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0.1 Network structure

Let’s start simply with trying to learn an AND gate. In short, we want
to input one of the following pairs of x1, x2 and output y. The truth table
(which should be familiar) is

x1 x2 y
0 0 0
1 0 0
0 1 0
1 1 1

This data can be learned using a single layer network which looks like the
following

w1,1x1

w1,2x2

Σ + b f() y

Linear
weight-

ing

Activation
function

NOTE: A more confusing yet popular way to draw this is shown below.
In the common literature, the linear weighting and activation function is
often combined into a single layer. For the sake of being explicit, we will be
referring to the above drawing.
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y

Input
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Output
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0.2 Forward Propagation

In order to understand what is happening when we predict or infer using the
neural network, we need to express the drawing in terms of mathematics.

The linear weighting multiplies x1 ∗ w11 and x2 ∗ w12, then these are
summed together with an offset bias, b. In equation form this looks like the
following.

W =
[
w11 w12

]
X =

[
x1

x2

]

g = WX + b

This is the output after the two sets of green neurons; multiplication by
the weights w11, w12 and addition with an offset, b.

The activation function simply takes g and applies a non-linear mapping
to output values. For example, we know that our outputs can take on values
of 0 or 1. Therefore, we are interested in using an activation function that
outputs only values between 0 and 1. Here the sigmoid function will do the
trick.

y = f(g) =
1

1 + e−g

This is our forward propagation. Notice it is nothing special! Just matrix
multiplication and a mathematical function. To see how it works, assume
our weights are w11 = w12 = 0.5 and our bias b = 0. Work through the math
to get the outputs. (It may be easier to use MATLAB or Python).

0.3 Gradient Descent

0.3.1 1D

Having worked through the math for each input pair, you should have noticed
that the output is not what it needs to be from the truth table! We can
reconcile this by changing the weights and retrying. The ultimate question
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is to figure out how to change our weights. For example, I could arbitrarily
choose new weights and ask you to resolve the forward propagation. Do this
over and over until you find a set of weights and biases that work, but that
will take a long time. Instead, we want to update our weights beneficially.
We can accomplish this using the method of gradient descent.

For simplicity, let’s assume we are dealing with a 1 dimensional problem.
Furthermore, let’s ignore the activation function for now and only deal with
the following equation.

y = wx + b

The question is, “given an input, x, and an output, y, find w and b.” This is
a simple algebra problem, but we’re going to solve it in a scaleable manner
that can be applied to a multi-dimensional problem.

The first step is to define an error metric. This cost function will describe
how far away our guess for w is. Furthermore, our cost function should
not care whether we are above or below the correct w meaning it should be
a distance measure. A common solution is to use the mean squared error
(MSE). Here’s how it works.

1. Make a guess for w and b.

2. Using our known input, x, forward propagate through the equation to
end up with an estimate for y.

3. Figure out how far away our estimate of y is from the true value.

In keeping with estimation theory notation, our estimate of y will be
denoted by ŷ. Thus, using MSE, the error between the estimate ŷ = wx + b
and the true value of y will be

E = (ŷ − y)2 = (wx + b− y)2

The foundation of gradient descent is formed from the cost function hav-
ing a global minimum where ŷ = y. You may be inclined to minimize the cost
function by setting ∂E

∂ŷ
= 0 and solving for ŷ. Unfortunately, we don’t have

control over ŷ, we can only choose w and b. Furthermore, there is clearly
more than one solution for w and b such that ŷ = y.

Instead, we notice that the derivative ∂E
∂w

tells me the direction of greatest
change of the error if I change w. Thus, moving in the negative ∂E

∂w
will

decrease the error. The same argument can be used for b.
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Then

∂E

∂w
= 2(wx + b− y)x

∂E

∂b
= 2(wx + b− y)

And each iteration n, we should update our w and b guess such that

wn = wn−1 −
∂E

∂wn−1
= wn−1 − 2(wn−1x + b− y)x

bn = bn−1 −
∂E

∂bn−1
= bn−1 − 2(wn−1x + b− y)

0.3.2 2D

In the case of a multi-dimensional equation (with matrices), we need to
figure out the update for each weight and bias. Still ignoring the activation
function, we find the prediction ŷ for our 2D case to be

ŷ = w11x1 + w12x2 + b

Giving an error of

E = (ŷ − y)2 = (w11x1 + w12x2 + b− y)2

For the first weight, we find

∂E

∂w11

= 2(w11x1 + w12x2 + b− y)x1

And for the second, we get

∂E

∂w12

= 2(w11x1 + w12x2 + b− y)x2

while the bias error is

∂E

∂b
= 2(w12x1 + w12x2 + b− y)
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Let’s pause here and see if we notice a pattern. It looks like all of the
gradients have a similar form. This shouldn’t be surprising since it’s just
the chain rule from differential calculus. Notice we can rewrite the above
gradients as

∂E

∂w11

=
∂E

∂ŷ

∂ŷ

∂w11

=
∂E

∂ŷ
x1 (1)

∂E

∂w12

=
∂E

∂ŷ

∂ŷ

∂w12

=
∂E

∂ŷ
x2

∂E

∂b
=

∂E

∂ŷ

∂ŷ

∂b

Writing in this way makes it a lot easier to add our activation function
back in. We realize all we have to do is add another derivative. Remember,
we split it above into

g = wx + b

ŷ =
1

1 + e−g

∂E

∂w11

=
∂E

∂ŷ

∂ŷ

∂g

∂g

∂w11

=
∂E

∂ŷ

∂ŷ

∂g
x1 (2)

∂E

∂w12

=
∂E

∂ŷ

∂ŷ

∂g

∂g

∂w12

=
∂E

∂ŷ

∂ŷ

∂g
x2 (3)

∂E

∂b
=

∂E

∂ŷ

∂ŷ

∂g

∂g

∂b

All that’s left to do is subtract these gradients from each weight/bias on
each iteration. Keep in mind the chain rule since that will come in handy
during back propagation.

You are welcome to add an additional parameter called a learning rate.
This is a scalar value to be multiplied by the gradient that controls how large
a step in the gradient direction. The learning rate is our first hyperparam-
eter: a parameter we have control over during the training phase.
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0.3.3 Matrix form

Now that we understand gradient descent for multiple dimensions, we are
inclined to write the weight updates in matrix form.[

w11 w12

]
=
[
w11 w12

]
−
[

∂E
∂w11

∂E
∂w12

]
Expanding the gradients out like equation 2, we can re-write the updates

as [
w11 w12

]
=
[
w11 w12

]
− ∂E

∂ŷ

∂ŷ

∂g

[
x1 x2

]
In matrix form, this is

W = W − ∂E

∂ŷ

∂ŷ

∂g
XT (4)

b = b− ∂E

∂ŷ

∂ŷ

∂g
(5)

0.4 Backpropagation

Let’s return briefly to our network graph

w1,1x1

w1,2x2

Σ + b f() ŷ

Linear
weight-

ing

Activation
function

Now that we understand what is needed to update our weights, let’s draw
a backward graph. After predicting ŷ, our update equations (4, 5) indicate
that we need to propagate ∂E

∂ŷ
backwards through the network.
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−∂E
∂ŷ
f ′()x1

−∂E
∂ŷ
f ′()x2

-∂E
∂ŷ
f ′()

f ′() ∂E
∂ŷ

Linear weight-
ing update

Why is this important? Well it tells us each layer we implement will
forward propagate to produce an output. At the end of that process, we
need to implement a cost function that calculates what our current cost is,
and then propagates the error backwards to the layer above. This is
the foundation of backpropagation and learning in neural networks. In the
drawing above, this is illustrated as such.

1. The error function will pass ∂E
∂ŷ

to the activation layer.

2. The activation layer will multiply ∂E
∂ŷ

× f ′() where f ′() is the derivative
of the activation function chosen.

3. The linear layer receives the error from layer below (activation layer)
and uses this to update it’s weights following equations 4 and 5

While we derived this for a simple single layer network, the exact same
equations hold for any number of layers! When using more layers, we will
have multiple linear layers that need to be trained using gradient descent. In
order to achieve this, we need to continue to back propagate an error to the
next layer. I encourage you do work through the math the same way we did
for a single layer network, but the equation is shown in the section below.

Before we summarize the equations and the classes for implementation,
we need to understand what GPU’s have to do with this.
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0.5 Batch, Stochastic, Mini Batch Training

I want to emphasize there are inherent trade offs of each of these training
methods and there are no correct solution. It depends heavily on the appli-
cation and the dataset so don’t assume one of these is better than another.

0.5.1 Batch

Until now, we’ve been training one input data point at a time. The idea
behind batch training is to pass all the training data into the network at the
same time and execute gradient descent. The next iteration, we continue
to pass all the data and update the weights and continue to convergence.
Above, we assumed passing one input at a time. Here let’s pass all of them.

W =
[
w11 w12

]
X =

[
0 0 1 1
0 1 0 1

]

G = WX + b

Notice that the output G is now a vector! You can follow the same method
as above to figure out our backpropagation and gradient descent equations
in matrix form. These are summarized in section 0.6.

One of big differences now is that our cost function will have to change.
Instead of

E = (ŷ − y)2

we’ll need to sum over all m predictions; four in our case (one for each of
our input data)

E =
1

m

m−1∑
i=0

(ŷ[i] − y)2

And the derivative ∂E
∂ŷ[i]

needs to exist for every prediction (4 in this case)

E ′(ŷ[i]) =
2

m
(ŷ[i] − y)
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The error we propagate backwards is now a row vector.
To summarize, instead of passing a single input each epoch, we pass all the

data and update the weights based on all the data. We still need to run for
many epochs, but we’re able to train on multiple data points simultaneously;
a perfect job for GPUs.

0.5.2 Stochastic

In the stochastic method, often called Stochastic Gradient Descent (SGD),
we return to passing the data one input at a time. The difference here is that
we randomize the input data going into the system. The algorithm looks like

1. Randomly choose an input/output pair from the truth table.

2. Forward propagate through the network to get a prediction

3. Backpropagate the error from the prediction to the true output and
update the weights.

4. Repeat

It might not make much sense for such a small dataset, but this is an
important change for large datasets because it will help avoid local minimum
when training with randomized input data.

0.5.3 Mini-batch

This method is exactly what it sounds like. Instead of training on the entire
dataset each iteration (like batch training), we can split the dataset into a
lot of mini batches to pass to the network simultaneously. The size of the
mini-batch is another hyperparameter.

Furthermore, we are free to randomize the dataset before splitting into
smaller dataset (essentially combining SGD and mini-batch training). This
should give you an idea of how complicating training can become.

0.6 Implementation

We will be implementing the Batch gradient descent, but it can be used for
mini-batch gradient descent. The only difference is how we structure our
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data (whether we pass 4 inputs at a time or 2 inputs at a time). Below are
the matrix equations we need to implement.

0.6.1 Cost Function

• cost(): Calculates the cost function of the given weights:

output = E(input)

• dCost(): Calculates the derivative of the cost function:

output = E ′(input)

NOTES: Below are the definitions of the cost function for MSE in batch
mode. Notice that E ′ has i terms indicating it’s a vector. For sake of conti-
nuity, we will assume it’s a row vector. This means E ′(y[i]) is the ith column
of E ′

E(Ŷ ) =
1

m

m∑
i=0

(ŷ[i] − y[i])2

E ′(ŷ[i]) = 2(ŷ[i] − y[i])

0.6.2 Activation

• forward(): Performs the forward activation function:

output = f(input)

• backprop(): Takes the error from the layer below (EB) and calculates
the error to feed to the layer above (EA):

EA = EB ∗ f ′(input)

NOTES: Below are the definitions of the sigmoid function

f(g) =
1

1 + e−g

f ′(g) = f(g) ∗ (1 − f(g))
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0.6.3 Linear Layer

• forward(): Performs the forward matrix multiply: output = WX + b

• backprop(): Takes the error from the layer below (EB) and calculates
the error to feed to the layer above (EA):

EA = W TEB

• updateWeights(): Takes the error from the layer below (EB) and up-
dates the weights:

1

m
EBX

T

• updateBias(): Takes the error from the layer below (EB) and updates
the bias:

1

m

m∑
i=0

E
(i)
B

NOTES: m is the batch size. E
(i)
B is the ith column of the batch. In batch

mode, EB will be a matrix (see Cost Function).
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