
CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 1

CSE 141: Introduction to Computer Architecture

Pipelines

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 2

First things first:

Pipelines are the coolest.

" Seriously, this idea is everywhere

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 3

THE key idea of pipelining

" Throughput >>> latency

" Computers are very useful because they do a lot of things well

3 It is much less important how well any one thing is done

" Which is faster?

3 A machine with average CPI of 2.0 running at 48 MHz

3 A machine with average CPI of 10.0 running at 4 GHz

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 4

Review -- Single Cycle CPU

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 5

(not quite) Review -- Multiple Cycle CPU

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 6

Review -- Instruction Latencies

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem Wr

Load

Ifetch Reg/Dec Exec Mem Wr

Load

Single-Cycle CPU

Multiple Cycle CPU

Ifetch Reg/Dec Exec Wr

Add

Ifetch Reg/Dec Exec Mem Wr

Add

Cycle 6 Cycle 7 Cycle 8 Cycle 9

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 7

Instruction Latencies and Throughput

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec Mem WrLoadSingle-Cycle CPU

Multiple Cycle CPU

Pipelined CPU

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 8

Instruction Latencies and Throughput

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem WrLoad

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec Mem WrLoadSingle-Cycle CPU

Multiple Cycle CPU

Pipelined CPU

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 9

Instruction Latencies and Throughput

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec Mem WrLoad

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec Mem WrLoadSingle-Cycle CPU

Multiple Cycle CPU

Pipelined CPU

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 10

Instruction Latencies and Throughput

Single-Cycle CPU

Multiple Cycle CPU

Pipelined CPU

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec Mem WrLoad

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec Mem WrLoad

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 11

Pipelining Advantages

" Higher maximum throughput

" Higher utilization of CPU resources

" But, more complicated datapath, more complex control(?)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 12

Poll Q: What affects throughput?

Peak throughput depends on…

Single Cycle Multi-Cycle Pipeline

A Longest Instruction Cycle Time Average Instruction

B Longest Instruction Cycle Time Longest Instruction

C Longest Instruction Average Instruction Cycle Time

D Average Instruction Longest Instruction Cycle Time

E None of the above

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 13

Poll Q: What affects throughput?

Peak throughput depends on…

Single Cycle Multi-Cycle Pipeline

C Longest Instruction Average Instruction Cycle Time

Throughput is useful work over time – one measure: insts / sec

ET = Inst * CPI * CT

Single Cycle: ET = Inst * 1 * BIG

Multi Cycle: ET = Inst * [3 .. 5] * CT
Pipeline: ET = Inst * 1 * CT

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 15

Pipelining in Modern CPUs

" CPU Datapath

" Arithmetic Units

" System Buses

" Software (at multiple levels)

" etc...

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 16

A Pipelined Datapath

IF Instruction fetch

ID Instruction decode and register fetch

EX Execution and effective address calculation

MEM Memory access

WB Write back

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 17

Pipelined Datapath (roughly)

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

IF ID EX MEM WB

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 18

Execution in a Pipelined Datapath

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

lw

lw

lw

lw

lw

IF ID EX MEM WB

IF ID EX MEM WB

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 19

Execution in a Pipelined Datapath

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

lw

lw

lw

lw

lw

steady

state

IF ID EX MEM WB

IF ID EX MEM WB

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 20

Mixed Instructions in the Pipeline

CC1 CC2 CC3 CC4 CC5 CC6

lw

add

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 21

Mixed Instructions in the Pipeline

IM Reg

A
L
U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6

lw

add

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 22

Mixed Instructions in the Pipeline

IM Reg

A
L
U Reg

IM Reg

A
L
U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6

lw

add

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 23

Mixed Instructions in the Pipeline

IM Reg

A
L
U Reg

IM Reg

A
L
U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6

lw

add

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 24

Mixed Instructions in the Pipeline

IM Reg

A
L

U Reg

IM Reg

A
L

U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6

lw

add

This is called a structural hazard – too many instructions want to
use the same resource.

In our pipeline, we can make this hazard disappear (next slide).

In more complex pipelines, structural hazards are again possible.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 25

Pipeline Principles

" All instructions that share a pipeline should have the same stages in the

same order.

3 therefore, add does nothing during Mem stage

3 sw does nothing during WB stage

" All intermediate values must be latched each cycle.

IM Reg

A
L
U DM Reg

IF ID EX MEM WB

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 26

Pipeline stages

" What is the performance implication of making every instruction go
through all 5 stages? (e.g., instead of 4 for add, 3 for beq, etc.)

(Choose BEST answer)

A Decreases peak throughput by 20%

B Increases program latency by 20%

C No significant impact on peak throughput or program latency

D Depends on how many R-type instructions, beq, etc.

E None of the above

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 27

Pipelined Datapath

Instruction Fetch Instruction Decode/

Register Fetch

Execute/

Address Calculation

Memory Access Write Back

IF ID EX MEM WB

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 28

Pipelined Datapath

Instruction Fetch Instruction Decode/

Register Fetch

Execute/

Address Calculation

Memory Access Write Back

registers!IF ID EX MEM WB

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 29

Poll Q: How many D flip flops are in this pipeline?

A 4

B 12

C 128

D 352

E Other

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 30

The Pipeline in Execution

add $10, $1, $2 Instruction Decode/

Register Fetch

Execute/

Address Calculation

Memory

Access

Write Back

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 31

The Pipeline in Execution

lw $12, 1000($4) add $10, $1, $2 Execute/

Address Calculation

Memory

Access

Write Back

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 32

The Pipeline in Execution

sub $15, $4, $1 lw $12, 1000($4) add $10, $1, $2 Memory

Access

Write Back

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 33

The Pipeline in Execution

Instruction Fetch sub $15, $4, $1 lw $12, 1000($4) add $10, $1, $2 Write Back

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 34

The Pipeline in Execution

sub $15, $4, $1 lw $12, 1000($4) add $10, $1, $2Instruction Fetch Instruction Decode/

Register Fetch

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 36

The Pipeline in Execution

sub $15, $4, $1 lw $12, 1000($4)Instruction Fetch Instruction Decode/

Register Fetch

Execute/

Address Calculation

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 37

The Pipeline in Execution

sub $15, $4, $1Instruction Fetch Instruction Decode/

Register Fetch

Execute/

Address Calculation

Memory

Access

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 38

Review: When executing only R-type instructions…

Single Cycle Multi-Cycle Pipeline

cycles to

exec 1 inst

CPI for 1M

insts

cycles to

exec 1 inst

CPI for 1M

insts

cycles to

exec 1 inst

CPI for 1M

insts

A 1 1 4 4 5 5

B 4 4 5 1 1 5

C 4 4 5 5 4 1

D 1 1 4 4 5 1

E None of the above

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 39

The Pipeline, now with controls….

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 40

Pipelined Control

" I told you multicycle control was messy. We would expect pipelined

control to be messier.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 41

Pipelined Control

" I told you multicycle control was messy. We would expect pipelined

control to be messier.

3 Why?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 42

Pipelined Control

" I told you multicycle control was messy. We would expect pipelined

control to be messier.

3 Why?

" But it turns out we can do it with just…

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 43

Pipelined Control

" I told you multicycle control was messy. We would expect pipelined

control to be messier.

3 Why?

" But it turns out we can do it with just…

" Combinational logic!

3 Signals generated once

3 Follow instruction through the pipeline

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 44

Recall: Control signals in the single-cycle machine

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 45

Pipelined Control

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 46

Pipelined Control

So, really it is combinational logic and some registers to

propagate the signals to the right stage.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 47

The Pipeline with Control Logic

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 48

Pipelined Control Signals

Execution Stage Control Lines Memory Stage Control Lines Write Back Stage Control
Lines

Instruction RegDst ALUOp1 ALUOp0 ALUSrc Branch MemRead MemWrite RegWrite MemtoReg
R-Format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw x 0 0 1 0 0 1 0 x
beq x 0 1 0 1 0 0 0 x

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 49

Pipelined Control Signals

Let’s just do one.

Execution Stage Control Lines Memory Stage Control Lines Write Back Stage Control
Lines

Instruction RegDst ALUOp1 ALUOp0 ALUSrc Branch MemRead MemWrite RegWrite MemtoReg
R-Format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw x 0 0 1 0 0 1 0 x
beq x 0 1 0 1 0 0 0 x

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 50

The Pipeline with Control Logic

You Choose:

A. R-format

B. lw
C. sw

D. beq

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 51

Is it really that easy?

" What happens when...

add $3, $10, $11

lw $8, 1000($3)

sub $11, $8, $7

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 52

The Pipeline in Execution

lw $8, 1000($3) add $3, $10, $11 Execute/

Address Calculation

Memory

Access

Write Back

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 53

The Pipeline in Execution

sub $11, $8, $7 lw $8, 1000($3) add $3, $10, $11 Memory

Access

Write Back

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 54

The Pipeline in Execution

add $10, $1, $2 sub $11, $8, $7 lw $8, 1000($3) add $3, $10, $11 Write Back

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 55

Data Hazards
When a result is needed in the pipeline before it is
available, a data hazard occurs. What can we do?

IM Reg

A
L

U DM Reg

IM Reg

A
L

U DM

IM Reg

A
L

U DM Reg

IM Reg

A
L

U DM Reg

IM Reg

A
L

U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

R2 Available

R2 Needed

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 56

Data Hazards

" Data Hazards are caused by data dependences

" Not all data dependences result in data hazards

" A data hazard results when there is a data dependence between two

instructions that appear too close together in the pipeline

" We will define a data hazard as any data dependence that requires either

the software or hardware to take special action to get correct

sub $2, $1, $3

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 57

Dealing With Data Hazards – What can we do…

" …in Software?

3

" …in Hardware?

3

3

Data Hazards are caused by instruction dependences.

For example, the add is data-dependent on the subtract:

subi $5, $4, #45

add $8, $5, $2

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 58

Dealing with Data Hazards in Software

IM Reg

A
L
U DM

IM Reg

A
L
U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

sub $2, $1, $3

and $12, $2, $5

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 59

Dealing with Data Hazards in Software

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM

IM Reg
A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

sub $2, $1, $3

and $12, $2, $5

nop

nop

nop

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 60

How Many No-ops?

sub $2, $1, $3

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 61

Are No-ops Really Necessary?

sub $2, $1, $3

and $4, $2, $5

or $8, $3, $6

add $9, $2, $8

slt $1, $6, $7

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 62

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 63

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls

IM

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 64

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls

IM

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble Bubble Bubble

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 65

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls

IM

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble Bubble Bubble Reg DM Reg

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 66

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls

IM

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble Bubble Bubble Reg DM Reg

IM Reg DM Reg

IM Reg DM

IM Reg

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 67

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

IM

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 68

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

IM

IM

Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 69

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

IM

IM

Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 70

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

IM

IM

Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble

DM

Bubble

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 71

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

IM

IM

Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble

DM

Bubble

Reg

Bubble

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 72

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

IM

IM

Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble

DM

Bubble

Reg

Bubble Reg

IM

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 73

Dealing with Data Hazards in Hardware
Part II-Pipeline Stalls (alt. View)

IM

IM

Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble

DM

Bubble

Reg

Bubble Reg

IM Reg

IM

DM

Reg

IM

Reg

DM

Reg

DM

Reg

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 74

Poll Q: Try it yourself

sub $2, $1, $3

add $12, $3, $5

or $13, $6, $2

add $14, $12, $2

sw $14, 100($2)

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

IF ID EX M WB

IF ID EX M WB

How many

bubbles?

A 5

B 6

C 7

D 8

E None of the above

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 75

Working this example…

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

IF ID EX M WBsub $2, $1, $3

add $12, $3, $5

or $13, $6, $2

add $14, $12, $2

sw $14, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 76

Selection Changes

A 1, 3, 4

B 1, 2, 3

C 2, 3, 4

D 1

E None of the above

Poll Q: How to actually implement this in hardware?

Once you detect the hazard in ID – what must you do to insert the nop and “stall”?

1. Flush all instructions in the pipeline (set control signals to 0).

2. Set all control signals going to ID/EX register to zero.

3. Set PCWrite to zero.

4. Set IF/ID register write to zero.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 77

Pipeline Stalls

" To ensure proper pipeline execution in light of register dependences, we

must:

3 detect the hazard

3 stall the pipeline

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 78

Knowing When to Stall

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

" 6 types of data hazards
3 two reg reads * 3 reg writes

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 79

Knowing When to Stall

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

" 6 types of data hazards
3 two reg reads * 3 reg writes

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 80

The

Pipeline

" What

comparisons tell

us when to stall?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 81

Stalling the Pipeline

" Once we detect a hazard, then we have to be able to
stall the pipeline (insert a bubble).

" Stalling the pipeline is accomplished by

3 (1) preventing the IF and ID stages from making progress

" the ID stage because it cannot proceed until the dependent

instruction completes

" the IF stage because we do not want to lose any instructions.

3 (2) essentially, inserting “nops” in hardware

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 82

Stalling the Pipeline

" Preventing the IF and ID stages from proceeding

3 don’t write the PC (PCWrite = 0)

3 don’t rewrite IF/ID register (IF/IDWrite = 0)

" Inserting “nops”

3 set all control signals propagating to EX/MEM/WB to zero

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 83

Can we do better? How else might we deal with (some?)

data hazards?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 84

Reducing Data Hazards Through Forwarding

Registers

ID/EX

A
L
U

EX/MEM MEM/WB

Data

Memory

0

1

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

add $2, $3, $4

add $5, $3, $2

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 85

Reducing Data Hazards Through Forwarding

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 86

Reducing Data Hazards Through Forwarding
EX Hazard: (similar for the MEM stage)

if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
then ForwardA = 10

if (EX/MEM.RegWrite

and (EX/MEM.RegisterRd != 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
then ForwardB = 10

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 87

Data Forwarding

" The Previous Data Path handles two types of data hazards

3 EX hazard

3 MEM hazard

" The register file handles the third (WB hazard)

3 if the register file is asked to read and write the same register in the same cycle,
the register file has internal forwarding logic that allows the write data to be

forwarded to the output

3 This is still forwarding (even if you don’t “see” the lines b/c internal)!

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 88

Eliminating Data Hazards via Forwarding

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM

IM Reg
A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

sub $2, $1, $3

and $6, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 89

Forwarding in Action

add $1, $12, $3 sub $12, $3, $4 add $3, $10, $11 Memory Access Write Back

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 90

Forwarding in Action

Instruction Fetch add $1, $12, $3 sub $12, $3, $4 add $3, $10, $11 Write Back

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 91

Forwarding in Action

Instruction Fetch Instruction Decode add $1, $12, $3 sub $12, $3, $4 add $3, $10, $11

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 92

Eliminating Every Data Hazard via Forwarding?

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM

IM Reg
A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

lw $2, 10($1)

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 93

Eliminating Data Hazards via Forwarding and

stalling

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

lw $2, 10($1)

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 94

Eliminating Data Hazards via Forwarding and

stalling

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

lw $2, 10($1)

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

IM Reg

IM

IM Reg

A
L
U

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 95

Eliminating Data Hazards via Forwarding and

stalling

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

IM Reg

IM

IM Reg

A
L
U DM

Bubble

Bubble

lw $2, 10($1)

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 96

Eliminating Data Hazards via Forwarding and

stalling

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

IM Reg

IM

IM Reg

A
L
U

A
L
U DM Reg

IM Reg

A
L
U DM

Reg

A
L
U DM Reg

Reg

IM Reg

A
L
U

DM

Bubble

Bubble

lw $2, 10($1)

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 97

Eliminating Data Hazards via Forwarding and

stalling

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

lw $2, 10($1)

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

IM Reg

IM

IM Reg

A
L

U

A
L

U DM Reg

IM Reg

A
L

U DM

Reg

A
L

U DM Reg

Reg

IM Reg

A
L

U

DM

Bubble

Bubble

Just to be clear, let’s
review what we mean by

“bubble” particularly in the
context of this pipeline!

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 98

Eliminating Data Hazards via Forwarding and

stalling

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

lw $2, 10($1)

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

IM Reg

IM

IM Reg

A
L

U

A
L

U DM Reg

IM Reg

A
L

U DM

Reg

A
L

U DM Reg

Reg

IM Reg

A
L

U

DM

Bubble

Bubble

What is really happening during the bubble
(for this particular pipeline)?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 99

Eliminating Data Hazards via Forwarding and

stalling

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

lw $2, 10($1)

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

IM Reg

IM

IM Reg

A
L

U

A
L

U DM Reg

IM Reg

A
L

U DM

Reg

A
L

U DM Reg

Reg

IM Reg

A
L

U

DM

Bubble

Bubble

What is really happening during the bubble (for this particular pipeline)?

" While lw moves to the Mem stage in CC4, the and instruction
repeats the ID stage (important because the values the and reads in
CC4 are the ones it will carry forward).

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 100

Eliminating Data Hazards via Forwarding and

stalling

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

IM Reg

IM

IM Reg

A
L

U

A
L

U DM Reg

IM Reg

A
L

U DM

Reg

A
L

U DM Reg

Reg

IM Reg

A
L

U

DM

Bubble

Bubble

What is really happening during the bubble (for this particular pipeline)?
" While lw moves to the Mem stage in CC4, the and instruction repeats

the ID stage (important because the values the and reads in CC4 are
the ones it will carry forward).

" There is now no instruction in the EX stage. So we better make sure
that whatever is in the EX stage is safe.

lw $2, 10($1)

and $12, $2, $5

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 101

Eliminating Data Hazards via Forwarding and

stalling

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

IM Reg

IM

IM Reg

A
L

U

A
L

U DM Reg

IM Reg

A
L

U DM

Reg

A
L

U DM Reg

Reg

IM Reg

A
L

U

DM

Bubble

Bubble

What is really happening during the bubble (for this particular pipeline)?
" While lw moves to the Mem stage in CC4, the and instruction repeats

the ID stage (important because the values the and reads in CC4 are
the ones it will carry forward).

" There is now no instruction in the EX stage. So we better make sure
that whatever is in the EX stage is safe.
" Safe = no state changes (PC, reg, memory), now or as it moves

through the pipeline.

lw $2, 10($1)

and $12, $2, $5

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 102

Poll Q: Stalls & Forwards

" How many stalls occur and how many values require hardware

forwarding support to avoid stalling for our MIPS 5-stage pipeline?

add $3, $2, $1

lw $4, 100($3)

and $6, $4, $3

sub $7, $6, $2

add $9, $3, $6

Stalls Forwarded values

A 1 3

B 2 4

C 2 3

D 1 5

E None of the above

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 103

Try this one...

" Show bubbles and forwarding for this code

add $3, $2, $1

lw $4, 100($3)

and $6, $4, $3

sub $7, $6, $2

add $9, $3, $6

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 104

Another one...

" Show bubbles and forwarding for this code

lw $9, 100($6) IF ID EX M WB

addi $6, $9, #26

sub $7, $6, $9

add $6, $3, $6

add $3, $2, $6

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 105

Poll Q: How many stalls?

" Suppose EX is the longest (in time) pipeline stage

" To reduce CT, we split it in half. Given the following (new) pipeline:

IF ID EX1 EX2 M WB
Assume the input data must be available at the start of EX1 and
the output is available after EX2

" How many hardware stalls would be required in the following
code (assuming hardware forwarding wherever possible)?

add r1, r2, r3

add r4, r1, r3

Stalls

A 0

B 1

C 2

D 3

E 4

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 106

Poll Q: How many stalls?

" Suppose EX is the longest (in time) pipeline stage

" To reduce CT, we split it in half. Given the following (new) pipeline:

IF ID EX1 EX2 M WB
Assume the input data must be available at the start of EX1 and
the output is available after EX2

" How many hardware stalls would be required in the following code
(assuming hardware forwarding wherever possible)?

lw r1, 0(r3)
add r2, r1, r3

Stalls

A 0

B 1

C 2

D 3

E 4

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 107

Datapath with Hazard-Detection
if (ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or

(ID/EX.RegisterRt = IF/ID.RegisterRt)))

then stall the pipeline

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 108

Hazard Detection

and $4, $2, $5 lw $2, 20($1)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 109

Hazard Detection

and $4, $2, $5 nop (bubble) lw $2, 20($1)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 110

What other hazards might we have to watch out for?

" Data hazards are when the result of one computation is used in a later

computation

" Is there other re-use?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 111

Control Dependence

" Just as an instruction will be dependent on other instructions to provide
its operands (data dependence), it will also be dependent on other
instructions to determine whether it gets executed or not
(control dependence, aka, branch dependence).

" Control dependences are particularly critical with conditional branches.

add $5, $3, $2

sub $6, $5, $2

beq $6, $7, somewhere

and $9, $6, $1

...

somewhere: or $10, $5, $2

add $12, $11, $9

...

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 112

Branch Hazards

" Branch dependences can result in branch hazards (when they are too

close to be handled correctly in the pipeline)

3 (sound familiar?)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 113

Given our current pipeline, let9s assume we stall until we know the branch outcome (i.e., until

the PC is known to be correct). How many cycles will we lose per branch?

Stalling the pipeline

cycles

A 0

B 1

C 2

D 3

E 4

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 114

Branch Hazards

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM

IM Reg
A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

beq $2, $1, here

here: lw ...

sub ...

lw ...

add ...

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 115

Dealing With Branch Hazards

" Ideas??

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 116

Dealing With Branch Hazards

" Hardware

3 stall until you know which direction

3 reduce hazard through earlier computation of branch direction

3 guess which direction

" assume not taken (easiest)

" more educated guess based on history

3 (requires that you know it is a branch before it is even decoded!)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 117

Dealing With Branch Hazards

" Hardware

3 stall until you know which direction

3 reduce hazard through earlier computation of branch direction

3 guess which direction

" assume not taken (easiest)

" more educated guess based on history

3 (requires that you know it is a branch before it is even decoded!)

" Hardware/Software

3 nops

3 instructions that get executed either way (delayed branch).

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 118

Stalling for Branch Hazards

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble BubbleBubble

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 119

Stalling for Branch Hazards

" Seems wasteful, particularly when the branch isn’t taken.

" Makes all branches cost 4 cycles.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 120

Assume Branch Not Taken

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

" works pretty well when you’re right!

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 121

Assume Branch Not Taken

beq $4, $0, there

and $12, $2, $5

or ...

add ...

there: sub $12, $4, $2

IM Reg

IM Reg

IM

IM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Flush

Flush

Flush

" same performance as stalling when you’re wrong

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 122

Assume Branch Not Taken

" Performance depends on percentage of time you guess right

" Flushing an instruction means to prevent it from changing any
permanent state (registers, memory, PC)

3 sounds a lot like a bubble...

3 But notice that we need to be able to insert those bubbles later in the pipeline

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 123

Branch Hazards – What if we predict taken instead?

IM Reg

A
L

U DM Reg

IM Reg

A
L

U DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

beq $2, $1, here

here: lw

Required information to predict Taken:

1. Whether an instruction is a branch (before decode)

2. The target of the branch

3. The outcome of the branch condition

Required

knowledge

A 2,3

B 1,2,3

C 1,2

D 2

E None of the above

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 124

Branch Target Buffer
aka, how to know it’s a branch before you know it’s a branch

" Keeps track of the PCs of recently seen branches and their targets.

" Consult during Fetch (in parallel with Instruction Memory read) to
determine:

3 Is this a branch?

3 If so, what is the target

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 125

Reducing the Branch Delay

" Can we change anything in the pipeline to make branch delay less bad?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 126

Reducing the Branch Delay

First, let’s try to

get to 2-cycle stall

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 127

Stalling for Branch Hazards

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

BubbleBubble

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 128

Reducing the Branch Delay More??

Harder… but

possible to get to

a 1-cycle stall?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 129

Stalling for Branch Hazards

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 130

Quick Flashback:
Part I said, we only need <beq=, no <bgt=, <blt= in MIPS&

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 131

The Pipeline with flushing for taken branches
" Notice the

IF/ID flush

line added.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 132

Eliminating the Branch Stall
A cute idea, but not one used by modern cores

" There’s no rule that says we have to see the effect of the branch

immediately. Why not wait an extra instruction before branching?

" The original SPARC and MIPS processors each used a single

branch delay slot to eliminate single-cycle stalls after branches.

" The instruction after a conditional branch is always executed in those

machines, regardless of whether the branch is taken or not!

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 133

Branch Delay Slot

beq $4, $0, there

and $12, $2, $5

there: or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Branch delay slot instruction (next instruction after a branch) is

executed even if the branch is taken.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 134

Filling the branch delay slot

" The branch delay slot is only useful if you can find something to put

there.

" If you can’t find anything, you must put a nop to ensure correctness.

" Where do we find instructions to fill the branch delay slot?

3

3

3

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 135

Filling the branch delay slot

1 add $5, $3, $7

2 add $9, $1, $3

3 sub $6, $1, $4

4 and $7, $8, $2

5 beq $6, $7, there

nop /* branch delay slot */

6 add $9, $1, $4

7 sub $2, $9, $5

...

there:

8 mult $2, $10, $11

...

" Which instructions could be

used to replace the nop?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 136

Branch Delay Slots

" This works great for this implementation of the architecture, but

becomes a permanent part of the ISA.

" What about the MIPS R10000, which has a 5-cycle branch penalty, and

executes 4 instructions per cycle??

" What about the Pentium 4, which has a 21-cycle branch penalty and

executes up to 3 instructions per cycle???

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 137

Early resolution of branch + branch delay slot

" Worked well for MIPS R2000 (the 5-stage pipeline MIPS)

" Early resolution doesn’t scale well to modern architectures
3 Better to always have execute happen in execute

3 Forwarding into branch instruction?

" Branch delay slot
3 Doesn’t solve the problem in modern pipelines

3 Still in ISA, so have to make it work even though it doesn’t provide any
significant advantage.

3 Violates important general principal – (unless you really only want a single
generation of your product) do not expose current technology limitations to
the ISA.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 138

Okay, then…

" What do we do in modern architectures???

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 139

Branch Prediction

" Always assuming a branch is not taken is a crude form of

branch prediction.

" What about loops that are taken 95% of the time?

3 we would like the option of assuming not taken for some branches, and

assuming taken for others, depending on ???

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 140

Branch Prediction

" Historically, two broad classes of branch predictors:

" Static predictors – for branch B, always make the same prediction.

" Dynamic predictors – for branch B, make a new prediction every time the
branch is fetched.

" Tradeoffs?

" Modern CPUs all have sophisticated dynamic branch prediction.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 141

Dynamic Branch Prediction

" What information is available to make an intelligent prediction?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 142

Branch Prediction: Simplest 1-bit predictor

0

program counter for (i=0; i<10; i++) {

...

...

}

...

...
add $i, $i, #1

beq $i, #10, loop

031

1

0

PC-based Predictor Table
Multiple predictors, so that we can

answer “what has this branch

done lately”

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 143

Two-bit predictors give better loop prediction

This state machine also referred to as a saturating counter.

It counts down (on not takens) to 00 or up (on takens)

to 11, but does not wrap around.

for (i=0; i<10; i++) {

...

...

}

...

...
add $i, $i, #1

beq $i, #10, loop

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 144

Branch History Table
first introduced by the “[2-bit] bimodal predictor”

" has limited size

" 2 bits by N (e.g. 4K)

" uses low bits of branch address
to choose entry

" what about even/odd branch? Branch History Table
Multiple 2-bit predictors, so
that we can answer “what

has this branch done lately”

01

Branch Address

00

11

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 145

2-bit bimodal predictor

" For the following loop, what will

be the prediction accuracy of the

bimodal predictor for the

conditional branch that closes

the loop?

for (i=0; i< 2; i++)

//two iterations per loop

{ z = … }

Selection Accuracy

A 100%

B 50%

C 0%

D Maybe 0%,

maybe 50%

E other

01

Branch Address

00

11

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 146

2-bit bimodal misprediction rates

Is this good enough?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 147

Can We Do Better?

" Can we get more information dynamically than just the recent bias of
this branch?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 148

Can We Do Better?
Yes: 2-level local predictor

" Can we get more information dynamically than just the recent bias of
this branch?

" We can look at patterns (2-level local predictor) for a particular branch.

3 last eight branches 00100100, then it is a good guess that the next one is “1”
(taken)

000000

111111

001001

000000

address
BHT

00

00

11

PHT

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 149

Can We Do Better?
Yes: 2-level local predictor

000000

111111

001001

000000

address
BHT

00

00

11

PHT

" “2-level” à Two tables

" Pattern History Table (PHT)

3 Indexed by PC (branch address)

3 Width ~= Pattern Complexity

" Branch History Table (BHT)

3 Indexed by pattern

3 Same structure as used in the 2-bit

bimodal, but different meaning!

3 No longer “what is this branch likely
to do next”, now, “what is likely to

come next in this pattern”

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 150

Can We Do Better?
Yes: 2-level local predictor

000000

111111

001001

000000

address
BHT

00

00

11

PHT

" even / odd branch?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 151

Can We Do Better?

" Can we get more information dynamically than just the recent bias of
this branch?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 152

Can We Do Better?
Yes: Correlating Predictor

" Can we get more information dynamically than just the recent bias of

this branch?

" Correlating Branch Predictors also look at other branches for clues

if (i == 0)

...

if (i > 7)

...

" Typically use two indexes

3 Global history register --> history of last m branches (e.g., 0100011)

3 branch address

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 153

Correlating Branch Predictors

" The global history register (ghr) is a shift register that records the last n
branches (of any address) encountered by the processor.

3 ”What does the pattern of recent branching done tell me?”

ghr

2-bit predictors

00
01

11

00

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 154

Two-level correlating branch predictors

" Can use both the PC address and the GHR

" Most common – gshare: use xor as the combining function.

ghr

2-bit predictors

00
01

11

00
PC

combining
function

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 155

Are we happy yet????

" Combining branch predictors use multiple schemes and a voter to decide

which one typically does better for that branch.

PC

P1 P2

use P2

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 156

Compaq/Digital Alpha 21264

PC

10 3 2 2GHR

12

Local Predictor
Global

Predictor
Chooser

Branch Prediction

10

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 157

Aliasing in Branch Predictors

" Branch predictors will always be of finite size, while code size is relatively

unlimited.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 158

Aliasing in Branch Predictors

" Branch predictors will always be of finite size, while code size is relatively

unlimited.

" What happens when (in the common case) there are more branches

than entries in the branch predictor?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 159

Aliasing in Branch Predictors

" Branch predictors will always be of finite size, while code size is relatively
unlimited.

" What happens when (in the common case) there are more branches
than entries in the branch predictor?

" We call these conflicts aliasing.

" We can have negative aliasing (when biases are different) or neutral
aliasing (biases same). Positive aliasing is unlikely.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 160

Bimodal aliasing

branch address

00

PHT

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 161

Local Predictor Aliasing

000000

111111

001001

000000

address
BHT

00

00

11

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 162

Gshare aliasing

ghr

2-bit predictors

00
01

11

00
PC

xor

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 163

Branch Prediction

" Latest branch predictors significantly more sophisticated, using more

advanced correlating techniques, larger structures, and soon possibly

using AI techniques.

" Remember from earlier….

3 Presupposes what two pieces of information are available at fetch time?

"

"

3 Branch Target Buffer supplies this information.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 164

OKAY. So how many of these crazy branch predictor

variations do I need to memorize for CSE 141??

" What I want you to know about branch predictors:

3 Why they are useful (why do we put so much work into making good ones)?

3 What info do predictors need to operate, and where do they get this info?

3 How the simpler ones work, specifically…

" 1-bit predictor

" 2-bit bimodal predictor

" 2-level local predictor

3 What some of the ’additional tricks’ are, specifically…
" What is a “Global History Register”?

" What does a “combining function” do?

3 What problems can arise that confound prediction?

3 Given a description, how to analyze novel branch predictor performance

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 165

Defining CSE141 “standard parameters”
(And one more performance example while we’re at it)

loop: lw $15, 1000($2)

add $16, $15, $12

lw $18, 1004($2)

add $19, $18, $12

beq $19, $0, loop

nop

What is the steady-state CPI of this code?

Assume branch taken many times.

Assume 5-stage pipeline, forwarding,

early branch resolution, branch delay slot

Always assume this architecture if not

given the details

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 166

Putting it all together.

For a given program on our 5-stage MIPS pipeline processor:

" 20% of insts are loads, 50% of instructions following a

load are arithmetic instructions depending on the load

" 20% of instructions are branches.

" We manage to fill 80% of the branch delay slots with

useful instructions.

" What is the CPI of your program?

CPI

A 0.76

B 0.9

C 1.0

D 1.1

E 1.14

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 167

Given our 5-stage MIPS pipeline…

What is the steady state CPI for the following code?

Selection CPI

A 1

B 1.25

C 1.5

D 1.75

E None of the above

Loop: lw r1, 0 (r2)

add r2, r3, r4

sub r5, r1, r2

beq r5, $zero, Loop

nop

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 170

That was a lot.

" Seriously!

" Loosely, we just covered ~30 years of processor design in 4 weeks

3 (The good ideas are always more obvious in hindsight…)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 171

Pipelining Key Points

" ET = IC * CPI * CT

" Achieve high throughputwithout reducing instruction latency

" Pipelining exploits a special kind of parallelism (parallelism between
functionality required in different cycles by different instructions).

" Pipelining uses combinational logic to generate (and registers to
propagate) control signals.

" Pipelining creates potential hazards.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 172

Data Hazard Key Points

" Pipelining provides high throughput, but does not handle data
dependences easily.

" Data dependences cause data hazards.

" Data hazards can be solved by:

3 software (nops)

3 hardware stalling

3 hardware forwarding

" Our processor, and indeed all modern processors, use a combination of
forwarding and stalling.

" ET = IC * CPI * CT

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 173

Control Hazard Key Points

" Control (branch) hazards arise because we must fetch the next
instruction before we know:

3 if we are branching

3 where we are branching

" Control hazards are detected in hardware.

" We can reduce the impact of control hazards through:

3 early detection of branch address and condition

3 branch prediction

3 branch delay slots

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Leo Porter, Dean Tullsen, and the UCSD faculty 174

Branch Prediction Key Points

" Branch mispredicts are expensive, especially in deeper pipelines

" Predictors must answer three things correctly to avoid misprediction:

1. Is the instruction at this address a branch?

2. If so, are we likely to take this branch?

3. If so, where is it going to take us?

" The best predictions combine multiple sources of information

