WES237B — SU22

Lab3

Patrick Pannuto
WES237B – SU22

Patrick Pannuto

Jetson TX2 - Processing Components

Dual-core NVIDIA Denver2 + quad-core ARM Cortex-A57
256-core Pascal GPU

8GB LPDDR4, 128-bit interface

32GB eMMC

4kp60 H.264/H.265 encoder and decoder

Dual ISPs (Image Signal Processors)

1.4 Gpps MIPI CSI camera ingest

Jetson TX2 - Denver2 and ARM

IMPORTANT: we do not use Denver2 cores in our assignments. This is just for explaining the

architecture
Let’s check the CPUs:

quad-core ARM

Cortex-A57 \

dual-core /

Denver2

nvidia@tegra-ubuntu:~/Desktop/jupyter_for_jetson$ Iscpu
Architecture: aarch64

Byte Order: Little Endian

CPU(s): 6

On-line CPU(s) list: 0,3-5

Off-line CPU(s) list: 1,2

Thread(s) per core: 1

Core(s) per socket: 4

Socket(s): 1

Model name: ARMvV8 Processor rev 3 (v8l)
CPU max MHz: 2035.2000

CPU min MHz: 345.6000

L1d cache: 32K

L1i cache: 48K

L2 cache: 2048K

Jetson TX2 - Denver2 and ARM

e IMPORTANT: we do not use Denver2 cores in our assignments. This is just for explaining the

architecture
e Let's check the CPUs

quad-core ARM

e Query current CPU configuration: Cotex-AST — —~—____
sudo nvpmodel -q
e Check available CPU configurations: dual-core /
Denver2

cat /etc/nvpmodel.conf
e Set current CPU configuration:
sudo nvpmodel -m <id>

nvidia@tegra-ubuntu:~/Desktop/jupyter_for_jetson$ Iscpu
Architecture: aarch64

Byte Order: Little Endian

CPU(s): 6

On-line CPU(s) list: 0,3-5

Off-line CPU(s) list: 1,2

Thread(s) per core: 1

Core(s) per socket: 4

Socket(s): 1

Model name: ARMvV8 Processor rev 3 (v8l)
CPU max MHz: 2035.2000

CPU min MHz: 345.6000

L1d cache: 32K

L1i cache: 48K

L2 cache: 2048K

SISD, SIMD, MIMD, & MISD

SISD: Single Instruction, Single Data
one processor that handles one algorithm using one source of data at a time

SISD

Data Pool

Instruction Pool

———|PU|-

SISD, SIMD, MIMD, & MISD

e SISD: Single Instruction, Single Data

one processor that handles one algorithm using one source of data at a time

e SIMD: Single Instruction, Multiple Data

several processors that follow the same set of instructions, but each processor inputs
different data into those instructions

SIMD Instruction Pool

)

5=
[
D
—
o
—
@
>

Data Pool

(

SISD, SIMD, MIMD, & MISD

e SISD: Single Instruction, Single Data
one processor that handles one algorithm using one source of data at a time

e SIMD: Single Instruction, Multiple Data

several processors that follow the same set of instructions, but each processor inputs
different data into those instructions

e MIMD: Multiple Instructions, Multiple Data MIMD Instruction Pool
multiple processors, each capable of accepting its own instruction
stream independently from the others. Each processor also pulls —(PU[H —|PU|

data from a separate data stream

—[Pul— L|Pu|

Data Pool

—[PUl L|PU|

—[pul~ Lspul-

SISD, SIMD, MIMD, & MISD

e SISD: Single Instruction, Single Data

one processor that handles one algorithm using one source of data at a time

e SIMD: Single Instruction, Multiple Data

several processors that follow the same set of instructions, but each processor inputs
different data into those instructions

e MIMD: Multiple Instructions, Multiple Data MISD | Instruction Pool

multiple processors, each capable of accepting its own instruction stream independently
from the others. Each processor also pulls data from a separate data stream

e MISD: Multiple Instructions, Single Data

multiple processors. Each processor uses a different algorithm but uses the same
shared input data

PU PU

Data Pool

SISD, SIMD, MIMD, & MISD

SISD: Single Instruction, Single Data
one processor that handles one algorithm using one source of data at a time

SIMD: Single Instruction, Multiple Data

several processors that follow the same set of instructions, but each processor inputs
different data into those instructions

MIMD: Multiple Instructions, Multiple Data

multiple processors, each capable of accepting its own instruction stream independently
from the others. Each processor also pulls data from a separate data stream

MISD: Multiple Instructions, Single Data

multiple processors. Each processor uses a different algorithm but uses the same
shared input data

SISD Instruction Pool

SIMD

Data Pool

MiMD [Tnstruction Pool]
—[pul4 L)

2-F-| -

g

2-pu-| -l
—pu- Lyl

MISD Instruction Pool

H
H
T

Data Pool

SISD on ARM

SISD: Single Instruction, Single Data
one processor that handles one algorithm using one source of data at a time

Example: your previous assignment ran sequentially on CPU cores

SISD

Data Pool

Instruction Pool

———|pU

SIMD on ARM

e SIMD: Single Instruction, Multiple Data

several processors that follow the same set of instructions, but each processor inputs
different data into those instructions

SIMD Instruction Pool

N
— =
8 C
-}
n- —
© (@]
o+ 4
8 O
= >

(

SIMD on ARM

e SIMD: Single Instruction, Multiple Data

several processors that follow the same set of instructions, but each processor inputs
different data into those instructions

SIMD Instruction Pool

)
src1 | \ | \ |
src2 | | | | | S =
g : :
Y A, Y A m o
o Ci %) £ :
) ()
>
| |

out \

(

ARM Neon Programming

e ARMv8 Neon Unit:

o Fully integrated into the processor and uses processor’s resources for loop control, caching,
and integer operations

o Uses 128-bit registers for SIMD processing

o It's register file is a collection of registers that can be accessed as (8, 16, 32, 64, 128)-bit
registers

o Registers contain vector of elements. The same element position in the input and output
registers is referred to as a lane

o Each Neon instruction results in “n” parallel operation, where “n” is the number of lanes

Neon Register and Element Size

2 X 64-bit elements

| D | D | 2D (Double word)
4 127 64 63 0
4 x 32-bit elements
| S S | S S | 4S (Single word)
127 64 63 3231 0
8 x 16-bit elements
H H H H H H H H 8H (Halfword)
127 64 63 3231 1615 0
16 x 8-bit elements
16B (Byte)
128-bit register 127 64 63 3231 161587 0

127 0

Neon Register and Element Size

128-bit register

127 0

ARMv8 (Jetson)
32 x 128-bit vector registers
31 x 64-bit general purpose registers

ARMv7 (PYNQ)
16 x 128-bit vector registers

https://developer.arm.com/-/media/Files/pdf/graphics-and-multimedia/ARM_CPU_Architecture.pdf

https:/developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a/introducing-|

2 X 64-bit elements

. [[o)
127 64 63 0
4 x 32-bit elements
| S S | S S |
127 64 63 3231 0
8 x 16-bit elements
H H H H H H H H
127 64 63 3231 1615 0
16 x 8-bit elements
127 64 63 3231 161587 0
< 1 x 64-bit elements
| Unused | D |
127 64 63 0
2 x 32-bit elements
| Unused | S S |
127 64 63 3231 0
4 x 16-bit elements
Unused H H H H
127 64 63 3231 1615 0
8 x 8-bit elements
\ Unused
64 63 3231 161587 0

2D (Double word)

4S (Single word)

8H (Halfword)

16B (Byte)

1D (Double word)

2S (Single word)

4H (Halfword)

8B (Byte)

https://developer.arm.com/-/media/Files/pdf/graphics-and-multimedia/ARM_CPU_Architecture.pdf
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a/introducing-neon-for-armv8-a/single-page

Neon Intrinsics

e Are functions calls that compiler replaces with an (or a sequence of) appropriate Neon instruction(s)

) Functions: https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?page=1

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?page=1

Neon Intrinsics

e Are functions calls that compiler replaces with an (or a sequence of) appropriate Neon instruction(s)

® Functions: https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics ?page=1

e Data types:

O
O

2D (Double word)

. W L s | s | s | s | sssingewora
X

32x4 uint16x8_t H | H | H H H|H | H|H 8H (Halfword
float oaxt W

poly 32x2 | Unused | D | 1D (Double word)

16x4
8x8 | Unused | S | S | 4S (Single word)

i
Nt8xg + Unused H | H | H H 4H (Halfword)

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?page=1

Neon Intrinsics

e Are functions calls that compiler replaces with an (or a sequence of) appropriate Neon instruction(s)

® Functions: https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics ?page=1

e Data types:
<int, uint, float, poly><64, 32, 16, 8>x<16, 8,4, 2, 1> t | D | D | 20 (Double word)

. W L s | s | s | s | sssingewora

32x4 uint16x8_t H|H|H|H|H|H|H]|H 8H (Halfword

float oaxt W

poly 32x2 | Unused | D | 1D (Double word)

16x4
8x8 | Unused | S | S | 4S (Single word)

i
Nt8xg + Unused H | H | H H 4H (Halfword)

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?page=1

Compile Neon

e ARMv7 (PYNQ) requires -mfpu=neon and -O1 -ftree-vectorize
e ARMvVS8 (Jetson) requires -O1 -ftree-vectorize
e Lab Work:

o Complete neon.c (provided)
o Compile it with: gcc -mfpu=neon neon.c -0 neon
o Run:./neon

Patrick Pannuto

Compile Neon

e ARMv7 (PYNQ) requires -mfpu=neon and -O1 -ftree-vectorize
e ARMvVS8 (Jetson) requires -O1 -ftree-vectorize
e Lab Work:

o Complete neon.c (provided)

o Compile it with: gcc -mfpu=neon neon.c -0 neon
o Run:./neon

o Modify the code to add 250 to data instead of 3

FIR Filtering

1D Convolution

x[n]

1D Convolution

1 0000000 |

Input

. 0000000 |

Coefs

Output

1D Convolution

Input

Output

1D Convolution

Input

|— Output

1D Convolution

e 2 nested loops

e Loop through (size of input - size of filter)
o For each filter coefficient
m Multiply by the input and accumulate
o Store result in the output

Input

Output

1D Convolution

e Complete the naive implementation in src/fir.cpp

Input

Output

Loop Unrolling

Unroll coefficient loop (inner loop) by 4:

e Manually duplicate the single line of code
e Increment loop variable by 4

Gprof Profiling

e Profiling tool (like perf), but will provide information on independent function

calls within the executable
o Perf will only provide a cycle count and execution time for the entire executable.

Compile flag -pg’

Running the executable

There should now be a report ‘gmon.out’ in the directory

Make sure you remove the gmon.out if you run the program again.

Gprof Profiling

Call graph

e View the report with "gprof -b
granularity: each sample hit covers 4 byte(s) for 1.79% of 0.56 seconds
<EXEC-NAM E> gmon _Out index % time children called name

<spontaneous>
. . [1] 100.0 0. 5 main [1] i X X
o Forthis lab, the command is o B R i by R o
‘gprof b |ab3 f.r gmon o t‘ g 5 std::sqrt(float) [11]
- | . LJ 5 5 designLPF(float*, int, float, float) [16]
A * (0] .6 0. : 0 flr(?%ggtg?]float', float*, int, int) [2]
e fir() takes up 0O

main [1]
fir opt(float*, float*, float*, int, int) [3]

execution time e e o

::sqrt(float) [11]

A Y - A Y 0/ f - - - .
e fir_opt() takes up 42.9% o w e T o B s s
0 : 0 static initialization and destruction O(int, int) [14]

eXGCUtIOn tlme ' : :) libc_csu_init [24]

GLOBAL sub I main [13]
static initialization and destruction O(int, int) [15]

GLOBAL sub I Z3firPfS S ii [12]
static initialization and destruction O(int, int) [14]

GLOBAL sub I main [13]
static initialization and destruction O(int, int) [15]

main [1]
designLPF(float*, int, float, float) [16]

SIMD Instructions

e Include <arm_neon.h> (already done for the lab)
e Add compiler flag: -mfpu=neon (only on PYNQ, not on Jetson. Already done for lab)

Replace the unrolled loop body by NEON Instructions

1. Declare SIMD registers: Use 128-bits SIMD vectors
a. Float 32-bit x 4

2. Initialize output SIMD vector with O
3. Inside the loop:

a. Load input data into SIMD vector
b. Load coefficients into SIMD vector
c. Multiply-accumulate into output SIMD vector

4. Add 4 values together then store in output array

ompile Comparison

Call graph

. Complle the |ab Wlth the -OO granularity: each sample hit covers 4 byte(s) for 1.28% of 0.78 seconds
index % time self children called name

COmpl|atI0n ﬂag (1 0.8 o 0. i mamz??:z:i’us;oat, N
e Run the executable and investigate i hon(Fant. anctTonet, T,]
the gprof report gprof -b lab3_ fir e e o m

std::sqrt(float) [12]

fir_neon(float*, float*, float*, int, int) [4]
designLPF(float*, int, float, float) [17]
main [1]

opt(float*, float*, float*, int, int) [3]

gmon.out e

neon(float*, float*, float*, int, int) [4]

main [1]
r:sgrt(float) [12]

libc_csu_init [24]
GLOBAL sub I Z3firPfS S ii [13]
static initialization and destruction O(int, int) [15]

libc _csu init [24]
GLOBAL _sub I main [14]
static initialization and destruction O(int, int) [16]

GLOBAL _sub I Z3firPfS S ii [13]
static initialization and destruction O(int, int) [15]

GLOBAL sub I main [14]
static initialization and destruction O(int, int) [16]

main [1]
designLPF(float*, int, float, float) [17]

Compile Comparison

e Change the compile flag from -O0
to -O1

e Run the executable and investigate
the gprof report gprof -b lab3_ fir
gmon.out

https://linux.die.net/man/1/gcc

https://linux.die.net/man/1/gcc

