Deep Learning Inference for
the Edge

Sang Ryul “Eric” Pae and Joseph “Jay” Cordaro
9/3/2022

Outline

e DNN

e Edge Inference

e NN basics + Backpropagation

e Architectures for Edge Inference
e Benchmark Results

e Pros and Cons

e Future Work

Deep Learning

>

Xw

Input Layer Hidden Layers Activation Layer

Deep Learning/DNN:

Neural Network with multiple hidden layers between input and output layers.

Deep Learning

e Deep Learning is a “Greedy Data” algorithm - lots of training data required
o Outperforms other methods when lots of data is available
e Can learn optimal features and a classifier (or regressor) simultaneously
e Deep Neural Network (DNN) models are very difficult to interpret
e DNNs are tricky to train and easy to overfit (not covered here)
e DNNs trained using gradient descent with backpropagation
e Computationally expensive, but amenable to
o hardware acceleration
o frameworks
e Commercial-grade DNN models are deployed in the field and this remains an active

research area as well.

Vocabulary

Tensor — Generalization of a matrix with an arbitrary number of indices.

Batch — number of samples in the training set per iteration

Batch Normalization [1] — normalize layer inputs during training. Allows faster learning rate
Epoch — one cycle of training the DNN with all the training data.

Parameter -- weights of the connections

Hyperparameter — training items like learning rate, number of epochs.
(confusing...Metaparameter would perhaps be better)

Expressive Power [2] — complexity of the function (decision or regression) DNN can implement.
With proper training, a deeper network (with more hidden layers) can classify more complex
input. Initial layers of a DNN matter more, and DNN has more expressive power when early
weights are optimized. Increased expressive power comes with a downside and that is
overfitting. Because if your network is too powerful it can overfit the data.

[1] https://arxiv.org/abs/1502.03167
[2] https://ganguli-gang.stanford.edu/pdf/17.ExpressivePower.pdf

https://arxiv.org/abs/1502.03167
https://ganguli-gang.stanford.edu/pdf/17.ExpressivePower.pdf

Why Edge Inference?

Why not just do inference e.g. Key Word Spotting “Alexa” / “Hey Siri” in cloud on GPUs?

Latency
May need inference more quickly than a cloud compute model can provide

Power
Sending data over WiFi/Satellite/Cell network is very power intensive (battery life)

Scalability

If everyone uploaded raw data 24/7 to the cloud could the infrastructure handle it?
Access

Internet may not be available and a GPU may require too much power

Person detection vision, and KWS DNNs require 50K- 500K+ parameters for production
models

Neural
Networks

Artificial Neural Networks

S+)-b3)=0.4 0
Error=0.4-0

i=w; X f(x;-b))

w

Xy X

Activation functions:

RELU: f(x)

4

dE/dwl =?

x=-2,-1,0,5, 6
f(x-2)=0,0, 0, 3, 4

Back-propagation

https://youtu.be/tleHLnjs5U8

https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/#:~:text=5.-.ReLU.neurons%20at%20the %20same%20time.

https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/#:~:text=5.-,ReLU,neurons%20at%20the%20same%20time

Perceptron(Mark | : single layer)

In a 1958 press conference organized by the US Navy,
Rosenblatt made statements about the perceptron that
caused a heated controversy among the

fledgling Al community; based on Rosenblatt's
statements, The New York Times reported the

£
|
!
H
i
i
]
i
o
§
i
f
i
!
i

Mark | Perceptron machine, the first perceptron to be "the embryo of an electronic computer
C"W‘e'on ks ;Bt‘”“ of ’heaW;:Pzthzoa’gmhm ftwas that [the Navy] expects will be able to walk, talk, see,

necied 1o a camera w »* cacmeum . - x - o "
sulfide photocelis 1o make a 400-pixel image. The write, reproduce itself and be conscious of its existence.
main visible feature is a patch panel that set (Olazaran, 1996)

aifferent combinations of input features. To the
right, arrays of potentiometers that implementec
the adaptive weights

Multi-Layer Perceptrons

Multi-Layer Perceptrons

Prediction <4mmmm Label (truth)

Dropout

Training Set X
[a2

Hidden Layer (Dense)

Batch
- p bits 7

1,2,4
1,3,10

Batchnormalization Batch — | 33,2

Hidden Layer (Dense)

Batchnormallzatlon ' 224
52,4

Input (does not do anything) 1, 3,10

Iris Example

Modeling example: MNIST

import tensorflow as tf 006002006 0Cop0Oo0Y (00
mnist = tf.keras.datasets.mnist (ALY AN AL/ RZR G TN R AN/
2A|2|2 2 32|22 222222
(x_train, y_train), (x_test, y test) = mnist.load_data() 3353833533318 3 333
x train, x test = x train / 255.0, x test / 255.0 o g b i el R bt Bl L il R B3
i oA — sy A > SIS[S|ISISIS[slslSiTisislsIslisis
b 0bbLGCbLbbbode b6l
model = tf.keras.models.Sequential([T2 l7r 01722777
tf.keras.layers.Flatten(input_shape=(28, 28)), Y3598 8P PY TIPS
tf.keras.layers.Dense(128, activation='relu'), vitlglqlqigfiviqalainfqaiigiaiqiqiq
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
1
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer="adam',loss=1loss_fn,metrics=[‘accuracy'])
model.fit(x_train, y_train, epochs=5) Tensorflow 2.0 for Edge TPU

Programming

April 23th, 2020
Andrés L. Martinez
@davilagrau

model.evaluate(x_test, y_test, verbose=2)

https://colab.research.google.com/drive/1LFfW6cTUAsz9QB790ivXG50QmzFJsWDO0#scroll To=NJWqEVrrJ
7ZB

Flattening example

&

D e e R e R R ey

oooooooooooooooooooooooooooo
oooooooooooooooooooooooooooo
oooooooooooooooooooooooooooo

Number of Parameters in MNIST Modelling Example

parameters

Input to Dense Layer 28x28x128 100,352

Dense Layer to Dropout .8X

Dropout to 2nd Dense 128x10+10 1290
101642

> 100k parameters just to categorize a digit as 0-9

Back-Propagation

(Derivative of the loss with respect to weights) dl/dW
(Does it recursively backward)

Back-Propagation

« Deep Learning uses the back propagation algorithm to learn how to predict
output vectors in response to input vectors.

« These models are based upon the Perceptron learning principles introduced
by Rosenblatt (1958, 1962), who also introduced the term “back propagation.”

« Back propagation was developed between the 1970s and 1980s by people
like Amari (1972), Werbos (1974, 1994), and Parker (1985, 1986, 1987), reaching
its modern form and being successfully simulated in applications by Werbos

(1974).
« The algorithm was then popularized in 1986 by an article of Rumelhart et al.

(1986).

« Schmidhuber (2020) provides a detailed historical account of many additional
scientists who contributed to this development.

Grossberg, 2020

Gradient descent in Back-Propagation

(”‘.'."1'!‘21'

AW, i~ S

S

aight)

o

I'W

https://youtu.be/tleHLnjs5U8

Gradient descent in Back-Propagation

[4

(lossore

ror)

dl

aWy,

AW, = —

*Note: The sign and magnitude of the weight
change (AW;) depends on:

1) The steepness of the gradient
2) The sign of the gradient
3) Learning rate, n

Hjl
{Waight)

https://youtu.be/tleHLnjs5U8

Gradient descent in Back-Propaagation
14

(loss or efror)

al

N g)

grt+1 qrt
Wit — Wi + AW,

[{
1{01

al >
AW = —1 PITTE Wt Wit N W,
4 [Waight)

*Note: The sign and magnitude of the weight
change (AW,) depends on:
1) The steepness of the gradient
2) The sign of the gradient
3) Learningrate, n

Often times the gradient of loss (/) with respect to one ‘ R« S S0 o
weight (e.g., I1,) cannot be calculated directly. ol = _d_z_ oh” oh = _fjl_
aw, a Wy L] oht

So the chain-rule is used: dst st

https://youtu.be/tleHLnjs5U8

THE UNREASONABLE EFFECTIVENESS OF DATA ;
As the authors put it, “these results suggest that we

In afam : per published in 2001, Microsoft

-esearchers Michele Banko and Eric Brill showed thse : -
FescaremeEs TRCAS € Tamo aud me B showed e may want to reconsider the trade-off between spend-

very different Machine Learning algorithms, includ-

e s e e O e ing time and money on algorithm development versus

well on a complex problem of natural language disam-

biguation® once they were given enough data (as you Spending it on corpus de\r‘elopment."

can see in Figure 1).

[Banko and Brill, 2001] The idea that data matters more than algorithms for
complex problems was further popularized by Peter

Norvig et al. 1n a paper titled
ta”, published in 2009.4¢ It should

be noted, however, that small- and medium-sized

datasets are still very common, and it 1s not always

easy or cheap to get extra training data—so don't

abandon algorithms just yet.

http://technocalifornia.blogspot.com/2012/07/

What is a Tensor?

Generalization of a matrix with an arbitrary number of indices.

Tensors are simply mathematical objects that can

be used to describe physical properties, just like

1d-tensor 2d-tensor 3d-tensor
scalars and vectors. In fact tensors are merely a
)
. . .)
generalisation of scalars and vectors; a scalar is a ‘ ;
€) r
zero rank tensor, and a vector is a first rank tensor. . L)
4d-tensor 5d-tensor 6d-tensor

https://www.doitpoms.ac.uk/tlplib/tensors/what_is_tensor.php

What is TensorFlow?

e An end-to-end open source machine learning platform
e For research and production
e Distributed training and serving predictions

e Apache 2.0 license

55 @

Raspberry Pi

Tensorflow 2.0 for Edge TPU
Programming April 23th, 2020
Andrés L. Martinez@davilagrau

Why TensorFlow

e Easy model building with Keras with eager execution
: makes for immediate model interaction and easy debugging
e Robust ML production anywhere
. easily train and deploy models in the cloud, on-premise, in the browser or
on-device no matter what language you use.
e Powerful for research
. a simple and flexible architecture to take new ideas from concept to code,

to state-of-the-art models, and to publication faster.

TensorFlow core

Training Deployment

Data Design Model Design
tf.data Keras

TF Datasets Estimators Cloud. On-prem

TensorFlow Serving

Training

Distribution Strategy Serialization

SavedModel
3 &3 D

Android, iOS, Raspberry Pi
TensorFlow Lite

Analysis Model Repository Browser and Node

Tensorboard TensorFlow Hub TensorFlow.JS

Tensorflow 2.0 for Edge TPU Programming
April 23th, 2020 Andrés L. Martinez @davilagrau

TensorFlow Lite

e TensorFlow Lite is TensorFlow’s lightweight solution for mobile and embedded
devices

e [t enables on-device machine learning inference with low latency and a small
binary size

e Low latency techniques: optimizing the kernels for mobile apps, pre-fused
activations, and quantized kernels that allow smaller and faster (fixed-point math)
models

e TensorFlow Lite also supports hardware acceleration with the Android Neural
Networks API

https://www.tensorflow.org/mobile/tflite/

What does TensorFlow Lite contain?

* a set of core operators, both quantized and float, which have been tuned for mobile platforms
* pre-fused activations and biases to further enhance performance and quantized accuracy
* using custom operations in models also supported
* a model file format, based on FlatBuffers
* the primary difference is that FlatBuffers does not need a parsing/unpacking step to a
secondary representation before you can access data
* the code footprint of FlatBuffers is an order of magnitude smaller than protocol buffers
* a mobile-optimized interpreter,
* key goals: keeping apps lean and fast.
* a static graph ordering and a custom (less-dynamic) memory allocator to ensure minimal
load, initialization, and execution latency
* an interface to Android NN API if available

https://Iwww.tensorflow.org/mobile/tflite/

Why a new mobile-specific library?
* Innovation at the silicon layer is enabling new possibilities for hardware acceleration, and
frameworks such as the Android Neural Networks APl make it easy to leverage these

* Recent advances in real-time computer-vision and spoken language understanding have
led to mobile-optimized benchmark models being open sourced (e.g. MobileNets,
SqueezeNet)

* Widely-available smart appliances create new possibilities for on-device intelligence

* Interest in stronger user data privacy paradigms where user data does not need to leave
the mobile device

* Ability to serve ‘offline’ use cases, where the device does not need to be connected to a
network

https://Iwww.tensorflow.org/mobile/tflite/

TesorFlow Lite and android NN in Google developer cont.

e TensorFlow runtime is get Mobile App

optimized for mobile and

TensorFlow Lite

embedded applications

e Runs TensorFlow models on Android NN API

device *
e |everage Android NN API m - - .
GPU CPU

e Released as open source

From Google I/0O 2017 video

Actual Android NN API

e The Android Neural Networks APl (NNAPI)
is an Android C API designed for running
computationally intensive operations for

machine learning on mobile devices ey T I

e NNAPI is designed to provide a base layer
of functionality for higher-level machine
learning frameworks (such as TensorFlow
Lite, Caffe2, or others) that build and train Android NNHAL = =4 F = = = — = — | .
neural networks i

e The APl is available on all devices running

N
Android 8.1 (API level 27) or higher. o
Processor Processor

https://developer.android.com/ndk/images/nnapi/nnapi_architecture.png

Example code of TFlite at a glance

e model: .tflite model

* resolver

: if no custom ops, builtin op resolve is enough

* interpreter

: need it to compute the graph

* interpreter->AllocateTensor()

:allocate stuff for you, e.g., input tensor(s)
* fill the input

* interpreter->Invoke(): run the graph

* process the output

kflite::FlatBufferModel model(path_to _model);
tflite::ops::builtin::BuiltinOpResolver resolver;
std::unique_ptr<tflite::Interpreter> interpreter;
tflite::InterpreterBuilder(*model, resolver)(&interpreter);
// Resize input tensors, if desired.
interpreter->AllocateTensors();

float* input = interpreter->typed input tensor<float>(0);
// Fill “input’.

interpreter->Invoke();

float* output = interpreter->type output_tensor<float>(0);

CPU for Deep Learning Inference

CPU

CPU

A5

4

B

L1 L1
INST || DATA

INST

L1
DATA

L2 Cache

L2

Cache

CPU

A typical Edge KWS application may have 2048 input layer, and
256 neurons in the 1st hidden layer — 500k MACs, 24 inferences/s

e Efficient code will require prefetching, small blocksizes for

matrix multiplication to maximize the use of the local memory
o Many access to larger caches and main memory
required.

e Frameworks do allow compilation of the DNN model so it
better fits into a traditional Von Neumann architecture.

e However, efficiency of 5-10% for inference on a CPU is
common

e Could certainly do this on a RPi 4 or a Snapdragon...

e Can it be done at 140-600uW?

Question - Eric -

What is difference of TPU vs. DNN?
— TPU is Google Tensor Processor Unit
DNN is deep neural network, a neural network with many hidden layers

Edge neural processor combines multiply accumulate units right next to memory (less capacitive and inductive
load means smaller drivers, lower power required)

Computation flows from the input layer to the output in an array of processors with computation at the processors

Not good for training, only for inference. Just like TensorFlow lite, it's a deployment model but on HW

https://drive.google.com/file/d/1bOchLuPuyi7EUdODg16Y 3jXW9l0d7Bib/view?usp=sharing

Seems Coral edge TPU or tensorflow lite also can do edge thing like DNN. is it correct? — It can, but
it is comparable to the Jetson. It requires a framework to compile the model. It does not feature
near/at memory compute...this is TPU ARCH: http://meseec.ce.rit.edu/551-projects/fall2017/3-4.pdf.
Look at results: https://mlcommons.org/en/inference-datacenter-20/
https://mlcommons.org/en/inference-edge-20/ QUALCOMM and NVIDIA kick Google’s ass

http://meseec.ce.rit.edu/551-projects/fall2017/3-4.pdf
https://mlcommons.org/en/inference-datacenter-20/
https://mlcommons.org/en/inference-edge-20/

Need For New Memory Architectures

https://www.youtube.com/watch?v=JNQ7Eb5e7dc&t=90s

[T N T Computation
FAdd Cache (64bit) e Only a fraction of the energy
8 bit 0.03pJ 16 bit 0.4pJ 8KB 10pJ required for memory accesses.
32 bit 0.1pJ 32 bit 0.9pJ 32KB 20pJ PY puthng memory as close to the the
Muits Mgl IMBEEH00R: compute elements will save power!
8 bl'f 0.2pJ 16 b?t 1.1pJ DRAM 1.3-2.6nJ Quantization
32 bit 3.1pJ 32 bit 3.7pJd .
e Reduces computation energy
Instruction Energy Breakdown consu.m ptlon
e More importantly, reduces the
25p) 6p) Control 70 p) memory access (and thus power)
1 1 1 required for each parameter, or
I-Cache Access Register File Add more parameters for same power

Access

Mark Horwitz, Computing’s Energy Problem (and what we can do about it) ISSCC 2014

https://www.youtube.com/watch?v=JNQ7Eb5e7dc&t=90s

At/Near Memory Compute

digital

Memory

SRAM
Bank

11

ALU / Digital
processing

« data access energy and
latency dominating

« data reuse and data
compression

at memory
Memory

SRAM
Bank

Digital processing

computation still digital
eliminates data transfer

costs

memory read energy

dominates

deep in-memory
Memory

SRAM
Bank
~ Mixed signal
Processing

memory access and
computation combined
mixed signal computation
significant energy &
latency reduction

From:

In-memory:
Analog
Variable results
Not directly
scalable

near/at mem:
Digital

Repeatable
Scalable (for now)

https://www3.nd.edu/~kogge/courses/cse40462-VLSI-fa18/www/Public/Lectures/compute-in-memory-architectures.pdf

https://www3.nd.edu/~kogge/courses/cse40462-VLSI-fa18/www/Public/Lectures/compute-in-memory-architectures.pd

At Memory Compute

Other Possibilities:

e GPU (Coral TPU, Jetson), DSP (Ethos, Greenwaves
GAP9) or FPGA could be used to accelerate Al
e Another option is at or near memory compute architecture

MAC

SRAM

Locate the compute (multiply accumulate) next to small
segments of SRAM in a fabric allows more efficient processing.

MAC

SRAM

MAC

SRAM

MAC
SRAM

DNN weights stored in SRAM throughout the fabric
A CPU or DSP injects features into the input layer of the DNN.
Movement of data is minimized

Because the memory sizes are small and adjacent to compute, <
1nJ is required for each MAC.

Higher Efficiency than CPUs/DSPs for this workload:: 80+%
vs 5%-15%

MAC

SRAM

MAC

SRAM

MAC

SRAM

MAC

SRAM

MAC

SRAM

MAC
SRAM

MAC

SRAM

MAC

SRAM

MAC

SRAM

SRAM

MAC
SRAM

At-memory
coprocessor

In Memory Compute

Utilize a Non-volatile memory (typically Flash) with ADCs to do
computations in the memory itself

A lot of papers written on this topic!

Mythic.Al founded a company based on this idea

Syntiant tried two in-memory test chips and found that it was not

productizable.
o Analog variation requires calibration circuits which offset power and area advanages
o dense layers map well, other layer types may not work at all (e.g. attention layers)
O

Quantization

Input Layer Hidden Layers Activation Layer
16bit Weights 8bit Weights 4bit Weights 4bit Weights 4bit Weights

At-Memory Compute architecture allows variable precision quantization for different layers

More bits at the front, and highly quantized 4bit, 2bit, or even 1 bit weights at the furthest layers of the
network.

More quantization means less movement of bits through the network.

Feature Extraction
Neural Networks need the number of features to be reduced, otherwise the
number of parameters would be enormous! More expressive power for “free”.

Feature extraction is a way to increase its ‘trainability’ — it basically forces a
physical structure into the DNN, giving a higher level representation of the input.

Sobel filter from our HW is a good example of feature extraction for vision
For Voice KWS,, two approaches are commonly used:

1. A Convolutional NN is used to pre-process and extract features from audio [1]
2. MFCC (Mel-frequency cepstral coefficient). A classic [2]

[1] https://www.maximintegrated.com/en/design/technical-documents/app-notes/7/7359.html
[2] M. J. Hunt, M. Lennig, and P. Mermelstein, “Experiments in syllable-based recognition of continuous speech,” Proceedings of the 1980

ICASSP, Denver, CO, pp. 880-883, 1980

Feature Input to DNN

; [I“I ﬂ' ! I||| I |
"'"“'ﬂ {7 ||
: I ' [I ll“lklliu

I l‘ m ;
ﬂilnHlnuiH .z
H r :

Q 6

[S)

w

= <08 M
4

2
"
0

Training / Deployment with at Memory Compute Accelerator

o PyTorch F TensorFlow
Modét 5 Model self.voice convl = ai8x.FusedConvldReLU(num channels, 100, 1, stride=1, padding=0, bias=bias)
- ; 2, S
self.voice_conv2 = ai8x.FusedConvldRelU(100, 100, 1, stride=1, padding=0, bias=bias)
Training/Test Model
Data Set Training self.voice_conv3 = ai8x.FusedConvldReLU(100, 50, 1, stride=l, padding=0, bias=bias)
self.voice conv4 = ai8x.FusedConvldReLU(50, 16, 1, stride=l, padding=0, bias=bias)

Model Model
Quantization Evaluation

W

self.kws _convl = aifx.FusedConv2dRelU(1€, 32, 3, stride=l, padding=l, bias=bias)

PyTorch self.kws convZ = ai8x.FusedConv2dReLU(32, €4, 3, stride=l, padding=l, bias=bias)
checkpoint or -
ONNX file z = : : .
self.kws_conv3 = aif8x.FusedConv2dRelU(&64, €4, 3, stride=l, padding=l, bias=bias)
Model Input Sample 2 g gz = > % 3 = 2 z
VAML MAX78000 Data self.kws conv4 = ai8x.FusedConv2dRelU(64, 30, 3, stride=l, padding=l, bias=bias)
Description Synthesis (.npy)
self.kws_convS = ai8x.FusedConv2dRelU(30, fc_inputs, 3, stride=1, padding=l, bias=bias)
MAX78000 self.fc = ai8x.Linear(fc_inputs * 123, num classes, bias=bias)

Execution

https://www.maximintegrated.com/en/design/technical-documents/app-notes/7/7359.html

TinyMLperf — A Benchmark for Edge Compute

A benchmark for comparing different edge inference solutions [paper],

measuring Accuracy, Latency, and Energ Diirect Gemparisen

CLOSED DIVISION

A vector of features are fed in directly to
computing unit (CPU/NPU) with a
reference model (52K parameter
CNN in KWS case) Closed Closed

Submission A Submission B

Output classification is measured
against reference input, latency is
measured by start/stop

Compare at-memory compute vs.
CPU-based inference

TinyMLPerf

Q
=)
=
@

https://arxiv.org/pdf/2106.07597.pdf

Measuring Benchmark Metrics (TinyMLperf)

/ Latency \

Data loading + warmup
excluded

Evaluated on loop of
inferences for accuracy

Data-dependent
execution path?

Runtime requirements have been met.
Performance results for window 18:
Inferences :
Runtime

/ Accuracy \

Evaluate on larger
dataset

Top-1 accuracy & AUC

CLOSED: meet threshold
VS.
OPEN: part of the
metrics

/ Energy \

No “cherry-picking” [,

Power Monitor=™
setup <100% <

10 Manager l\slon:?gr
4I—1 (o]
0 _ z |5 I8
Median result
"~ GPIO/TRIG | N
3 DUT

o prmatan
g ol [

o %

55|
o s
Sample Rate: 1.600 Kz

43

Latency / Throughput (how it's measured in TinyML Perf)

Use MCU internal timer,
wrapped around a loop of
inferences.

Load tensor and run a few
warmup cycles outside of
timing.

Run >10s of inferences to
amoritize timestamps.

void ee_infer(size_t n, size_t n_warmup) {

th_load_tensor(); /x if necessary x/
th_printf("m-warmup-start-%d\r\n", n_warmup);
while (n_warmup— > 0) {

th_infer(); /x call the API inference function x/
}
th_printf("m-warmup-done\r\n");
th_printf("m-infer-start-%d\r\n", n);
th_timestamp(); <«—————— printf() wrapper
th_pre();
while (n— > 0) {

th_infer(); /x call #ie API inference function x/
}
th_post();
th_timestamp();
th_printf("m-infer-done\r\n");
th_results();

44

https://mlcommons.org/en/inference-tiny-07/

Submitter

Andes

System

ADP-XC7K160/410 FPGA

Device

AE350 Platform SoC with
AndesCore™ processor

Processor(s)

AndesCore™ D25F, 5-stage, single-issue, RV32 IMACP (1)

Accelerator(s)

RISC-V P Extension

Software

TensorFlowLite for Microcontrollers, Andes NN
Library

Keyword Spotting

Commands

Google Speech

DSCNN

90% (top 1)

Latency in
ms

Energy in uJ

Andes

ADP-XC7K160/410 FPGA

AE350 Platform SoC with
AndesCore™ processor

AndesCore™ D45, 8-stage, dual-issue, RV32 IMACP (1)

RISC-V P Extension

TensorFlowLite for Microcontrollers, Andes NN
Library

Andes

Xilinx VCU118 FPGA

AE350 Platform SoC with
AndesCore™ processor

AndesCore™ NX27V, 5-stage, single-issue, RV64 IMACV,
RVV(VLEN, SIMD, BIU)=(128, 128, 128) (1)

RISC-V V Extension

TensorFlowLite for Microcontrollers, Andes NN
Library

Plumerai

NUCLEO-L4R5ZI

STM32L4R5ZIT6U

Arm® Cortex®-M4

Plumerai inference engine

Plumerai

CY8CPROTO_062_4343w

PSoC 62 MCU

Arm® Cortex®-M4

Plumerai inference engine

Plumerai

DISCO-F746NG

STM32F746NGH6

Arm® Cortex®-M7

Plumerai inference engine

Renesas

EK-RA6M4

RA6M4

Arm Cortex-M33 w/FPU(1)

TensorFlowLite for Microcontrollers

Renesas

RX65N-Cloud-Kit

RX65N

Renesas RXv2

TensorFlowLite for Microcontrollers

STMicroelectronics

NUCLEO-L4R5ZI

STM32L4R5ZIT6U

Arm® Cortex®-M4

X-CUBE-AIv7.1.0

4635.68

STMicroelectronics

NUCLEO-U575ZI-Q

STM32U575ZIT6Q

ame coesAt MemMory compute: 28x less latency + 76x less energy

STMicroelectronics

NUCLEO-H7A3ZI-Q

STM32H7A3ZIT6Q

ARM® Cortex®-M7

\ g

1482.4

X-CUBE-AIv7.1.0

3713.19

Syntiant

syntiant_9120_1v1_98mhz

NDP120

MO + HiFi

Syntiant Core 2

Syntiant TDK

Syntiant

Silicon Labs

syntiant_9120_0v9_30mhz

xG24-DK2601B

NDP120

EFR32MG24

MO + HiFi

Cortex-M33(1)

Syntiant Core 2

Silicon Labs MVP(1)

Syntiant TDK

TensorFlowLite for Microcontrollers, CMSIS-NN,
Silicon Labs Gecko SDK

63.09

611.49

https://mlcommons.org/en/inference-tiny-07/

Pros and Cons — At Memory Compute

At Memory Compute Neural Accelerator

Pros:
e Less latency
e Much Lower power during inferencing
e Easy to fit model into embedded application —no compilation
e Easier to apply heterogenous quantization in model
e More efficient than CPU, CPU w/SIMD or DSP

Cons:

High leakage (large SRAM array)
o High power even when idling
Large Die Area (for memory)
Size of DNN limited by size of on-chip SRAM
Smaller process nodes have even higher leakage — balance for leakage and size
Doesn’t take advantage of sparsity of tensor

Future Directions — Near/At/In-Memory Compute

e Replace SRAM with a fast non-volatile memory such as Resistive RAM

O h Ig her denSIty Table 1.1: Device characteristics of mainstream and emerging memory technologies

o P
/ DRAN PCRAN /
H H RAN
e Mix in-memory compute for = o

<4F2 (3D) ~20F2 4~20F2 | <4F2if3D

H Multi-bit 1 Z 3 2 2
some dense layers with
t m m r m t | r Read Time ~1ns ~10ns ~50ns ~10ps <10ns <10ns <10ns
a - e O y CO pu e aye S. e Write Time ~1ns ~10ns 110'187 1(1)0}157 <5ns ~50ns <10ns
ms ms
take advantage Of both Retention N/A | ~64ms >10y >10y >10y >10y >10y
Endurance >1E16 | >1E16 >1ES5 >1E4 =1E15 >1E9 >1E6~1E12
Write
Energy ~f] ~10f] 100pJ ~10f] ~0.1pJ ~10pJ ~0.1 pJ

(J/bit)
F: feature size of the lithography, and the energy estimation is on the cell-level (not the ar-

ray-level)

From: Resistive Random Access Memory (RRAM), 2016, Shimeng Yu

https://link.springer.com/book/10.1007/978-3-031-02030-8#author-0-0

Conclusion

TensorFlow Lite framework on an embedded CPUs/DSPs, as well as dedicated
neural processors can both be used for edge inference tasks.

e DNNs are trained in the cloud using frameworks like TensorFlow which use
backpropagation for training.

e Edge DNNs can run on microcontrollers using TensorFlow Lite or dedicated
neural processing hardware

e Benchmark shows at-memory neural processors outperform CPUs and DSPs

running TensorFlow Lite in terms of latency and inference energy
o Can save energy or use a much larger network for better performance
e TensorFlow Lite on embedded CPUs do not require additional hardware
o if edge inference is infrequent, or the model is not big, may meet system requirements
o May have less leakage than dedicated neural processor —

