"The Control Path"

aka, what controls which wires are green?

Control signals are all the parts in red

Where might we get control signals?

• Ideas?

Where do we get control signals?

	Select the true statement for Wiff S
A	Registers can be read in parallel with control signal generation
В	Instruction Read can be done in parallel with control signal generation
C	Registers can be written in parallel with control signal generation,
D	The main ALU can execute in parallel with control signal generation
Е	None of the above

Binvert Operation CarryIn Result CarryOut

Recall: The full ALU

	B _{invert}	Carry _{In}	Oper- ation
and	0	X	0
or	0	X	1
add	0	0	2
sub	1	1	2
beq	1	1	2
slt	1	1	3
	1		0-3

Sloits

Awal

ALU control bits

Note – book presents a 6-function ALU and a fourth ALU control input bit that never gets used (in simplified MIPS machine).

Recall: 5-function ALU

Don't let that confuse you.

ALU control input	Function	Operations
000	And	and
001	Or	or
010	Add	add, lw, sw
110	Subtract	sub, beq
111	Slt	slt

- based on opcode (bits 31-26) and function code (bits 5-0) from instruction
- ALU doesn't need to know all opcodes!
 - Can summarize opcode with ALUOp (2 bits): 00 lw,sw

01 - beq 10 - R-format

Generating ALU control

	Instruction opcode	ALUOp	Instruction operation	Function code	Desired ALU	ALU control
					action	input
	lw	00	load word	XXXXX	add	010
	SW	00	store word	xxxxxx	add	010
_	beq	01	branch eq	xxxxx/	subtract	110
	R-type	10	add	100000	add	010
	R-type	10	subtract	100010	subtract	110
	R-type	10	AND	100100	and	000
	R-type	10	OR	100101	or	001
	R-type	10	slt	101010	slt	111

Generating individual ALU signals

ALUop	Function	ALUCtr
		signals
00	XXXX	010
01	XXXX	110
10	0000	010
10	0010	110
10	0100	000
10	0101	001
10	1010	111

R-Format Instructions (e.g., add \$d, \$s0, \$s1) -- we take the second state of the seco

Instruction	RegDst	ALUSrc	Memto- Reg	Reg Write	Mem Read	Mem Write	Branch	ALUOp1	ALUp0
R-format	1	0	0		0			1	0
lw				•				0	0
SW								0	0
beq								0	1

lw Control

			Memto-	Reg	Mem	Mem			
Instruction	RegDst	ALUSrc	Reg	Write	Read	Write	Branch	ALUOp1	ALUp0
R-format	1	0	0	1	0	0	0	1	0
lw								0	0
sw								0	0
beq								0	1

sw Control

			Memto-	Reg	Mem	Mem			
Instruction	RegDst	ALUSrc	Reg	Write	Read	Write	Branch	ALUOp1	ALUp0
R-format	1	0	0	1	0	0	0	1	0
lw	0	1	1	1	1	0	0	0	0
SW								0	0
beq								0	1

beq Control

			Memto-	Reg	Mem	Mem			
Instruction	RegDst	ALUSrc	Reg	Write	Read	Write	Branch	ALUOp1	ALUp0
R-format	1	0	0	1	0	0	0	1	0
lw	0	1	1	1	1	0	0	0	0
sw	Х	1	Х	0	0	1	0	0	0
beq	X	\Diamond	7	0	0	9	Y	0	1

Control Truth Table

		R-format	lw	sw	beq
Ol	pcode	000000	100011	101011	000100
	RegDst	1	0	X	X
	ALUSrc	0	1	1	0
	MemtoReg	0	1	X	X
	RegWrite	1	1	0	0
Outputs	MemRead	0	1	0	0
	MemWrite	0	0	1	0
	Branch	0	0	0	1
	ALUOp1	1	0	0	0
	ALUOp0	0	0	0	1

Which wire – if always ONE – would break Iw?

Single-Cycle CPU Summary

- Easy, particularly the control
- Which instruction takes the longest?
 - By how much? Why is that a problem?
- ET = IC * CPI * CT
- What else can we do?
- When does a multi-cycle implementation make sense?
 - e.g., 70% of instructions take 75 ns, 30% take 200 ns?
 - suppose 20% overhead for extra latches
- Real machines have much more variable instruction latencies than this.

Let's think about this multicycle processor...

• (a very brief introduction...)

Why a Multiple Clock Cycle CPU?

- the problem => single-cycle cpu has a cycle time long enough to complete the longest instruction in the machine
- the solution => break up instruction execution into smaller tasks, each task taking one cycle
 - different instructions require different numbers of tasks (of cycles)
- other advantages => reuse of functional units (e.g., alu, memory)

High-level View

So Then,

- How many cycles does it take to execute
 - Add]BNE ?LW _SW _
- What about control logic?
- ET = IC * CPI * CT

Summary of instruction execution steps

"step" == "task" == "_____" \(\)

Step	R-type	Memory	Branch
Instruction Fetch]	R = Mem[PC]	
		PC = PC + 4	
Instruction Decode/	A =	= Reg[IR[25-21]]	
register fetch	B =	= Reg[IR[20-16]]	
	ALUout = PC +	(sign-extend(IR[15	-0]) << 2)
Execution, address	ALUout = A op B	ALUout = A +	if (A==B) then
computation, branch		sign-	PC=ALUout
completion		extend(IR[15-0])	
Memory access or R-	Reg[IR[15-11]] =	memory-data =	
type completion	ALUout	Mem[ALUout]	
		or	
		Mem[ALUout]=	
		В	
Write-back		Reg[IR[20-16]] =	/
		memory-data	

What is the fastest, slowest class of instruction in this MC machine?

Multicycle Questions

How many cycles will it take to execute this code?

```
lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not taken
add $t5, $t2, $t3
sw $t5, 8($t3)
Label: ...
```

	How many cycles to execute these 5 instructions?
Α	5
В	25
С	22
D	21
E	None of the above

Multicycle Implications

```
lw $t2, 0($t3)
lw $t3, 4($t3)

#assume not taken
beq $t2, $t3, Label
add $t5, $t2, $t3
sw $t5, 8($t3)
Label: ...
```

• What is the CPI of this program?

 What about a program that is 20% loads, 10% stores, 50% R-type, and 20% branches?

Single-Cycle, Multicycle CPU Summary

- Single-cycle CPU
 - CPI = 1, CT = LONG, simple design, simple control
 - No one has built a single-cycle machine in many decades
- Multi-cycle CPU
 - CPI > 1, CT = fairly short, complex control
 - Common up until maybe early 1990s, and dominant for many decades before that.

