CSE 141: Introduction to Computer Architecture

Performance

Thought Experiment

* Whatis the fastest way to send a picture of a black hole to Boston?
 Whatis the fastest way to send 5 petabytes of data to Boston?

r
;
’ - -
- 7
- ~ 74
: J Nl /
1 ~=7V4 =
~— ~ 5 /
— / /
/
1/ y
o el 4

= 1.35 years

Graphs that go up and to the right are good, but what do
they mean?

1200 — - - 100,000
DEC Alpha 21264/600

el Xeon 6 cores, 3.3 GHz -bouu Ia ‘I 6 Gm\

Intel Xucn 4 cores, 3.3 GHz (boost 10 3,
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHZI
e Intel Core Duo Extreme 2 cores, 3.0 GHz

Intel Core 2 Extreme 2 cores, 2.9 GHz

10,000 . o . tesnenn . ?)A?uﬂcémzsé’s”cm o msgaaz

Intel Xaon EE32 Gl

Intel DBSOEMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology) g6,043 8:681
IBM Powerd, 1.3 GHz @~

Intel VC820 motherboard, 1.0 GHz Pentium Il processor, 2

Professional Workstation XP1000, 667 MHz 21264A
000 Digital AbhaServer 8400 6/575, 575 MHz 21264,

@
S
<
o]
£
k<]

=
@

o

DEC Alpha 5/500

u Intel Specint2000
x Alpha

20%/year

DEC Al

DEC Alpha 4/264

Performance (vs. VAX-11/780)

1BM RS6000/540, 30 MHz,,

ISUN-4/ MIPS _ MIPS_ IBM_______________=TBM EQ\LVEBJQO 1 a Sparc MIPS M2000, 25 MHz

260 M/120 M2000 RS6000 DEC AXP/500 60 00 4 MIPS M/120, 16.7 MHz
0 - , HP 900Q/750 10 4 O/ OOONOTPROUOPOPNPNOPONOOROOOPONOPOOOOO ...\ .
1987 1988 1989 1990 1991 1992 1993 1995 1qd @ MIpS

Year

X
mHPPA e

= Power PC Hﬂf

1.5, VAX-11/785

1 T T T T T T T T T T T T T T T T
0.00 4 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

* AMD -
!K " A
.-.‘A
10.00 . e

1.00 + B———
85868788899091 92939495969798990001 02030405

Year of introduction

The bottom line: Performance

* Time to do the task

— execution time, response time, latency

» Tasks per day, hour, week, sec, ns. ..
— throughput, bandwidth

Time to Throughput
Bay Area Speed Passengers (pmph)
Ferrari 3.1 hours 160 mph 2 320
Bus 7.7 hours 65 mph 60 3900

Measures of “Performance”

* Execution Time
* Throughput (operations/time)
— Transactions/sec, queries/day, etc.
* Frame Rate
* Responsiveness
* Performance / Cost
* Performance / Power
* Performance / Energy

There are many ways to measure program execution time

S time make # cargo build
Compiling hail v0.1.0 (/tock/boards/hail)
Finished release [optimized + debuginfo] target(s) in 19.96s

real Om21.146s
user 0m30.388s
sys O0m2.032s

* Program-reported time?
 Wall-clock time?
e user CPU time?

e user + kernel CPU time?

Our definition of Performance

1
Performancey = , for program X
Execution Timey

* Only has meaning in the context of a program or workload

* Not very intuitive as an absolute measure, but most of the time we're
more interested in relative performance

Relative Performance

« (Can be confusing...
A runsin 12 seconds

B runsin 20 seconds
— A/B=.6,50Ais 40% faster, or 1.4X faster, or Bis 40% slower

— B/A =167 so Ais 67% faster, or 1.67X faster, or B is 67/% slower

* Needs a precise definition

Relative Performance (Speedup), the Definition

Performance Execution Time
Speedu = X _ Y
P P (X/Y) Performancey Execution Timey

Example

* Machine A runs program Cin 9 seconds.
* Machine B runs the same program in 6 seconds.
 Whatis the speedup we see if we move to Machine B from Machine A?

Speedup (x/y) = —Lerformancey _ Execution Timey
Performancey Execution Timey

Poll Question: What is the speedup?

* Machine A runs program Cin 9 seconds.

* Machine B runs the same program in 6 seconds.

* Machine B gets a new compiler, and can now run the program in 3 seconds.
* Whatis the speedup from the new compiler?

When you have your answer, write it down
Now, convince your neighbors of your answer

A:0.5 B:3 C15 D:0.33 E: None of these

What is Time?

CPU Execution Time = CPU clock cycles * Clock cycle time

— Every conventional processor has a clock with an associated clock cycle time or
clock rate

JEEREEEE SN

— Every program runs in an integral number (whole number) of clock cycles

Cycle Time

MHz = millions of cycles/second, GHz = billions of cycles/second
X MHz =1000/X nanoseconds cycle time

Y GHz = 1/Y nanoseconds cycle time

How many clock cycles?

Number of CPU clock cycles =
[Instruction count] * [Average Clock Cycles per Instruction (CPI)]

Exercise:
Computer A runs program Cin 3.6 billion cycles.

Program C requires 2 billion dynamic instructions.
What is the CPI?

Poll Question: How many clock cycles?

A computer is running a program with CPI = 2.0.
It executes 24 million instructions.
How long will it run?

Selection | Answer

2.4 seconds

12 million cycles
48 million seconds
48 million cycles
None of the above

monw}l

Putting it all together

CPU Execution Time = [CPU clock cycles] * [Clock cycle time]

CPU clock cycles = [Instruction count] * [Average Clock Cycles per Instruction (CPI)]

seconds

CPU Execution _ Instruction Clock Cycle

= X CPI X

Time Count Time

instructions cycles/instruction seconds/cycle

Poll Question: All Together Now

CPU Execution _ Instruction CPI X Clock Cycle

X

Time ~ Count Time

e Instruction Count = 4 billion A: 0.375
2 GHz processor B: 0.67
» Execution time of 3 seconds C: 9.375 * 19-18
What is the CPI for this program? D: 1.5
E: None of these

When you have your answer, write it down

Cycle Time/Clock Rate is no longer fixed

* Increasingly, modern processors can execute at multiple clock rates
(cycle times).

 Why?

* However, the granularity at which we can change the cycle time tends to
be fairly coarse, so all of these principles and formulas still apply.

Who Affects Performance? How?

CPU Execution Time = Instruction Count X CPI X Clock Cycle Time

e programmer
* compiler

e instruction-set architect

* machine architect

* hardware designer

* materials scientist/physicist/silicon engineer

Performance Variation: What affects what?

CPU Execution Time = Instruction Count X CPI X Clock Cycle Time

Number of CPI Clock Cycle Time
Instructions

Same machine,
different programs

Sam programs,
different machine,
same ISA

Same programs,
different machines

MIPS

(the performance measure, not the architecture...)

MIPS - “"Millions of Instructions Per Second”
= Instruction Count
Execution Time * 10°

Clock rate
CPI * 10°

* Program-independent

* Deceptive! Some also discuss [M]JFLOPS
“Floating point operations per second”

Which programs are best, are “most fair”, to run when
measuring performance?

peak throughput measures (simple programs)?

synthetic benchmarks (whetstone, dhrystone,...)?

Real applications

SPEC (best of both worlds, but with problems of their own)

— System Performance Evaluation Cooperative

— Provides a common set of real applications
* Along with strict guidelines for how to run them
— Provides a relatively unbiased means to compare machines.

Amdahl’s Law

 Theimpact of a performance improvement is limited by the percent of
execution time affected by the improvement

E tion ti Execution Time Affected , .
ACCHHOTLIINE + Execution Time Unaffected

Amount of Improvement

after improvement

* Make the common case fast!!

Amdahl’'s Law and Massive Parallelism

Amdahl’'s Law and Massive Parallelism
Speedup

— 1.0

Amdahl’'s Law and Massive Parallelism
Speedup

— 1.0

1/.55=1.82

W

4 1/.325 = 3.07
225

Amdahl’'s Law and Massive Parallelism

Speedup
— 1.0
9 .1
45
I 1 1/.325 =3.07
225
.1
<10

Key Points

Be careful how you specify performance

e Execution time = instructions * CPI * cycle time
e Usereal applications

» Use standards, if possible

 Make the common case fast

