Wireless and Communication in the Internet of Things We will start ~1:05 today, but promptly at 1:00 in the future

Pat Pannuto, UC San Diego ppannuto@ucsd.edu **OInK** TO:ck Human Camera Perception Perception

Today's Goals

- Overview of the course
- Introduction to the Internet of Things
- Introduction to wireless communication

Welcome to CSE190/291!

Wireless and Communication for the Internet of Things [WxIoT]

- ~45 students (25 undergrad; 20 graduate)
 - Many different backgrounds and interests
- This is an experience- and design-oriented course
 - Experience comes from labs (45% of grade)
 - Design comes from written assignments (15% HW, 30% Final = 45% of grade)
 - Lectures give you the foundation to understand what you are doing and how to make design decisions
 - Minute-Quizzes keep you honest on lecture material (10% of grade)

Quick Logistics

- Everything is on the course website
 - https://patpannuto.com/classes/2022/fall/wireless-iot/
 - ^This is also the homepage in Canvas
- This is an advanced course
 - Target is senior-level undergraduate, or early-career graduate students
- This is also a new / experimental course
 - Please bear with us, we're scaling up this quarter and trying new things
- We will use Gradescope to submit stuff
- We will use Piazza for a message board

Hi, I'm Pat (they/them)

- Originally from Michigan
- BSE CE, MSE CS from U of M
- PhD in EECS from UC Berkeley
- I work in "embedded systems"
 →
- I thrive when abstractions break
 - Resource constrained computing
- Interstitial / highly collaborative
 - 40 co-authors
 - 9 institutions
 - 4 continents

Journal Conference

Outline

• Internet of Things

Course Overview

• Overview of wireless networks

Perspective of this course

- This class is about wireless protocols
 - For a specific domain: the Internet of Things
- So we'll spend some amount of time discussing the Internet of Things and embedded systems

What is the IoT anyway?

• Seriously: let's define "Internet of Things"

Discussion: what is the Internet of Things?

- 1. Name a few Internet of Things devices
- 2. What are the qualities that designate those devices at "IoT"?

Discussion: what is the Internet of Things?

- 1. Name a few Internet of Things devices
- 2. What are the qualities that designate those devices at "IoT"?

CC BY-NC-ND Pat Pannuto - Content developed in coordination with Branden Ghena

Thought experiment on capabilities

- What if the Nest thermostat was powered by...
 - a desktop: 8-core x86-64 processor, 32 GB RAM, 1 TB SSD
 - a laptop?
 - an iPad?
- Would that still count as IoT?
- Why don't we see "desktop IoT" in practice?

"Google Nest Hub"

Thought experiment on energy

- IoT devices include a mix of batteries, wall power, (and energyharvesting)
- Why do we put so much focus on systems with batteries?
 - Why do they need batteries?

The two hardest things in embedded systems / IoT are power and communication

- This class is about wireless technologies
 - For resource-constrained systems, such as the IoT
- We will focus on the tradeoffs between technologies
 - How they balance differing constraints
 - Power, spectrum, complexity, etc.
 - And the technical foundations of these designs and differences

Energy is *the* **defining constraint of emerging technologies**

Pat's Take on the Internet of Things

- Pretty literal
- My early grad school essays described the "last inch" problem
- Now I often say "expanding the reach of digital world"
- For me, it is about 'networked' 'things'
 - Which implicitly adds some computational capacity

Branden's take on the Internet of Things

- Key features
 - Computation
 - Local to the device
 - With some capability for arbitrary compute and storage
 - Connectivity
 - Almost certainly wireless
 - Likely Internet, possibly local
 - Interaction
 - Sensing or Actuation
- Secondary features
 - Low energy
 - (Relatively) Low cost

Warning: Internet of Crap

Internet of Insecure Crap

- Mirai botnet (2016)
- Takes control of up to 600,000 insecure connected devices
 - IP-attached cameras, DVRs, routers, printers
- Used to DoS websites

Break + xkcd

Outline

• Internet of Things

Course Overview

• Overview of wireless networks

General course structure

- Mondays and Wednesdays
 - Lecture and discussion about IoT communication technology
- Fridays
 - Labs
- WARNING: This starts to shift around a bit starting week 6
 - I tried pretty hard to make the agenda easy to read, but please be mindful
 - I'll also (try to remember to) send reminders

Asking questions

- Class and office hours are always an option!
 - Office hours by demand. I promise to meet!!

• Piazza

- Post questions
- Answer each other's questions
- Find lab partners
- Information from the course staff
- Post private info just to course staff
- Discord?

Collaboration? Experiential bits – Yes, please!

- This is an experience- and design-oriented course
 - Experience comes from labs (45% of grade)
 - This part is *highly collaborative*
 - You cannot talk to each other too much, <u>help each other out in the labs</u>
 - One Rule: <u>Hands on your own keyboards</u>
 - Don't copy/paste stuff
 - Don't do things for someone else, *explain how* to do it
 - (As a team) write up your pre-labs, post-lab reports with all your own work

Collaboration? Design pieces – That's all just you

- This is an experience- and design-oriented course
 - Design comes from written assignments (15% HW, 30% Final = 45% of grade)
 - These you must do *on your own*
 - You can *talk* to others, but don't write anything down or look at anything they have written down
 - Guiding rule: Start from a blank piece of paper to prepare your final submission

Labs

- Semi-guided efforts of getting wireless communication working on real hardware
 - Wireshark
 - Bluetooth
 - 802.15.4
 - WiFi
 - LoRa

Pre-Labs

- Absolutely essential to success in lab
- Lab time is limited (just one hour!)
 - Must have pre-lab complete before lab to make lab successful
- Pre-labs are due by the start of lab, no exceptions, no make-ups

In-Lab

- Semi-directed activities
 - Some parts you will be expected to figure out
 - Help each other!
 - There are (aggressive) time estimates for each part, if you're falling far behind the estimates, *get help*
- Be sure to save your work as you go along
 - The lab guide will try to remind you

Post-Lab / Lab Writeup

- Each lab has a post-lab assignment, two parts inside
 - Report on your lab activities
 - Some extra questions related to lab activities
- Generally, due one week after the final in-class lab session

Post-Lab / Lab Writeup

- Each lab has a post-lab assignment, two parts inside
 - Report on your lab activities
 - Some extra questions related to lab activities
- Generally, due one week after the final in-class lab session

At 20:00 US/Pacific (8:00 PM)

Access to the lab?

- You can come into the lab if it is not currently in use when convenient
- We will host our office hours in the lab
- The door code is in Canvas
- We are sharing the lab with Prof. Schulman's CSE 190A
 - Like us, they have a mixture of lecture days and lab days
 - It meets MWF, 10–11 and generally has office hours MWF, 11–12
- During non-class hours, will be a *mix* of students be nice! ☺

What's a Design Final?

- More on that later in the term
- Homework will give you some preparation and experience
- There is no final exam for this course

Mastery Grading

aka: no, there is not a curve

- My goal is to teach you the material and for everyone to learn it
- I am most successful if everyone in class *earns* an A

A+	Α	A-	B+	В	B-	C+	С	C-	D
>96.7	[93,96.7)	[90,93)	[86.7,90)	[83.3,86.7)	[80,83.3)	[76.7,80)	[73.3,76.7)	[70,73.3)	[60,

- You earn in four categories:
 - 45% Labs
 - 30% Design Assignment (Final Exam)
 - 15% Homework
 - 10% Minute-Quizzes
- If you exceed the maximum in a category, %age over max is halved

Hey, what about that mini-quiz thing you snuck in there?

- Lecture will begin with a "minute-quiz"
- These will be (very) short and will cover material from the prior lecture, or possibly pre-lab, lab, post-lab, homework or other assignment
- You should not need to study or worry about these if you were there and paying attention, you'll be prepared
- Correct quizzes earn 1%/ea, incorrect quizzes earn 0.5%/ea
 - Not counting today, there are **19** more lecture sessions
 - Everything >10% counts for half (i.e. max possible 14.5%)

Questions, Concerns, Confused?

Dost-Lab Reports

• *Please*, go read the actual <u>Syllabus</u>

Wireless and Communication in the Internet of Things Home Syllabus Agenda Labs							
Syllabus							
Course Staff							
• What should you call me?							
 What should I call you? 							
 TA - Nishant Bhaskar 							
Prerequisites							
Textbook & Other Resources							
Schedule							
 (A?)Sychronous?, Remote?, Recordings? 							
• Grading							
○ 10%: Minute-Quizzes							
○ 45%: Labs							
Pre-Labs							

Break+Video

Wireless Network Visualization (Dr. Meghan Clark – UC Berkeley) https://www.youtube.com/watch?v=KLOdp54_qJ4

Outline

• Internet of Things

Course Overview

• Overview of wireless networks

Bluetooth Low Energy

- Bluetooth Classic was good for enabling device to device communication
 - But not particularly fast or low energy
- Bluetooth Low Energy was developed to improve this
 - Focuses on low-energy interactions
 - Much lower throughput that Bluetooth
- Supported by hardware devices already in smartphones
 - Humans can interact directly with nearby devices!!

802.15.4 & Thread

- 802.15.4 is a low-energy physical layer
 - Radio chips have been widely available for 15-20 years
- *Significant* amounts of sensor network research have focused on building layers on top of 802.15.4
 - Access control layers
 - Network layers
- Thread is a selection of these possibilities to make a network
 - Uses IPv6 networking!!

WiFi (802.11)

- Ubiquitous wireless communication
 - High energy requirements for high throughput communication
- Now accessible through relatively low power radios
 - ESP32, Electric Imp, and company
 - Still significantly more effort than BLE or Thread
- IoT devices can use the same WiFi that's already available
 - No need for additional infrastructure!!

LPWANs (Low-Power Wide-Area Networks)

- How do we collect data from city-scale deployments?
 - There's an unmet need for long-range, but low-throughput networks
 - Existing cellular technologies focus on human requirements
- Still a brand new space (relatively)
 - Unlicensed-band technologies in last decade: Sigfox and LoRaWAN
 - Cellular technologies in last half-decade: LTE-M and NB-IoT
- Focus on long-range, low-energy, low-throughput
 - One gateway can cover an entire city!!

Extras

- Extremely active research areas
- Backscatter
 - Insanely low-energy communication
 - Enables energy-harvesting indoor devices
- Non-RF wireless
 - Infrared communication
 - Ultrasonic communication
- Localization
 - How do we find all this stuff?
 - And how do devices determine where they are relative to each other?
- Other topics are possible if desired. Tell me what focus you want.

Why use wireless?

- There are no wires!
- No need to install and maintain wires
 - Reduces cost
 - Simplifies deployment place devices wherever makes sense
- Supports mobile users
 - Move around office, campus, city
 - Move devices around home

What is hard about wireless?

- There are no wires!
- Wired networks are constant, reliable, and physically isolated
 - Ethernet has the same throughput minute-to-minute
 - Bits sent through Ethernet or USB are (usually) received
- Wireless networks are variable, error-prone, and shared
 - WiFi throughput changes based on location and walls
 - Signals from nearby devices interfere with your signals
 - Individual bits might flip or never be heard at all

Wireless is a shared medium

- Wired communication has signals confined to a conductor
 - Copper or fiber
 - Guides energy to destination
 - Protects signal from interference
- Wireless communication is inherently broadcast
 - Energy is distributed in space
 - Signals must compete with other signals in same frequency band

Increasing network capacity is challenging

- Wired networks just add more wires
 - Buses are many signals in parallel to send more data
- Wireless networks are harder
 - Adding more links just increases interference
 - Need to expand to different frequencies

RF communication

Wireless spectrum is allocated to specific uses

Unlicensed bands are where IoT thrives

- 902 MHz 928 MHz
 - LPWANs
- 2.4 GHz to 2.5 GHz — WiFi, BLE, Thread
- 5 GHz
 - Faster WiFi
- Cellular uses licensed bands

Model of RF communication

- Energy that radiates spherically from an antenna
- Attenuation with distance
 - Density of energy reduces over time, distance
 - Signal strength reduced, errors go up
- Two key features
 - Error rates depend on distance
 - Spatial reuse of frequencies

Next Time: How does the Regular ol' Internet work?

• Aka Pat tries to speedrun a decent chunk of CSE123 in one week

CSE 190/291 [FA22]

Next Time: How does the Regular ol' Internet work?

• Aka Pat tries to speedrun a decent chunk of CSE123 in one week

