
CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 1

CSE 141: Introduction to Computer Architecture

Advanced Pipelines

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 2

Part I: Branch Predictors, how do they actuallywork?

" Sometimes it’s easier to understand when you trace all the real pieces

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 3

Branch Target Buffer
aka, how to know it’s a branch before you know it’s a branch

" Keeps track of the PCs of recently seen branches and their targets.

" Consult during Fetch (in parallel with Instruction Memory read) to
determine:

3 Is this a branch?

3 If so, what is the target

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 4

What about jumps?

" How many stalls/flushes are required for each of the following

situations:

Jump Register,

has BDS

Jump Immediate,

has BDS

Jump Register,

no BDS

Jump Immediate,

no BDS

A 1 1 2 2

B 0 0 1 1

C 1 0 1 0

D 1 0 3 0

E None of the above

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 5

Jump Immediate, Jump Register –with BDS

" What parts of our MIPS machine makes this stall, hazard free?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 6

Jump Immediate, Register – with no BDS

" What parts of this machine gets us to 1 stall / flush (which one, why?)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 7

Can we eliminate the flush for jumps?

" (I mean, would I ask if we couldn’t?)

" What is the difference between jump immediate and jump register here?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 8

Wait, if a jump is just a ‘control flow operation’ that we

always take, can’t we just re-use the BTB?

" We could, but there are some reasons it’s not a great idea

3 (why not?)

3 Waste of space

" … not hard to predict whether a jump will be taken…

3 Aliasing

" Lots of “taken” predictions...

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 9

What information do we need to mitigate different types of

control flow hazards? How well can we do?

Need to learn in

instruction type

before decode?

Need to record

history of last

destination?

Control flow

change

prediction

accuracy?

Destination

prediction

accuracy?

Jump

Immediate
Yes Yes 100% 100%

Jump

Register
Yes Yes 100% ???

Branch Yes Yes ??? ???

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 10

What is this about?

Need to learn in

instruction type

before decode?

Need to record

history of last

destination?

Control flow

change

prediction

accuracy?

Destination

prediction

accuracy?

Jump

Immediate
Yes Yes 100% 100%

Jump

Register
Yes Yes 100% ???

Jump

Register to

Yes No 100% ~100%

Branch Yes Yes ??? ???

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 11

To support all these different needs, we build custom

structures for each case [caveat: names vary!]

Need to learn in

instruction type

before decode?

Need to record

history of last

destination?

Control flow

change

prediction

accuracy?

Destination

prediction

accuracy?

Jump

Immediate
Jump History Table

Jump

Register
Jump History Table

JR to $ra Return Address Stack

Branch Branch History Table

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 12

The best way to keep track of all of this is to reason out

what is needed to support various features

" What must _________________, that handles jump immediate, look like?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 13

The best way to keep track of all of this is to reason out

what is needed to support various features

" What must _________________, that handles jump register, look like?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 14

The best way to keep track of all of this is to reason out

what is needed to support various features

" What must _________________, that handles jump to $ra, look like?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 15

The best way to keep track of all of this is to reason out

what is needed to support various features

" What must _________________, that handles branches, look like?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 16

Pulling it all back together: For our MIPS machine without

BDS, but with JHT, RAS, and BHT…

" Workload is 50% arithmetic, 5% jump immediate, 10% jump to GP
register, 15% jump to $ra, and 20% branches.

3 Jumps to GP registers go to the same destination 90% of the time

3 Branches are predicted with 80% accuracy

3 Assume no aliasing

" What is the CPI?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 17

Reviewing the branch predictors we have learned about

" Single-bit predictor

" Two-bit bimodal

" Two-level local

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 18

Rank the physical size of the following control hazard

mitigation hardware elements

i. 1024-entry JHT

ii. 1024-entry BHT with 1-bit predictors

iii. 512-entry BHT with bimodal predictors

iv. 256-entry BHT and a 2-level local predictor with 7-bit patterns and 1-bit

predictors

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 19

What are all these entries worth anyway?

" Assume the following branches are encountered in a loop such that each

branch is seen once each loop

" If a machine has a 256-entry BHT with 1-bit predictors, what is the

prediction accuracy for each branch?

Inst Addr Branch Pattern

0x400 T T T T

0x600 T N T N

0x800 N N N N

0x400 0x600 0x800

A 100% 0% 100%

B 0% 0% 0%

C 100% 50% 100%

D 33% 33% 33%

E None of these

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 20

Part II: Exceptions

" This is the last piece of what’s needed to make a “real” CPU useful

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 21

Exceptions

" There are two sources of non-sequential control flow in a processor

3 explicit branch and jump instructions

3 exceptions

" Branches are synchronous and deterministic

" Exceptions are typically asynchronous and non-deterministic

" Guess which is more difficult to handle?

(recall: control flow refers to the movement of the program counter through memory)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 22

Exceptions and Interrupts

The terminology is not always consistent, but we’ll refer to

" exceptions as any unexpected change in control flow

" interrupts as any externally-caused exception

So then, what is:

3 arithmetic overflow

3 divide by zero

3 I/O device signals completion to CPU

3 user program invokes the OS

3 memory parity error

3 illegal instruction

3 timer signal

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 23

For now...

" The machine we’ve been designing in class can generate two types of

exceptions.

3

3

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 24

For now...

" The machine we’ve been designing in class can generate three types of

exceptions:

3 arithmetic overflow

3 illegal instruction

3 illegal memory address

" On an exception, we need to

3 save the PC (invisible to user code)

3 record the nature of the exception/interrupt

3 transfer control to OS

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 25

First steps towards supporting exceptions

" For our MIPS-subset architecture, we will add two
registers:

3 EPC: a 32-bit register to hold the user’s PC

3 Cause: A register to record the cause of the exception

" we’ll assume undefined inst = 0, overflow = 1

" We will also add three control signals:

3 EPCWrite (will need to be able to subtract 4 from PC)

3 CauseWrite

3 IntCause

" We will extend PCSource multiplexor to be able to
latch the interrupt handler address into the PC.

E
P
C

C
au
se

P
C

PCWrite EPCWrite

CauseWrite

IntCause

PCSource

Interrupt

Handler
Address

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 26

Pipelining and Exceptions

" Again, exceptions represent another form of control flow and therefore
control dependence.

" Therefore, they create a potential branch hazard

" Exceptions must be recognized early enough in the pipeline that subsequent
instructions can be flushed before they change any permanent state.

3 Q: What is the first stage that can change permanent state?

" We also have issues with handling exceptions in the correct order and
“exceptions” on speculative instructions.

" Exception-handling that always correctly identifies the offending
instruction is called precise

3 (different words, same idea: ARM has asynchronous / synchronous exceptions)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 27

Pipelining and Exceptions – The Whole Picture

(except not really)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 28

Part III: The Fancy Stuff in Real (Fast) Machines

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 29

Pipelining in Today’s Most Advanced Processors

" Not fundamentally different than the techniques we discussed

" Deeper pipelines

" Pipelining is combined with

3 superscalar execution

3 out-of-order execution

3 VLIW (very-long-instruction-word)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 30

Deeper Pipelines

" Power 4

" Pentium 3

" Pentium 4
Pentium 4 “Prescott”
- Deeper still: 31 stages!

- Planned for up to 5 GHz
operation! (scrapped)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 31

Superscalar Execution
IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

IM Reg

A
L
U DM Reg

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 32

Selection

A Any two instructions

B Any two independent instructions

C An arithmetic instruction and a memory instruction

D Any instruction and a memory instruction

E None of the above

What can this do in

parallel?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 33

A modest superscalar MIPS

" what can this machine do in parallel?

" what other logic is required?

" Represents earliest superscalar technology (eg, circa early 1990s)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 34

Superscalar Execution

" To execute four instructions in the same cycle, we must find four
independent instructions

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 35

Superscalar Execution

" To execute four instructions in the same cycle, we must find four
independent instructions

" If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 36

Superscalar Execution

" To execute four instructions in the same cycle, we must find four
independent instructions

" If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

" If the four instructions fetched are only executed together if hardware
confirms that they are independent, this is an in-order superscalar
processor.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 37

Superscalar Execution

" To execute four instructions in the same cycle, we must find four
independent instructions

" If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

" If the four instructions fetched are only executed together if hardware
confirms that they are independent, this is an in-order superscalar
processor.

" If the hardware actively finds four (not necessarily consecutive)
instructions that are independent, this is an out-of-order superscalar
processor.

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 38

Superscalar Execution

" To execute four instructions in the same cycle, we must find four
independent instructions

" If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

" If the four instructions fetched are only executed together if hardware
confirms that they are independent, this is an in-order superscalar
processor.

" If the hardware actively finds four (not necessarily consecutive)
instructions that are independent, this is an out-of-order superscalar
processor.

" What do you think are the tradeoffs?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 39

Superscalar Scheduling

" Assume in-order, 2-issue, ld-store followed by integer

lw $6, 36($2)

add $5, $6, $4
lw $7, 1000($5)

sub $9, $12, $5

" Assume 4-issue, in-order, any combination (VLIW?)

lw $6, 36($2)

add $5, $6, $4
lw $7, 1000($5)

sub $9, $12, $5

sw $5, 200($6)

add $3, $9, $9

and $11, $7, $6
" When does each instruction begin execution?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 40

Superscalar vs. superpipelined

(multiple instructions in the same stage, same clock rate as scalar)

(more total stages, faster clock rate)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 41

Dynamic Scheduling

aka,Out-of-Order Scheduling

" Issues (begins execution of) an instruction as soon as all of its
dependences are satisfied, even if prior instructions are stalled.
(assume 2-issue, any combination)

lw $6, 36($2)

add $5, $6, $4

lw $7, 1000($5)

sub $9, $12, $8

sw $5, 200($6)

add $3, $9, $9

and $11, $5, $6

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 42

Reservation Stations
(other pieces: ROB, RAT, RRAT.. CSE 148 covers these!)

" Are a mechanism to allow dynamic scheduling (out of order execution)

ALU op rs rs value rt rt value rdy

result bus

Execution

Unit

reg

file

ALU op rs rs value rt rt value rdy

ALU op rs rs value rt rt value rdy

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 43

Pentium 4

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 44

Modern (Pre-Multicore) Processors

" Pentium II, III – 3-wide superscalar, out-of-order, 14 integer pipeline stages

" Pentium 4 – 3-wide superscalar, out-of-order, simultaneous multithreading, 20+ pipe stages

" AMD Athlon, 3-wide ss, out-of-order, 10 integer pipe stages

" AMD Opteron, similar to Athlon, with 64-bit registers, 12 pipe stages, better multiprocessor
support.

" Alpha 21164 – 2-wide ss, in-order, 7 pipe stages

" Alpha 21264 – 4-wide ss, out-of-order, 7 pipe stages

" Intel Itanium – 3-operation VLIW, 2-instruction issue (6 ops per cycle), in-order, 10-stage pipeline

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 45

More Recent Developments – Multicore Processors

" IBM Power 4, 5, 6, 7
3 Power 4 dual core
3 Power 5 and 6, dual core, 2 simultaneous multithreading (SMT) threads/core
3 Power7 4-8 cores, 4 SMT threads per core

" Sun Niagara
3 8 cores, 4 threads/core (32 threads).
3 Simple, in-order, scalar cores.

" Sun Niagara 2
3 8 cores, 8 threads/core.

" Intel Quad Core Xeon

" AMD Quad Core Opteron

" Intel Nehalem, Ivy Bridge, Sandy Bridge, Haswell, Skylake, …(Core i3, i5, i7, etc.)
3 2 to 8 cores, each core SMT (2 threads)

" AMD Phenom II
3 6 cores, not multithreaded

" AMD Zen
3 4-8 (mainstream, but up to 32) cores, 2 SMT threads/core, superscalar (6 micro-op/cycle)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 46

Intel SkyLake

" Up to 4 cores (CPUs)

" Each core can have 224 uncommitted instructions in the pipeline
" Up to 72 loads

" Up to 56 stores

3 97 unexecuted instructions in the pipeline waiting to be scheduled

3 Has 180 physical integer registers (used via register renaming)

3 Has 168 physical floating point registers

3 Executes up to 4 (?) micro-ops/cycle (think RISC instructions)

3 Has a 16-cycle branch hazard

" (note—Intel now hiding more and more architectural details)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 47

Intel SkyLake

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 48

What do we know about the Apple M1? We can learn from

the A14 (the M1 may be a rebranded, lightly enhanced A14)

This part makes a lot of
sense for a new player

This part implies

they must be doing

something different

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 49

(Really this section should be what does Andrei Frumusanu know

about the M1 – the AnandTech writeup is pretty good)

" 12 MB L2 cache [this is huge]
" C.f. Intel Tiger Lake @ 1.25*4 = 5MB
" C.f. Intel Cooper Lake @ 1*28 = 28MB

" For $13,000
" Massive ILP

" 8-wide instruction issue [SMT actual unclear]
" C.f. Intel’s 1+4 [CISC limitation??]
" C.f. Samsung 6-wide [also ARM]

" Truly massive OoO window
" ~630 instructions in flight??
" C.f. Intel Willow Cove at 352
" C.f. AMD Zen3 at 256

Much more here: https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 50

The

Internet’s

Educated

Guess

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 51

Part III: The Less Fancy Stuff in Real (Low-Power) Machines

" How much of a real processor can we implement with CSE 141 alone?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 52

Acorn/Advanced RISC Machine (ARM) has three processor

families

" Cortex A – “Application” processors

" Cortex R – “Real-Time” processors

" Cortex M – “Microcontroller” processors

3 (get it?)

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 53

The Cortex-M family exposes a wide tradeoff of capability
and cost – measured mostly in $$, Joules, and die area

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 54

Let’s look at the ARM Cortex-M3 in depth

" ISA: “Thumb2”, specifically ARMv7-M

3 Mixed 16/32-bit instructions [“hybrid length”
instructions]

3 Compromise: many instructions can be compact,
why waste bits? Still simple (just two cases)

" 3 stage, in-order, single issue pipeline

3 With single-cycle hardware multiply!

" It has a branch predictor…

3 It predicts Not Taken!

3 2 cycle mis-predict penalty

" It has a 3-word prefetcher

3 Prefetchers help make unified memory designs fast

3 Q: How many instructions can prefetcher hold?

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 55

Implications of being area and energy constrained

" Performance / Watt >> than raw Performance
3 Latest designs are 22 µA/MHz (this is the measure that matters for IoT!)

" Fewer general purpose registers (There are 16)
3 Many of the smaller (16-bit) encodings can only access r0-r7

" Much slower core frequency (many in the 1-8 MHz, fastest M3’s 48 or maybe 200 MHz)

" Much simpler microarchitecture
3 In-order design
3 Limited parallelism

" Tightly coupled memory -- No cache!
3 (well, a 3 word instruction cache)
3 Just 1 cycle memory access penalty! (i.e. ldr instruction takes 2 cycles, with no cache!)

3 VERY different than traditional processors

" Q: How might Amdahl’s law explain tradeoffs in embedded MCUs?
3 Embedded processors are duty cycled, modern ones run ~0.1% of the time

3 In embedded: Compute is not the bottleneck! New arch tradeoff opportunity!

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 56

How is ML at the edge

changing the edge?

" Hot new chip: MAX78000

3 22 uA/MHz Cortex-M4

3 + RISC-V Co-Processor

3 + CNN accelerator

3 + many peripherals

In this whole chip, this

part is the processor

https://www.maximintegrated.com/en/products/microcontrollers/MAX78000.html

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 57

There are many, many more deeply embedded processors

than high performance general purpose processors

" 0% of processors in the world are “high-performance” processors

3 Seriously, the number of Intel Core XXX and AMD XXX are a rounding error
compared to AVR, MIPS (yes, our MIPS), PIC, ARM Cortex M’s, etc

" So why do we talk about the fancy machines?

3 Thought experiment: Which gives you the most aggregate processing power:

3 (Very) Coarse estimate: 1 trillion PIC-8’s in the world

" Say, average 50 MHz, CPI of ~20 [for 32-bit math]

3 (Very) Coarse estimate: 120 billion ARM Cortex-M’s in the world
" Say, average 24 MHz, CPI of ~1.25

3 (Very) Coarse estimate: 1 billion Intel Core i7’s in the world
" Say, average 4 GHz, CPI of ~0.25

CSE 141 CC BY-NC-ND Pat Pannuto – Many slides adapted from Dean Tullsen, Leo Porter, and other UCSD faculty 58

Advanced Pipelining -- Key Points

" Prediction takes real space, and structure informs operation
" Exceptions are another form of control flow

3 An ”unexpected branch” or ”unprogrammed branch” perhaps

" Scalar [fancy word for non-parallel] pipelining attempts to get CPI close
to 1. To improve performance we must reduce cycle time
(superpipelining) or get CPI below 1 (superscalar, VLIW).
3 What are the costs / problems of pipelining too deeply? When does better CT

no longer improve ET?

" Modern processors are fast because they work on many hundred
instructions at once

" Simple pipelines are valuable when raw performance is less important
3 Specialization can be more efficient, but only if you know workload!

