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CSE 141: Introduction to Computer Architecture

Advanced Pipelines
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Part I: Branch Predictors, how do they actuallywork?

" Sometimes it’s easier to understand when you trace all the real pieces
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Branch Target Buffer
aka, how to know it’s a branch before you know it’s a branch

" Keeps track of the PCs of recently seen branches and their targets.

" Consult during Fetch (in parallel with Instruction Memory read) to 
determine:

3 Is this a branch?

3 If so, what is the target
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What about jumps?

" How many stalls/flushes are required for each of the following 

situations:

Jump Register, 

has BDS

Jump Immediate, 

has BDS

Jump Register, 

no BDS

Jump Immediate, 

no BDS

A 1 1 2 2

B 0 0 1 1

C 1 0 1 0

D 1 0 3 0

E None of the above
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Jump Immediate, Jump Register –with BDS

" What parts of our MIPS machine makes this stall, hazard free?
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Jump Immediate, Register – with no BDS

" What parts of this machine gets us to 1 stall / flush (which one, why?)
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Can we eliminate the flush for jumps?

" (I mean, would I ask if we couldn’t?)

" What is the difference between jump immediate and jump register here?
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Wait, if a jump is just a ‘control flow operation’ that we 

always take, can’t we just re-use the BTB?

" We could, but there are some reasons it’s not a great idea

3 (why not?)

3 Waste of space

" … not hard to predict whether a jump will be taken…

3 Aliasing

" Lots of “taken” predictions...
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What information do we need to mitigate different types of 

control flow hazards? How well can we do?

Need to learn in 

instruction type 

before decode?

Need to record 

history of last 

destination?

Control flow 

change 

prediction 

accuracy?

Destination 

prediction 

accuracy?

Jump 

Immediate
Yes Yes 100% 100%

Jump 

Register
Yes Yes 100% ???

Branch Yes Yes ??? ???
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What is this about?

Need to learn in 

instruction type 

before decode?

Need to record 

history of last 

destination?

Control flow 

change 

prediction 

accuracy?

Destination 

prediction 

accuracy?

Jump 

Immediate
Yes Yes 100% 100%

Jump 

Register
Yes Yes 100% ???

Jump 

Register to 

________

Yes No 100% ~100%

Branch Yes Yes ??? ???
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To support all these different needs, we build custom

structures for each case [caveat: names vary!]

Need to learn in 

instruction type 

before decode?

Need to record 

history of last 

destination?

Control flow 

change 

prediction 

accuracy?

Destination 

prediction 

accuracy?

Jump 

Immediate
Jump History Table

Jump 

Register
Jump History Table

JR to $ra Return Address Stack

Branch Branch History Table
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The best way to keep track of all of this is to reason out 

what is needed to support various features

" What must _________________, that handles jump immediate, look like?
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The best way to keep track of all of this is to reason out 

what is needed to support various features

" What must _________________, that handles jump register, look like?



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 14

The best way to keep track of all of this is to reason out 

what is needed to support various features

" What must _________________, that handles jump to $ra, look like?
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The best way to keep track of all of this is to reason out 

what is needed to support various features

" What must _________________, that handles branches, look like?
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Pulling it all back together: For our MIPS machine without 

BDS, but with JHT, RAS, and BHT…

" Workload is 50% arithmetic, 5% jump immediate, 10% jump to GP 
register, 15% jump to $ra, and 20% branches.

3 Jumps to GP registers go to the same destination 90% of the time

3 Branches are predicted with 80% accuracy

3 Assume no aliasing

" What is the CPI?
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Reviewing the branch predictors we have learned about

" Single-bit predictor

" Two-bit bimodal

" Two-level local
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Rank the physical size of the following control hazard 

mitigation hardware elements

i. 1024-entry JHT

ii. 1024-entry BHT with 1-bit predictors

iii. 512-entry BHT with bimodal predictors

iv. 256-entry BHT and a 2-level local predictor with 7-bit patterns and 1-bit 

predictors
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What are all these entries worth anyway?

" Assume the following branches are encountered in a loop such that each 

branch is seen once each loop

" If a machine has a 256-entry BHT with 1-bit predictors, what is the 

prediction accuracy for each branch?

Inst Addr Branch Pattern

0x400    T T T T

0x600    T N T N

0x800    N N N N

0x400 0x600 0x800

A 100% 0% 100%

B 0% 0% 0%

C 100% 50% 100%

D 33% 33% 33%

E None of these
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Part II: Exceptions

" This is the last piece of what’s needed to make a “real” CPU useful
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Exceptions

" There are two sources of non-sequential control flow in a processor

3 explicit branch and jump instructions

3 exceptions

" Branches are synchronous and deterministic

" Exceptions are typically asynchronous and non-deterministic

" Guess which is more difficult to handle?

(recall: control flow refers to the movement of the program counter through memory)



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 22

Exceptions and Interrupts

The terminology is not always consistent, but we’ll refer to

" exceptions as any unexpected change in control flow

" interrupts as any externally-caused exception

So then, what is:

3 arithmetic overflow

3 divide by zero

3 I/O device signals completion to CPU

3 user program invokes the OS

3 memory parity error

3 illegal instruction

3 timer signal
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For now...

" The machine we’ve been designing in class can generate two types of 

exceptions.

3

3
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For now...

" The machine we’ve been designing in class can generate three types of 

exceptions:

3 arithmetic overflow

3 illegal instruction

3 illegal memory address

" On an exception, we need to

3 save the PC (invisible to user code)

3 record the nature of the exception/interrupt

3 transfer control to OS
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First steps towards supporting exceptions

" For our MIPS-subset architecture, we will add two 
registers:

3 EPC:  a 32-bit register to hold the user’s PC

3 Cause:  A register to record the cause of the exception

" we’ll assume undefined inst = 0, overflow = 1

" We will also add three control signals:

3 EPCWrite (will need to be able to subtract 4 from PC)

3 CauseWrite

3 IntCause

" We will extend PCSource multiplexor to be able to 
latch the interrupt handler address into the PC.

E
P
C

C
au
se

P
C

PCWrite EPCWrite

CauseWrite

IntCause

PCSource

Interrupt

Handler
Address
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Pipelining and Exceptions

" Again, exceptions represent another form of control flow and therefore 
control dependence.

" Therefore, they create a potential branch hazard

" Exceptions must be recognized early enough in the pipeline that subsequent 
instructions can be flushed before they change any permanent state.

3 Q: What is the first stage that can change permanent state?

" We also have issues with handling exceptions in the correct order and 
“exceptions” on speculative instructions.

" Exception-handling that always correctly identifies the offending 
instruction is called precise

3 (different words, same idea: ARM has asynchronous / synchronous exceptions)
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Pipelining and Exceptions – The Whole Picture

(except not really)
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Part III: The Fancy Stuff in Real (Fast) Machines



CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 29

Pipelining in Today’s Most Advanced Processors

" Not fundamentally different than the techniques we discussed

" Deeper pipelines

" Pipelining is combined with 

3 superscalar execution

3 out-of-order execution

3 VLIW (very-long-instruction-word)
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Deeper Pipelines

" Power 4

" Pentium 3

" Pentium 4
Pentium 4 “Prescott”
- Deeper still: 31 stages!

- Planned for up to 5 GHz 
operation! (scrapped)
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Superscalar Execution
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Selection

A Any two instructions

B Any two independent instructions

C An arithmetic instruction and a memory instruction

D Any instruction and a memory instruction

E None of the above

What can this do in 

parallel?
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A modest superscalar MIPS

" what can this machine do in parallel?

" what other logic is required?

" Represents earliest superscalar technology (eg, circa early 1990s)
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Superscalar Execution

" To execute four instructions in the same cycle, we must find four 
independent instructions
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Superscalar Execution

" To execute four instructions in the same cycle, we must find four 
independent instructions

" If the four instructions fetched are guaranteed by the compiler to be 
independent, this is a VLIW machine
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Superscalar Execution

" To execute four instructions in the same cycle, we must find four 
independent instructions

" If the four instructions fetched are guaranteed by the compiler to be 
independent, this is a VLIW machine

" If the four instructions fetched are only executed together if hardware
confirms that they are independent, this is an in-order superscalar
processor.
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Superscalar Execution

" To execute four instructions in the same cycle, we must find four 
independent instructions

" If the four instructions fetched are guaranteed by the compiler to be 
independent, this is a VLIW machine

" If the four instructions fetched are only executed together if hardware 
confirms that they are independent, this is an in-order superscalar 
processor.

" If the hardware actively finds four (not necessarily consecutive) 
instructions that are independent, this is an out-of-order superscalar
processor.
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Superscalar Execution

" To execute four instructions in the same cycle, we must find four 
independent instructions

" If the four instructions fetched are guaranteed by the compiler to be 
independent, this is a VLIW machine

" If the four instructions fetched are only executed together if hardware 
confirms that they are independent, this is an in-order superscalar 
processor.

" If the hardware actively finds four (not necessarily consecutive) 
instructions that are independent, this is an out-of-order superscalar 
processor.

" What do you think are the tradeoffs?
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Superscalar Scheduling

" Assume in-order, 2-issue, ld-store followed by integer

lw $6,   36($2)

add  $5,  $6, $4
lw $7, 1000($5)

sub  $9, $12, $5

" Assume 4-issue, in-order, any combination (VLIW?)

lw $6, 36($2)

add  $5,  $6, $4
lw $7, 1000($5)

sub  $9, $12, $5

sw $5,  200($6)

add  $3,  $9, $9

and $11,  $7, $6
" When does each instruction begin execution?
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Superscalar vs. superpipelined

(multiple instructions in the same stage, same clock rate as scalar)

(more total stages, faster clock rate)
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Dynamic Scheduling

aka,Out-of-Order Scheduling

" Issues (begins execution of) an instruction as soon as all of its 
dependences are satisfied, even if prior instructions are stalled.  
(assume 2-issue, any combination)

lw $6,   36($2)

add  $5,  $6, $4

lw $7, 1000($5)

sub  $9, $12, $8

sw $5,  200($6)

add  $3,  $9, $9

and $11,  $5, $6
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Reservation Stations
(other pieces: ROB, RAT, RRAT.. CSE 148 covers these!)

" Are a mechanism to allow dynamic scheduling (out of order execution)

ALU op rs rs value rt rt value rdy

result bus

Execution

Unit

reg

file

ALU op rs rs value rt rt value rdy

ALU op rs rs value rt rt value rdy
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Pentium 4
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Modern  (Pre-Multicore) Processors

" Pentium II, III – 3-wide superscalar, out-of-order, 14 integer pipeline stages

" Pentium 4 – 3-wide superscalar, out-of-order, simultaneous multithreading,  20+ pipe stages

" AMD Athlon, 3-wide ss, out-of-order, 10 integer pipe stages

" AMD Opteron, similar to Athlon, with 64-bit registers, 12 pipe stages, better multiprocessor 
support.

" Alpha 21164 – 2-wide ss, in-order, 7 pipe stages

" Alpha 21264 – 4-wide ss, out-of-order, 7 pipe stages

" Intel Itanium – 3-operation VLIW, 2-instruction issue (6 ops per cycle), in-order, 10-stage pipeline
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More Recent Developments – Multicore Processors

" IBM Power 4, 5, 6, 7
3 Power 4 dual core
3 Power 5 and 6, dual core, 2 simultaneous multithreading (SMT) threads/core
3 Power7 4-8 cores, 4 SMT threads per core

" Sun Niagara
3 8 cores, 4 threads/core (32 threads).  
3 Simple, in-order, scalar cores.

" Sun Niagara 2
3 8 cores, 8 threads/core.

" Intel Quad Core Xeon

" AMD Quad Core Opteron

" Intel Nehalem, Ivy Bridge, Sandy Bridge, Haswell, Skylake, …(Core i3, i5, i7, etc.)
3 2 to 8 cores, each core SMT (2 threads)

" AMD Phenom II
3 6 cores, not multithreaded

" AMD Zen
3 4-8 (mainstream, but up to 32) cores, 2 SMT threads/core, superscalar (6 micro-op/cycle)
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Intel SkyLake

" Up to 4 cores (CPUs)

" Each core can have 224 uncommitted instructions in the pipeline
" Up to 72 loads

" Up to 56 stores

3 97 unexecuted instructions in the pipeline waiting to be scheduled

3 Has 180 physical integer registers (used via register renaming)

3 Has 168 physical floating point registers

3 Executes up to 4 (?) micro-ops/cycle (think RISC instructions)

3 Has a 16-cycle branch hazard 

" (note—Intel now hiding more and more architectural details)
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Intel SkyLake
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What do we know about the Apple M1? We can learn from 

the A14 (the M1 may be a rebranded, lightly enhanced A14)

This part makes a lot of 
sense for a new player

This part implies 

they must be doing 

something different
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(Really this section should be what does Andrei Frumusanu know 

about the M1 – the AnandTech writeup is pretty good)

" 12 MB L2 cache [this is huge]
" C.f. Intel Tiger Lake @ 1.25*4 = 5MB
" C.f. Intel Cooper Lake @ 1*28 = 28MB

" For $13,000
" Massive ILP

" 8-wide instruction issue [SMT actual unclear]
" C.f. Intel’s 1+4 [CISC limitation??]
" C.f. Samsung 6-wide [also ARM]

" Truly massive OoO window
" ~630 instructions in flight??
" C.f. Intel Willow Cove at 352
" C.f. AMD Zen3 at 256

Much more here: https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
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The 

Internet’s 

Educated 

Guess
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Part III: The Less Fancy Stuff in Real (Low-Power) Machines

" How much of a real processor can we implement with CSE 141 alone?
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Acorn/Advanced RISC Machine (ARM) has three processor 

families

" Cortex A – “Application” processors

" Cortex R – “Real-Time” processors

" Cortex M – “Microcontroller” processors

3 (get it?)
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The Cortex-M family exposes a wide tradeoff of capability 
and cost – measured mostly in $$, Joules, and die area
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Let’s look at the ARM Cortex-M3 in depth

" ISA: “Thumb2”, specifically ARMv7-M

3 Mixed 16/32-bit instructions [“hybrid length” 
instructions]

3 Compromise: many instructions can be compact, 
why waste bits? Still simple (just two cases)

" 3 stage, in-order, single issue pipeline

3 With single-cycle hardware multiply!

" It has a branch predictor…

3 It predicts Not Taken!

3 2 cycle mis-predict penalty

" It has a 3-word prefetcher

3 Prefetchers help make unified memory designs fast

3 Q: How many instructions can prefetcher hold?
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Implications of being area and energy constrained

" Performance / Watt >> than raw Performance
3 Latest designs are 22 µA/MHz (this is the measure that matters for IoT!)

" Fewer general purpose registers (There are 16)
3 Many of the smaller (16-bit) encodings can only access r0-r7

" Much slower core frequency (many in the 1-8 MHz, fastest M3’s 48 or maybe 200 MHz)

" Much simpler microarchitecture
3 In-order design
3 Limited parallelism

" Tightly coupled memory -- No cache!
3 (well, a 3 word instruction cache)
3 Just 1 cycle memory access penalty! (i.e. ldr instruction takes 2 cycles, with no cache!)

3 VERY different than traditional processors

" Q: How might Amdahl’s law explain tradeoffs in embedded MCUs?
3 Embedded processors are duty cycled, modern ones run ~0.1% of the time

3 In embedded: Compute is not the bottleneck! New arch tradeoff opportunity!
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How is ML at the edge 

changing the edge?

" Hot new chip: MAX78000

3 22 uA/MHz Cortex-M4

3 + RISC-V Co-Processor

3 + CNN accelerator

3 + many peripherals

In this whole chip, this 

part is the processor

https://www.maximintegrated.com/en/products/microcontrollers/MAX78000.html
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There are many, many more deeply embedded processors 

than high performance general purpose processors

" 0% of processors in the world are “high-performance” processors

3 Seriously, the number of Intel Core XXX and AMD XXX are a rounding error 
compared to AVR, MIPS (yes, our MIPS), PIC, ARM Cortex M’s, etc

" So why do we talk about the fancy machines?

3 Thought experiment: Which gives you the most aggregate processing power:

3 (Very) Coarse estimate: 1 trillion PIC-8’s in the world

" Say, average 50 MHz, CPI of ~20 [for 32-bit math]

3 (Very) Coarse estimate: 120 billion ARM Cortex-M’s in the world
" Say, average 24 MHz, CPI of ~1.25

3 (Very) Coarse estimate: 1 billion Intel Core i7’s in the world
" Say, average 4 GHz, CPI of ~0.25
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Advanced Pipelining -- Key Points

" Prediction takes real space, and structure informs operation
" Exceptions are another form of control flow

3 An ”unexpected branch” or ”unprogrammed branch” perhaps

" Scalar [fancy word for non-parallel] pipelining attempts to get CPI close 
to 1.  To improve performance we must reduce cycle time 
(superpipelining) or get CPI below 1 (superscalar, VLIW).
3 What are the costs / problems of pipelining too deeply? When does better CT 

no longer improve ET?

" Modern processors are fast because they work on many hundred
instructions at once

" Simple pipelines are valuable when raw performance is less important
3 Specialization can be more efficient, but only if you know workload!


