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Deep Learning

Deep Learning/DNN:

Neural Network with multiple hidden layers between input and output layers.



Deep Learning

● Deep Learning is a “Greedy Data” algorithm  – lots of training data required

○ Outperforms other methods when lots of data is available

● Can learn optimal features and a classifier (or regressor) simultaneously

● Deep Neural Network (DNN)  models are very difficult to interpret

● DNNs are tricky to train and easy to overfit (not covered here)

● DNNs trained using gradient descent with backpropagation

● Computationally expensive, but amenable to 

○ hardware acceleration

○ frameworks

● Commercial-grade DNN models are deployed in the field and this remains an active 

research area as well.  



Vocabulary
Tensor – Generalization of a matrix with an arbitrary number of indices.  

Batch – number of samples in the training set per iteration

Batch Normalization [1] – normalize layer inputs during training.  Allows faster learning rate

Epoch – one cycle of training the DNN with all the training data.  

Parameter -- weights of the connections 

Hyperparameter – training items like learning rate, number of epochs.  
(confusing…Metaparameter would perhaps be better)

Expressive Power [2] – complexity of the function (decision or regression) DNN can implement.  
With proper training, a deeper network (with more hidden layers) can classify more complex 
input.  Initial layers of a DNN matter more, and DNN has more expressive power when early 
weights are optimized.  Increased expressive power comes with a downside and that is 
overfitting. Because if your network is too powerful it can overfit the data.

[1] https://arxiv.org/abs/1502.03167
[2] https://ganguli-gang.stanford.edu/pdf/17.ExpressivePower.pdf

https://arxiv.org/abs/1502.03167
https://ganguli-gang.stanford.edu/pdf/17.ExpressivePower.pdf


Why Edge Inference?
Why not just do inference e.g. Key Word Spotting “Alexa” / “Hey Siri” in cloud on GPUs?

Latency
May need inference more quickly than a cloud compute model can provide

Power
Sending data over WiFi/Satellite/Cell network is very power intensive (battery life)

Scalability 
If everyone uploaded raw data 24/7 to the cloud could the infrastructure handle it? 

Access
Internet may not be available and a GPU may require too much power

Person detection vision, and KWS DNNs require 50K- 500K+ parameters for production 
models 



Neural 
Networks



Activation functions: 
https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/#:~:text=5.-,ReLU,neurons%20at%20the%20same%20time.

https://youtu.be/tIeHLnjs5U8

Artificial Neural Networks

https://www.analyticsvidhya.com/blog/2020/01/fundamentals-deep-learning-activation-functions-when-to-use-them/#:~:text=5.-,ReLU,neurons%20at%20the%20same%20time


Perceptron( Mark I : single layer )



Multi-Layer Perceptrons



Multi-Layer Perceptrons



Iris Example



https://colab.research.google.com/drive/1LFfW6cTUAsz9QB79OivXG5oQmzFJsWD0#scrollTo=NJWqEVrrJ
7ZB

Modeling example: MNIST           

Tensorflow 2.0 for Edge TPU
Programming
April 23th, 2020
Andrés L. Martínez
@davilagrau



Flattening example



Number of Parameters in MNIST Modelling Example

> 100k parameters just to categorize a digit as 0-9

# parameters

Input to Dense Layer 28x28x128 100,352

Dense Layer to Dropout .8x

Dropout to 2nd Dense 128x10+10 1290

101642



Back-Propagation
                 (Derivative of the loss with respect to weights)     dl/dW

(Does it recursively backward ) 



Back-Propagation



Gradient descent in Back-Propagation

https://youtu.be/tIeHLnjs5U8



Gradient descent in Back-Propagation

https://youtu.be/tIeHLnjs5U8



Gradient descent in Back-Propagation

https://youtu.be/tIeHLnjs5U8



http://technocalifornia.blogspot.com/2012/07/



What is a Tensor?

Generalization of a matrix with an arbitrary number of indices.  

Tensors are simply mathematical objects that can

 be used to describe physical properties, just like 

scalars and vectors. In fact tensors are merely a 

generalisation of scalars and vectors; a scalar is a 

zero rank tensor, and a vector is a first rank tensor.

https://www.doitpoms.ac.uk/tlplib/tensors/what_is_tensor.php



● An end-to-end open source machine learning platform

● For research and production

● Distributed training and serving predictions

● Apache 2.0 license

What is TensorFlow?

Tensorflow 2.0 for Edge TPU
Programming April 23th, 2020
Andrés L. Martínez@davilagrau



Why TensorFlow

● Easy model building with Keras with eager execution

       : makes for immediate model interaction and easy debugging

● Robust ML production anywhere

       : easily train and deploy models in the cloud, on-premise, in the browser or        

         on-device no matter what language you use.

● Powerful for research

      : a simple and flexible architecture to take new ideas from concept to code, 

        to state-of-the-art models, and to publication faster.



TensorFlow core

Tensorflow 2.0 for Edge TPU Programming
April 23th, 2020 Andrés L. Martínez @davilagrau



TensorFlow Lite
● TensorFlow Lite is TensorFlow’s lightweight solution for mobile and embedded 

        devices

● It enables on-device machine learning inference with low latency and a small 
binary size

● Low latency techniques: optimizing the kernels for mobile apps, pre-fused 
activations, and quantized kernels that allow smaller and faster (fixed-point math)
models

● TensorFlow Lite also supports hardware acceleration with the Android Neural 
Networks API

https://www.tensorflow.org/mobile/tflite/



What does TensorFlow Lite contain?
• a set of core operators, both quantized and float, which have been tuned for mobile platforms

• pre-fused activations and biases to further enhance performance and quantized accuracy
• using custom operations in models also supported

• a model file format, based on FlatBuffers
• the primary difference is that FlatBuffers does not need a parsing/unpacking step to a     
  secondary representation before you can access data
• the code footprint of FlatBuffers is an order of magnitude smaller than protocol buffers

• a mobile-optimized interpreter,
• key goals: keeping apps lean and fast.
• a static graph ordering and a custom (less-dynamic) memory allocator to ensure minimal       
  load, initialization, and execution latency

• an interface to Android NN API if available

https://www.tensorflow.org/mobile/tflite/



Why a new mobile-specific library?

• Innovation at the silicon layer is enabling new possibilities for hardware acceleration, and 
frameworks such as the Android Neural Networks API make it easy to leverage these

• Recent advances in real-time computer-vision and spoken language understanding have 
led to mobile-optimized benchmark models being open sourced (e.g. MobileNets, 
SqueezeNet)

• Widely-available smart appliances create new possibilities for on-device intelligence

• Interest in stronger user data privacy paradigms where user data does not need to leave 
the mobile device

• Ability to serve ‘offline’ use cases, where the device does not need to be connected to a 
network

https://www.tensorflow.org/mobile/tflite/



TesorFlow Lite and android NN in Google developer conf.

● TensorFlow runtime is get 

optimized for mobile and 

embedded applications

● Runs TensorFlow models on 

device

● Leverage Android NN API

● Released as open source

From Google I/O 2017 video



Actual Android NN API
● The Android Neural Networks API (NNAPI)

         is an Android C API designed for running
         computationally intensive operations for
         machine learning on mobile devices

● NNAPI is designed to provide a base layer
of functionality for higher-level machine
learning frameworks (such as TensorFlow
Lite, Caffe2, or others) that build and train
neural networks

● The API is available on all devices running
Android 8.1 (API level 27) or higher.

https://developer.android.com/ndk/images/nnapi/nnapi_architecture.png



Example code of TFlite at a glance

• model: .tflite model

• resolver

: if no custom ops, builtin op resolve is enough

• interpreter

: need it to compute the graph

• interpreter->AllocateTensor()

:allocate stuff for you, e.g., input tensor(s)

• fill the input

• interpreter->Invoke(): run the graph

• process the output



CPU for Deep Learning Inference

CPU

A typical Edge KWS application may have  2048 input layer, and 
256 neurons in the 1st hidden layer – 500k MACs, 24 inferences/s

●  Efficient code will require prefetching, small blocksizes for 
matrix multiplication to maximize the use of the local memory

○ Many access to larger caches and main memory 
required.

● Frameworks do allow compilation of the DNN model so it 
better fits into a traditional Von Neumann architecture.

● However, efficiency of 5-10% for inference on a CPU is 
common

● Could certainly do this on a RPi 4 or a Snapdragon…
● Can it be done at 140-600uW?



Question - Eric -     

What is difference of TPU vs. DNN?

→ TPU is Google Tensor Processor Unit

DNN is deep neural network, a neural network with many hidden layers

Edge neural processor combines multiply accumulate units right next to memory (less capacitive and inductive 
load means smaller drivers, lower power required) 

Computation flows from the input layer to the output in an array of processors with computation at the processors

Not good for training, only for inference.  Just like TensorFlow lite, it’s a deployment model but on HW

https://drive.google.com/file/d/1bOchLuPuyi7EUdODg16Y3jXW9I0d7Bib/view?usp=sharing
Seems Coral edge TPU or tensorflow lite also can do edge thing like DNN. is it correct?  → It can, but 
it is comparable to the Jetson.  It requires a framework to compile the model.  It does not feature 
near/at memory compute…this is TPU ARCH: http://meseec.ce.rit.edu/551-projects/fall2017/3-4.pdf.  
Look at results: https://mlcommons.org/en/inference-datacenter-20/  
https://mlcommons.org/en/inference-edge-20/  QUALCOMM and NVIDIA kick Google’s ass

http://meseec.ce.rit.edu/551-projects/fall2017/3-4.pdf
https://mlcommons.org/en/inference-datacenter-20/
https://mlcommons.org/en/inference-edge-20/


Need For New Memory Architectures

https://www.youtube.com/watch?v=JNQ7Eb5e7dc&t=90s

Mark Horwitz, Computing’s Energy Problem (and what we can do about it) ISSCC 2014

Computation 
● Only a fraction of the energy 

required for memory accesses.
● putting memory as close to the  the 

compute elements will save power!
Quantization 

● Reduces computation energy 
consumption

● More importantly, reduces the 
memory access (and thus power) 
required for each parameter, or 
more parameters for same power

https://www.youtube.com/watch?v=JNQ7Eb5e7dc&t=90s


At/Near Memory Compute

From: 
https://www3.nd.edu/~kogge/courses/cse40462-VLSI-fa18/www/Public/Lectures/compute-in-memory-architectures.pdf

In-memory:
Analog
Variable results
Not directly 
scalable

near/at mem:
Digital
Repeatable
Scalable (for now)

at

https://www3.nd.edu/~kogge/courses/cse40462-VLSI-fa18/www/Public/Lectures/compute-in-memory-architectures.pd


At Memory Compute
Other Possibilities:

● GPU (Coral TPU, Jetson), DSP (Ethos, Greenwaves 
GAP9) or FPGA could be used to accelerate AI 

● Another option is at or near memory compute architecture

Locate the compute (multiply accumulate) next to small 
segments of SRAM in a fabric allows more efficient processing.

DNN weights stored in SRAM throughout the fabric

 A CPU or DSP injects features into the input layer of the DNN.  

Movement of data is minimized

Because the memory sizes are small and adjacent to compute, < 
1nJ is required for each MAC.

Higher Efficiency than CPUs/DSPs for this workload:: 80+% 
vs 5%-15%

At-memory 
coprocessor



In Memory Compute

● Utilize a Non-volatile memory (typically Flash) with ADCs to do 
computations in the memory itself

● A lot of papers written on this topic!
● Mythic.AI founded a company based on this idea
● Syntiant tried two in-memory test chips and found that it was not 

productizable.
○ Analog variation requires calibration circuits which offset power and area advanages
○ dense layers map well, other layer types may not work at all (e.g. attention layers)
○



Quantization

At-Memory Compute architecture allows variable precision quantization for different layers

More bits at the front, and highly quantized 4bit, 2bit, or even 1 bit weights at the furthest layers of the 
network.  

More quantization means less movement of bits through the network.



Feature Extraction
Neural Networks need the number of features to be reduced, otherwise the 
number of parameters would be enormous! More expressive power for “free”.

Feature extraction is a way to increase its ‘trainability’ — it basically forces a 
physical structure into the DNN, giving a higher level representation of the input.  

Sobel filter from our HW is a good example of feature extraction for vision

For Voice KWS,, two approaches are commonly used:

1. A Convolutional NN is used to pre-process and extract features from audio [1]
2. MFCC (Mel-frequency cepstral coefficient).  A classic [2]

[1] https://www.maximintegrated.com/en/design/technical-documents/app-notes/7/7359.html
[2] M. J. Hunt, M. Lennig, and P. Mermelstein, “Experiments in syllable-based recognition of continuous speech,” Proceedings of the 1980 
ICASSP, Denver, CO, pp. 880-883, 1980



Feature Input to DNN



Training / Deployment with at Memory Compute Accelerator

https://www.maximintegrated.com/en/design/technical-documents/app-notes/7/7359.html



TinyMLperf  – A Benchmark for Edge Compute

A benchmark for comparing different edge inference solutions [paper], 

measuring Accuracy, Latency, and Energy

A vector of features are fed in directly to 
computing unit (CPU/NPU) with a
reference model (52K parameter
CNN in KWS case)
Output classification is measured 
against reference input, latency is
measured by start/stop 

Compare at-memory compute vs.
CPU-based inference

https://arxiv.org/pdf/2106.07597.pdf


AccuracyLatency Energy

Measuring Benchmark Metrics (TinyMLperf)

Data loading + warmup 
excluded

Evaluated on loop of 
inferences for accuracy

Data-dependent 
execution path?

Evaluate on larger 
dataset

Top-1 accuracy & AUC

CLOSED: meet threshold
vs.

OPEN: part of the 
metrics

No “cherry-picking”

Power Monitor
setup <100$

Median result

43



Latency / Throughput (how it’s measured in TinyML Perf)

Use MCU internal timer, 
wrapped around a loop of 
inferences.

Load tensor and run a few 
warmup cycles outside of 
timing.

Run >10s of inferences to 
amoritize timestamps.

44

printf() wrapper



Submitter System Device Processor(s) Accelerator(s) Software

Keyword Spotting

Google Speech 
Commands

DSCNN

90% (top 1)

Latency in 
ms Energy in uJ

Andes ADP-XC7K160/410 FPGA
AE350 Platform SoC with 
AndesCore™ processor AndesCore™ D25F, 5-stage, single-issue, RV32 IMACP (1) RISC-V P Extension

TensorFlowLite for Microcontrollers, Andes NN 
Library 79.85

Andes ADP-XC7K160/410 FPGA
AE350 Platform SoC with 
AndesCore™ processor AndesCore™ D45, 8-stage, dual-issue, RV32 IMACP (1) RISC-V P Extension

TensorFlowLite for Microcontrollers, Andes NN 
Library 68.31

Andes Xilinx VCU118 FPGA
AE350 Platform SoC with 
AndesCore™ processor

AndesCore™ NX27V, 5-stage, single-issue, RV64 IMACV, 
RVV(VLEN, SIMD, BIU)=(128, 128, 128) (1) RISC-V V Extension

TensorFlowLite for Microcontrollers, Andes NN 
Library

Plumerai NUCLEO-L4R5ZI STM32L4R5ZIT6U Arm® Cortex®-M4 Plumerai inference engine 73.5

Plumerai CY8CPROTO_062_4343w PSoC 62 MCU Arm® Cortex®-M4 Plumerai inference engine 63.6

Plumerai DISCO-F746NG STM32F746NGH6 Arm® Cortex®-M7 Plumerai inference engine 19.5

Renesas EK-RA6M4 RA6M4 Arm Cortex-M33 w/FPU(1) TensorFlowLite for Microcontrollers 50.57 3796.96

Renesas RX65N-Cloud-Kit RX65N Renesas RXv2 TensorFlowLite for Microcontrollers 81.85 4422.68

STMicroelectronics NUCLEO-L4R5ZI STM32L4R5ZIT6U Arm® Cortex®-M4 X-CUBE-AI v7.1.0 97.65 4635.68

STMicroelectronics NUCLEO-U575ZI-Q STM32U575ZIT6Q Arm® Cortex®-M33 X-CUBE-AI v7.1.0 54.81 1482.4

STMicroelectronics NUCLEO-H7A3ZI-Q STM32H7A3ZIT6Q ARM® Cortex®-M7 X-CUBE-AI v7.1.0 22.29 3713.19

Syntiant syntiant_9120_1v1_98mhz NDP120 M0 + HiFi Syntiant Core 2 Syntiant TDK 1.8 49.59

Syntiant syntiant_9120_0v9_30mhz NDP120 M0 + HiFi Syntiant Core 2 Syntiant TDK 4.3 35.29

Silicon Labs xG24-DK2601B EFR32MG24 Cortex-M33(1) Silicon Labs MVP(1)
TensorFlowLite for Microcontrollers, CMSIS-NN, 
Silicon Labs Gecko SDK 63.09 611.49

At memory compute: 28x less latency + 76x less energy

https://mlcommons.org/en/inference-tiny-07/

https://mlcommons.org/en/inference-tiny-07/


Pros and Cons – At Memory Compute
At Memory Compute Neural Accelerator

Pros:

● Less latency
● Much Lower power during inferencing
● Easy to fit model into embedded application –no compilation
● Easier to apply heterogenous quantization in model
● More efficient than CPU, CPU  w/SIMD or DSP

Cons:

● High leakage (large SRAM array)
○ High power even when idling

● Large Die Area (for memory)
● Size of DNN limited by size of on-chip SRAM
● Smaller process nodes have even higher leakage – balance for leakage and size
● Doesn’t take advantage of sparsity of tensor



Future Directions – Near/At/In-Memory Compute

● Replace SRAM with a fast non-volatile memory such as Resistive RAM 
○ higher density
○ Less leakage

● Mix in-memory compute for 
some dense layers with 
at-memory compute layers…
take advantage of both 

From: Resistive Random Access Memory (RRAM), 2016,  Shimeng Yu

https://link.springer.com/book/10.1007/978-3-031-02030-8#author-0-0


Conclusion

TensorFlow Lite framework on an embedded CPUs/DSPs, as well as dedicated 
neural processors can both be used for edge inference tasks.

● DNNs are trained in the cloud using frameworks like TensorFlow which use 
backpropagation for training.

● Edge DNNs can run on microcontrollers using TensorFlow Lite or dedicated 
neural processing hardware 

● Benchmark shows at-memory neural processors outperform CPUs and DSPs 
running TensorFlow Lite in terms of latency and inference energy

○ Can save energy or use a much larger network for better performance
● TensorFlow Lite on embedded CPUs do not require additional hardware 

○ if edge inference is infrequent, or the model is not big, may meet system requirements
○ May have less leakage than dedicated neural processor – 


