
WES237B - S21
Lab3

Patrick Pannuto
WES237B – SU22

Patrick Pannuto

Jetson TX2 - Processing Components
● Dual-core NVIDIA Denver2 + quad-core ARM Cortex-A57
● 256-core Pascal GPU
● 8GB LPDDR4, 128-bit interface
● 32GB eMMC
● 4kp60 H.264/H.265 encoder and decoder
● Dual ISPs (Image Signal Processors)
● 1.4 Gpps MIPI CSI camera ingest

Jetson TX2 - Denver2 and ARM
● IMPORTANT: we do not use Denver2 cores in our assignments. This is just for explaining the

architecture
● Let’s check the CPUs: nvidia@tegra-ubuntu:~/Desktop/jupyter_for_jetson$ lscpu

Architecture: aarch64
Byte Order: Little Endian
CPU(s): 6
On-line CPU(s) list: 0,3-5
Off-line CPU(s) list: 1,2
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1
Model name: ARMv8 Processor rev 3 (v8l)
CPU max MHz: 2035.2000
CPU min MHz: 345.6000
L1d cache: 32K
L1i cache: 48K
L2 cache: 2048K

quad-core ARM
Cortex-A57

dual-core
Denver2

Jetson TX2 - Denver2 and ARM
● IMPORTANT: we do not use Denver2 cores in our assignments. This is just for explaining the

architecture
● Let’s check the CPUs
● Query current CPU configuration:

sudo nvpmodel -q

● Check available CPU configurations:
cat /etc/nvpmodel.conf

● Set current CPU configuration:
sudo nvpmodel -m <id>

nvidia@tegra-ubuntu:~/Desktop/jupyter_for_jetson$ lscpu
Architecture: aarch64
Byte Order: Little Endian
CPU(s): 6
On-line CPU(s) list: 0,3-5
Off-line CPU(s) list: 1,2
Thread(s) per core: 1
Core(s) per socket: 4
Socket(s): 1
Model name: ARMv8 Processor rev 3 (v8l)
CPU max MHz: 2035.2000
CPU min MHz: 345.6000
L1d cache: 32K
L1i cache: 48K
L2 cache: 2048K

quad-core ARM
Cortex-A57

dual-core
Denver2

SISD, SIMD, MIMD, & MISD
● SISD: Single Instruction, Single Data

one processor that handles one algorithm using one source of data at a time

SISD, SIMD, MIMD, & MISD
● SISD: Single Instruction, Single Data

one processor that handles one algorithm using one source of data at a time

● SIMD: Single Instruction, Multiple Data
several processors that follow the same set of instructions, but each processor inputs
different data into those instructions

SISD, SIMD, MIMD, & MISD
● SISD: Single Instruction, Single Data

one processor that handles one algorithm using one source of data at a time

● SIMD: Single Instruction, Multiple Data
several processors that follow the same set of instructions, but each processor inputs
different data into those instructions

● MIMD: Multiple Instructions, Multiple Data
multiple processors, each capable of accepting its own instruction
stream independently from the others. Each processor also pulls
data from a separate data stream

SISD, SIMD, MIMD, & MISD
● SISD: Single Instruction, Single Data

one processor that handles one algorithm using one source of data at a time

● SIMD: Single Instruction, Multiple Data
several processors that follow the same set of instructions, but each processor inputs
different data into those instructions

● MIMD: Multiple Instructions, Multiple Data
multiple processors, each capable of accepting its own instruction stream independently
 from the others. Each processor also pulls data from a separate data stream

● MISD: Multiple Instructions, Single Data
multiple processors. Each processor uses a different algorithm but uses the same
shared input data

SISD, SIMD, MIMD, & MISD
● SISD: Single Instruction, Single Data

one processor that handles one algorithm using one source of data at a time

● SIMD: Single Instruction, Multiple Data
several processors that follow the same set of instructions, but each processor inputs
different data into those instructions

● MIMD: Multiple Instructions, Multiple Data
multiple processors, each capable of accepting its own instruction stream independently
 from the others. Each processor also pulls data from a separate data stream

● MISD: Multiple Instructions, Single Data
multiple processors. Each processor uses a different algorithm but uses the same
shared input data

SISD on ARM
● SISD: Single Instruction, Single Data

one processor that handles one algorithm using one source of data at a time

● Example: your previous assignment ran sequentially on CPU cores

SIMD on ARM
● SIMD: Single Instruction, Multiple Data

several processors that follow the same set of instructions, but each processor inputs
different data into those instructions

SIMD on ARM
● SIMD: Single Instruction, Multiple Data

several processors that follow the same set of instructions, but each processor inputs
different data into those instructions

src 1

src 2

Op

out

ARM Neon Programming
● ARMv8 Neon Unit:

○ Fully integrated into the processor and uses processor’s resources for loop control, caching,
and integer operations

○ Uses 128-bit registers for SIMD processing
○ It’s register file is a collection of registers that can be accessed as (8, 16, 32, 64, 128)-bit

registers
○ Registers contain vector of elements. The same element position in the input and output

registers is referred to as a lane
○ Each Neon instruction results in “n” parallel operation, where “n” is the number of lanes

Neon Register and Element Size

127 0

128-bit register

127 64 63 0

2 x 64-bit elements

127 64 63 32 31 0

4 x 32-bit elements

127 64 63 32 31 16 15 0

8 x 16-bit elements

D D

SSSS

H H H H H H H H

127 64 63 32 31 16 15 8 7 0

16 x 8-bit elements

BBBBBBBBBBBBBBBB 16B (Byte)

8H (Halfword)

4S (Single word)

2D (Double word)

Neon Register and Element Size

127 0

128-bit register

127 64 63 0

2 x 64-bit elements

127 64 63 32 31 0

4 x 32-bit elements

127 64 63 32 31 16 15 0

8 x 16-bit elements

D D

SSSS

H H H H H H H H

127 64 63 32 31 16 15 8 7 0

16 x 8-bit elements

BBBBBBBBBBBBBBBB 16B (Byte)

8H (Halfword)

4S (Single word)

2D (Double word)

127 64 63 32 31 16 15 0

4 x 16-bit elements

H H H H H H H H

127 64 63 32 31 16 15 8 7 0

8 x 8-bit elements

BBBBBBBBBBBBBBBB 8B (Byte)

4H (Halfword)Unused

Unused

https://developer.arm.com/-/media/Files/pdf/graphics-and-multimedia/ARM_CPU_Architecture.pdf
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a/introducing-neon-for-armv8-a/single-page

ARMv8 (Jetson)
32 x 128-bit vector registers
31 x 64-bit general purpose registers

ARMv7 (PYNQ)
16 x 128-bit vector registers

127 64 63 0

1 x 64-bit elements
D D 1D (Double word)

127 64 63 32 31 0

2 x 32-bit elements
SSSS 2S (Single word)Unused

Unused

https://developer.arm.com/-/media/Files/pdf/graphics-and-multimedia/ARM_CPU_Architecture.pdf
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a/introducing-neon-for-armv8-a/single-page

Neon Intrinsics
● Are functions calls that compiler replaces with an (or a sequence of) appropriate Neon instruction(s)
● Functions: https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?page=1

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?page=1

Neon Intrinsics
● Are functions calls that compiler replaces with an (or a sequence of) appropriate Neon instruction(s)
● Functions: https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?page=1

● Data types:
D D

8H (Halfword)

4S (Single word)

2D (Double word)

H H H H H H H

BBBBBBBBBBBBBB 8B (Byte)

4H (Halfword)Unused

Unused

D D 1D (Double word)

SSS 4S (Single word)Unused

Unused

64x2
32x4

BBBBBBBBBBBBBBBB 16B (Byte)

H H H H H H H H

SSSS

16x8

64x1

32x2

16x4

8x8

8x16

int

uint

float

poly

uint16x8_t

float64x1_t

int32x4_t

int8x8_t

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?page=1

Neon Intrinsics
● Are functions calls that compiler replaces with an (or a sequence of) appropriate Neon instruction(s)
● Functions: https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?page=1

● Data types:
<int, uint, float, poly><64, 32, 16, 8>x<16, 8, 4, 2, 1>_t D D

8H (Halfword)

4S (Single word)

2D (Double word)

H H H H H H H

BBBBBBBBBBBBBB 8B (Byte)

4H (Halfword)Unused

Unused

D D 1D (Double word)

SSS 4S (Single word)Unused

Unused

64x2
32x4

BBBBBBBBBBBBBBBB 16B (Byte)

H H H H H H H H

SSSS

16x8

64x1

32x2

16x4

8x8

8x16

int

uint

float

poly

uint16x8_t

float64x1_t

int32x4_t

int8x8_t

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?page=1

Compile Neon
● ARMv7 (PYNQ) requires -mfpu=neon and -O1 -ftree-vectorize
● ARMv8 (Jetson) requires -O1 -ftree-vectorize
● Lab Work:

○ Complete neon.c (provided)
○ Compile it with: gcc -mfpu=neon neon.c -o neon
○ Run: ./neon

Patrick Pannuto

Compile Neon
● ARMv7 (PYNQ) requires -mfpu=neon and -O1 -ftree-vectorize
● ARMv8 (Jetson) requires -O1 -ftree-vectorize
● Lab Work:

○ Complete neon.c (provided)
○ Compile it with: gcc -mfpu=neon neon.c -o neon
○ Run: ./neon
○ Modify the code to add 250 to data instead of 3

FIR Filtering

1D Convolution

1D Convolution

1D Convolution

1D Convolution

1D Convolution
● 2 nested loops
● Loop through (size of input - size of filter)

○ For each filter coefficient
■ Multiply by the input and accumulate

○ Store result in the output

1D Convolution
● Complete the naive implementation in src/fir.cpp

Loop Unrolling
Unroll coefficient loop (inner loop) by 4:

● Manually duplicate the single line of code
● Increment loop variable by 4

Gprof Profiling
● Profiling tool (like perf), but will provide information on independent function

calls within the executable
○ Perf will only provide a cycle count and execution time for the entire executable.

● Compile flag `-pg`
● Running the executable
● There should now be a report `gmon.out` in the directory
● Make sure you remove the gmon.out if you run the program again.

Gprof Profiling
● View the report with `gprof -b

<EXEC-NAME> gmon.out`
○ For this lab, the command is

`gprof -b lab3_fir gmon.out`

● `fir()` takes up 50% of
execution time

● `fir_opt()` takes up 42.9% of
execution time

SIMD Instructions
● Include <arm_neon.h> (already done for the lab)
● Add compiler flag: -mfpu=neon (only on PYNQ, not on Jetson. Already done for lab)

 Replace the unrolled loop body by NEON Instructions

1. Declare SIMD registers: Use 128-bits SIMD vectors
a. Float 32-bit x 4

2. Initialize output SIMD vector with 0
3. Inside the loop:

a. Load input data into SIMD vector
b. Load coefficients into SIMD vector
c. Multiply-accumulate into output SIMD vector

4. Add 4 values together then store in output array

Compile Comparison
● Compile the lab with the -O0

compilation flag
● Run the executable and investigate

the gprof report gprof -b lab3_fir
gmon.out

Compile Comparison
● Change the compile flag from -O0

to -O1
● Run the executable and investigate

the gprof report gprof -b lab3_fir
gmon.out

https://linux.die.net/man/1/gcc

https://linux.die.net/man/1/gcc

