CSE 141: Introduction to Computer Architecture

Advanced Pipelines



Part I: Branch Predictors, how do they actually work?

 Sometimes it's easier to understand when you trace all the real pieces



Branch Target Buffer

aka, how to know it’s a branch before you know it’s a branch

* Keeps track of the PCs of recently seen branches and their targets.
« Consult during Fetch (in parallel with Instruction Memory read) to
determine:
— Isthis a branch?
— If so, what is the target



What about jumps?

* How many stalls/flushes are required for each of the following
situations:

Jump Register, | Jump Immediate, | Jump Register, | Jump Immediate,
has BDS has BDS no BDS no BDS
A 2 2

1 1
B %) (%] 1 1
C 1 0 1 0
D 1 0 3 0
E None of the above



Jump Immediate, Jump Register — with BDS

* What parts of our MIPS machine makes this stall, hazard free?



Jump Immediate, Register - with no BDS

* What parts of this machine gets us to 1stall / flush (which one, why?)



Can we eliminate the flush for jumps?

* (I mean, would | ask if we couldn’t?)
* What is the difference between jump immediate and jump register here?



Wait, if a jump is just a ‘control flow operation’ that we
always take, can’t we just re-use the BTB?

* We could, but there are some reasons it's not a great idea
— (why not?)
— Waste of space
* ... not hard to predict whether a jump will be taken...
— Aliasing
* Lots of "taken” predictions...



What information do we need to mitigate different types of
control flow hazards? How well can we do?

Need to learnin Need torecord Control flow Destination
instruction type history of last change prediction
before decode? destination? prediction accuracy?
accuracy?
Jump Yes Yes 100% 100%
Immediate
ngp Yes Yes 100% ??7?
Register
Branch Yes Yes 27?7 27?7




What is this about?

Need to learnin Need to record Control flow Destination
instruction type history of last change prediction
before decode? destination? prediction accuracy?
accuracy?
Jump Yes Yes 100% 100%
Immediate
ngp Yes Yes 100% 27?7
Register
Jump
Register to Yes No 100% ~100%
Branch Yes Yes 27?7 27?7




To support all these different needs, we build custom
structures for each case [caveat: names vary!]

Need to learnin Need to record Control flow Destination
instruction type history of last change prediction
before decode? destination? prediction accuracy?
accuracy?
Jump .
Immediate Jump History Table
Jump .
Register Jump History Table
JRto $ra Return Address Stack
Branch Branch History Table




The best way to keep track of all of this is to reason out
what is needed to support various features

* What must , that handles jump immediate, look like?




The best way to keep track of all of this is to reason out
what is needed to support various features

 What must , that handles jump register, look like?




The best way to keep track of all of this is to reason out
what is needed to support various features

* What must , that handles jump to $ra, look like?




The best way to keep track of all of this is to reason out
what is needed to support various features

* What must , that handles branches, look like?




Pulling it all back together: For our MIPS machine without
BDS, but with JHT, RAS, and BHT...

* Workload is 50% arithmetic, 5% jump immediate, 10% jump to GP
register, 15% jump to $ra, and 20% branches.
— Jumps to GP registers go to the same destination 90% of the time
— Branches are predicted with 80% accuracy
— Assume no aliasing

e Whatis the CPI?



Reviewing the branch predictors we have learned about

* Single-bit predictor

 Two-bit bimodal

 Two-level local



Rank the physical size of the following control hazard
mitigation hardware elements

. 1024-entry JHT
ii. 1024-entry BHT with 1-bit predictors
iii. 512-entry BHT with bimodal predictors

iv. 256-entry BHT and a 2-level local predictor with 7-bit patterns and 1-bit
predictors



What are all these entries worth anyway?

* Assume the following branches are encountered in a loop such that each
branch is seen once each loop

e If amachine has a 256-entry BHT with 1-bit predictors, what is the

prediction accuracy for each branch?
0x400 0x600 (0)'¢:{0]0)
st Addr  Branch pattern  NREHRECREELE

A 100% 0% 100%
Ox400 TTTT o o o

B 0% 0% 0%
Ox600 TNTN

C 100% 50% 100%
Ox800 N NNN

D 33% 33% 33%

E None of these



Part ll: Exceptions

* Thisis the last piece of what's needed to make a “real” CPU useful



Exceptions

There are two sources of non-sequential control flow in a processor

— explicit branch and jump instructions
— exceptions

Branches are synchronous and deterministic
Exceptions are typically asynchronous and non-deterministic
Guess which is more difficult to handle?

(recall: control flow refers to the movement of the program counter through memory)



Exceptions and Interrupts

The terminology is not always consistent, but we’ll refer to
* exceptions as any unexpected change in control flow
* interrupts as any externally-caused exception

So then, what is:

arithmetic overflow

divide by zero

|/O device signals completion to CPU
user program invokes the OS
memory parity error

illegal instruction

timer signal



For now...

* The machine we've been designing in class can generate two types of
exceptions.



For now...

* The machine we've been designing in class can generate three types of
exceptions:
— arithmetic overflow
— illegal instruction
— illegal memory address
* On an exception, we need to
— save the PC (invisible to user code)
— record the nature of the exception/interrupt

— transfer control to OS



First steps towards supporting exceptions

PCWrite EPCWrite
* For our MIPS-subset architecture, we will add two

registers: — 5
— EPC: a 32-bitregister to hold the user’s PC —— 2
— Cause: A register to record the cause of the exception Addhess

* we'll assume undefined inst = O, overflow =1 Psouree CauseWrite

*  We will also add three control signals:
— EPCWrite (will need to be able to subtract 4 from PC)
— CauseWrite
— IntCause

*  We will extend PCSource multiplexor to be able to
latch the interrupt handler address into the PC.

IntCause

Cause



Pipelining and Exceptions

* Again, exceptions represent another form of control flow and therefore
control dependence.

* Therefore, they create a potential branch hazard

* Exceptions must be recognized early enough in the pipeline that subsequent
instructions can be flushed before they change any permanent state.
— Q: What is the first stage that can change permanent state?
* We also have issues with handling exceptions in the correct order and
“exceptions” on speculative instructions.

* Exception-handling that always correctly identifies the offending
instruction is called precise

— (different words, same idea: ARM has asynchronous / synchronous exceptions)



Pipelining and Exceptions - The Whole Picture

(except not really)
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Part lll: The Fancy Stuff in Real (Fast) Machines



Pipelining in Today’s Most Advanced Processors

* Not fundamentally different than the techniques we discussed
* Deeper pipelines
* Pipelining is combined with

— superscalar execution

— out-of-order execution
— VLIW (very-long-instruction-word)



Deeper Pipelines
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Superscalar Execution
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A modest superscalar MIPS
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* what can this machine do in parallel?
* what other logic is required?
* Represents earliest superscalar technology (eg, circa early 1990s)



Superscalar Execution

* To execute four instructions in the same cycle, we must find four
independent instructions



Superscalar Execution

To execute four instructions in the same cycle, we must find four
independent instructions

If the four instructions fetched are guaranteed by the compiler to be
independent, thisis a VLW machine



Superscalar Execution

* To execute four instructions in the same cycle, we must find four
independent instructions

* If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

* |If the four instructions fetched are only executed together if hardware

confirms that they are independent, this is an in-order superscalar
processor.



Superscalar Execution

* To execute four instructions in the same cycle, we must find four
independent instructions

* If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

* |f the fourinstructions fetched are only executed together if hardware

confirms that they are independent, this is an in-order superscalar
processor.

* If the hardware actively finds four (not necessarily consecutive)
instructions that are independent, this is an out-of-order superscalar
processor.



Superscalar Execution

* To execute four instructions in the same cycle, we must find four
independent instructions

* If the four instructions fetched are guaranteed by the compiler to be
independent, this is a VLIW machine

* |f the fourinstructions fetched are only executed together if hardware
confirms that they are independent, this is an in-order superscalar
processor.

* If the hardware actively finds four (not necessarily consecutive)
instructions that are independent, this is an out-of-order superscalar
processor.

* What do you think are the tradeoffs?



Superscalar Scheduling

*  Assume in-order, 2-issue, ld-store followed by integer

1w

add
1w

sub

$6, 36(%$2)
$5, $6, $4
$7, 1000($5)
$9, $12, $5

*  Assume 4-issue, in-order, any combination (VLIW?)

1w
add
1w
sub
SW
add

$6, 36(%$2)

$5, $6, $4
$7, 1000($5)
$9, $12, $5
$5, 200(%6)
$3, $9, $9

and $11, ¢$7, $6
*  When does each instruction begin execution?



Superscalar vs. superpipelined

(multiple instructions in the same stage, same clock rate as scalar)

(more total stages, faster clock rate)



Dynamic Scheduling
aka, Out-of-Order Scheduling

* Issues (begins execution of) an instruction as soon as all of its
dependences are satisfied, even if prior instructions are stalled.
(assume 2-issue, any combination)

lw  $6, 36(%$2)
add $5, $6, %4
lw  $7, 1000($5)
sub $9, $12, $8
sw $5, 200($6)
add $3, $9, $9
and $11, $5, $6



Reservation Stations
(other pieces: ROB, RAT, RRAT.. CSE 148 covers these!)

* Are a mechanism to allow dynamic scheduling (out of order execution)

reg

— result bus
file

a a A A

v \ 4 v v

ALU op rs | rsvalue | rt | rtvalue |rdy
ALU op rs | rsvalue | rt | rtvalue |rdy
ALU op rs | rsvalue | rt | rtvalue |rdy

!

Execution
Unit




Pentium 4

Dynamic Branch
Predictor: 4096 entries

4

Micro Code
ROM / Execution Trace Cache

Micro 12,000 pOPs

Instruction
Sequencer

|
* Integer Schodﬂors*
Slow Int | FastInt | Fastint Memc
v
Imeger Register File
ass Netwock

Hardware Data Prefetch |



Modern (Pre-Multicore) Processors

e Pentium Il, lll - 3-wide superscalar, out-of-order, 14 integer pipeline stages
*  Pentium 4 - 3-wide superscalar, out-of-order, simultaneous multithreading, 20+ pipe stages
*  AMD Athlon, 3-wide ss, out-of-order, 10 integer pipe stages

*  AMD Opteron, similar to Athlon, with 64-bit registers, 12 pipe stages, better multiprocessor
support.

* Alpha 21164 - 2-wide ss, in-order, 7 pipe stages
* Alpha 21264 - 4-wide ss, out-of-order, 7 pipe stages
* Intel Itanium - 3-operation VLIW, 2-instruction issue (6 ops per cycle), in-order, 10-stage pipeline



More Recent Developments - Multicore Processors

IBM Power 4,5, 6,7
—  Power 4 dual core
—  Power 5and 6, dual core, 2 simultaneous multithreading (SMT) threads/core
—  Power7 4-8 cores, 4 SMT threads per core
. Sun Niagara
— 8 cores, 4 threads/core (32 threads).
—  Simple, in-order, scalar cores.
. Sun Niagara 2
—  8cores, 8 threads/core.
. Intel Quad Core Xeon
*  AMD Quad Core Opteron
. Intel Nehalem, Ivy Bridge, Sandy Bridge, Haswell, Skylake, ...(Core i3, i5, i7, etc.)
—  2to 8 cores, each core SMT (2 threads)
. AMD Phenom |l
— 6 cores, not multithreaded
. AMD Zen
—  4-8 (mainstream, but up to 32) cores, 2 SMT threads/core, superscalar (6 micro-op/cycle)



Intel SkyLake

 Upto4cores (CPUs)

* Each core can have 224 uncommitted instructions in the pipeline
* Upto72loads
* Up to 56 stores

— 97 unexecuted instructions in the pipeline waiting to be scheduled
— Has 180 physical integer registers (used via register renaming)

— Has 168 physical floating point registers

— Executes up to 4 (?) micro-ops/cycle (think RISC instructions)

— Has a16-cycle branch hazard

* (note—Intel now hiding more and more architectural details)



Intel SkyLake
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Figure 1. Architecture components layout for an Intel® Core™ i7 processor 6700K for desktop systems. This SoC
contains 4 CPU cores, outlined in blue dashed boxes. Outlined in the red dashed box, is an Intef® HD Graphics 530. it
is a one-slice instantiation of Intel processor graphics gen9 architecture.



What do we know about the Apple M1? We can learn from
the A14 (the M1 may be a rebranded, lightly enhanced A14)

Intel vs Apple Top Performance
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(Really this section should be what does Andrei Frumusanu know
about the M1 - the AnandTech writeup is pretty good)

/| * 12 MB L2 cache [this is huge]

« C.f Intel Tiger Lake @ 1.25*4 = 5SMB
e C.f. Intel Cooper Lake @ 1*28 = 28MB

« For $13,000

* Massive ILP
« 8-wide instruction issue [SMT actual unclear]
e C.f Intel's 1+4 [CISC limitation??]

__ « C.f. Samsung 6-wide [also ARM]

|« Truly massive OoO window

| « ~630instructions in flight??

» C.f Intel Willow Cove at 352

 C.f. AMD Zen3 at 256

Much more here https: //www anandtech com/show/16226/apple -silicon-m1-a14-deep-dive/2



https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive/2
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Part lll: The Less Fancy Stuff in Real (Low-Power) Machines

* How much of a real processor can we implement with CSE 141 alone?



Acorn/Advanced RISC Machine (ARM) has three processor
families

e Cortex A - "Application” processors

 Cortex R - "Real-Time" processors

e Cortex M - "Microcontroller” processors
— (getit?)



The Cortex-M family exposes a wide tradeoff of capability
and cost - measured mostly in $$, Joules, and die area

ARMv7-M

— Cortex-M0/M0+ —

Cortex-M3 —0—nAo—y
Cortex-M4

Cortex-M7 ——————p

Floating Point

DSP (SIMD, fast MAC)

Advanced data processing
bit field manipulations

General data processing
I/O control tasks



Let’s look at the ARM Cortex-M3 in depth

e ISA: “Thumb2”, specifically ARMv7-M Thumb 2 Performance / Density

— Mixed 16/32-bit instructions ["hybrid length”
instructions]

— Compromise: many instructions can be compact,
why waste bits? Still simple (just two cases)

« 3 stage, in-order, single issue pipeline

7N
100% ARM code

— With single-cycle hardware multiply! |
* It has a branch predictor... '
~ Itpredicts Not Taken! e ARM]

— 2 cycle mis-predict penalty
* It hasa 3-word prefetcher

— Prefetchers help make unified memory designs fast
— Q: How many instructions can prefetcher hold?



Implications of being area and energy constrained

Performance / Watt >> than raw Performance
— Latest designs are 22 WA/MHz (this is the measure that matters for loT!)
Fewer general purpose registers (There are 16)
— Many of the smaller (16-bit) encodings can only access rO-r7
Much slower core frequency (many in the 1-8 MHz, fastest M3's 48 or maybe 200 MHz)
Much simpler microarchitecture
— In-order design
—  Limited parallelism
Tightly coupled memory -- No cache!
— (well, a 3word instruction cache)
— Just 1cycle memory access penalty! (i.e. 1dr instruction takes 2 cycles, with no cache!)
—  VERY different than traditional processors
Q: How might Amdahl’s law explain tradeoffs in embedded MCUs?
— Embedded processors are duty cycled, modern ones run ~0.1% of the time
— Inembedded: Compute is not the bottleneck! New arch tradeoff opportunity!



How is ML at the edge
changing the edge?

* Hot new chip: MAX78000
— 22 UA/MHz Cortex-M4
— + RISC-V Co-Processor
— + CNN accelerator

— 4+ many peripherals

In this whole chip, this
part is the processor
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https://www.maximintegrated.com/en/products/microcontrollers/MAX78000.html

There are many, many more deeply embedded processors
than high performance general purpose processors

* 0% of processors in the world are “high-performance” processors

— Seriously, the number of Intel Core XXX and AMD XXX are a rounding error
compared to AVR, MIPS (yes, our MIPS), PIC, ARM Cortex M's, etc

* So why do we talk about the fancy machines?

— Thought experiment: Which gives you the most aggregate processing power:

— (Very) Coarse estimate: 1 trillion PIC-8's in the world
* Say, average 50 MHz, CPI of ~20 [for 32-bit math]

— (Very) Coarse estimate: 120 billion ARM Cortex-M's in the world
* Say, average 24 MHz, CPI of ~1.25

— (Very) Coarse estimate: 1billion Intel Core i7's in the world
* Say, average 4 GHz, CPl of ~0.25



Advanced Pipelining -- Key Points

* Prediction takes real space, and structure informs operation
* Exceptions are another form of control flow
— An "unexpected branch” or "unprogrammed branch” perhaps

» Scalar [fancy word for non-parallel] pipelining attempts to get CPI close
to 1. Toimprove performance we must reduce cycle time
(superpipelining) or get CPI below 1 (superscalar, VLIW).

— What are the costs / problems of pipelining too deeply? When does better CT
no longer improve ET?

* Modern processors are fast because they work on many hundred
instructions at once

« Simple pipelines are valuable when raw performance is less important
— Specialization can be more efficient, but only if you know workload!
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