not taken

beq $t2, $t3, Label
add $t5, $t2, $t3

sw $t5, 8($t3)
Label: ...

• What is the CPI of this program?

• What about a program that is 

20% loads, 10% stores, 

50% R-type, and 20% branches?
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Single-Cycle, Multicycle CPU Summary

• Single-cycle CPU

– CPI = 1, CT = LONG, simple design, simple control

– No one has built a single-cycle machine in many decades

• Multi-cycle CPU

– CPI > 1, CT = fairly short, complex control

– Common up until maybe early 1990s, and dominant for many decades before 

that.


