
CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

CSE 141L: Introduction to Computer Architecture Lab

SystemVerilog

Pat Pannuto, UC San Diego
ppannuto@ucsd.edu

mailto:ppannuto@ucsd.edu

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Logistics Updates

• Lab Hours

– Internal signups for CSE basement labs end today

– Expect to post hours beginning of next week

– Trickling in on Canvas now, but subject to change still…

• Tools

– CloudLabs is live

– ModelSim is dead, long live Questa [but ModelSim is fine too]

• When following tutorials, seems safe to s/ModelSim/Questa

• Vocabulary

– Labs -> Milestones + Final Report

2

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Logistics Update: Waitlists

• 24 people and counting who are in/finished 141 but waitlisted for 141L

– This is too many to just let everyone in

If you are considering dropping this course, please do so ASAP

• If you are far back on the waitlist for 141, then please make room in 141L

• 141 will be offered next quarter

– (I’m teaching it)

3

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

SYNTHESIZABLE SYSTEM VERILOG 1 –

FUNDAMENTALS

FA FA FA FA module adder(input [3:0] A, B,

output cout,

output [3:0] S);

wire c0, c1, c2;

FA fa0(A[0], B[0], 1’b0, c0, S[0]);

FA fa1(A[1], B[1], c0, c1, S[1]);

FA fa2(A[2], B[2], c1, c2, S[2]);

FA fa3(A[3], B[3], c2, cout, S[3]);

endmodule

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

What is SystemVerilog (SV)?

• In this class and in the real world, SystemVerilog is a specification

language, not a programming language.

– Draw your schematic and state machines and then transcribe it into SV.

– When you sit down to write SV you should know exactly what you are
implementing.

• We are constraining you to a subset of the language for two reasons

– These are the parts that people use to design real processors

– Steer you clear of problematic constructs that lead to bad design.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

[System]Verilog is a Hardware Description Language (HDL)

• The other popular HDL is VHDL

• An HDL is not a programming language — it is an HDL!

• SystemVerilog is a new-ish improvement over Verilog

– Technically, it’s a backwards-compatible superset

– This can be troublesome, as Verilog is earlier to make mistakes in :/

6

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

SV Fundamentals

• What is System Verilog?

• Data types

• Structural SV

• RTL SV

– Combinational Logic

– Sequential Logic

FA FA FA FA

module adder(input [3:0] A, B,

output cout,

output [3:0] S);

wire c0, c1, c2;

FA fa0(A[0], B[0], 1’b0, c0, S[0]);

FA fa1(A[1], B[1], c0, c1, S[1]);

FA fa2(A[2], B[2], c1, c2, S[2]);

FA fa3(A[3], B[3], c2, cout, S[3]);

endmodule

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Bit-vectors are the primary data type in Synthesizable SV

High impedance, floatingZ

Unknown logic valueX

Logic one1

Logic zero0

MeaningValue

An X bit might be a 0, 1, Z, or in transition. We can set bits to

be X in situations where we don’t care what the value is. This

can help catch bugs and improve synthesis quality.

A bit can take on one of four values

In the simulation waveform viewer,

Unknown signals are RED. There

should be no red after reset.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

logic keyword denotes a hardware net that has a single

driver but possibly multiple outputs

• It can be combinational or sequential – other syntax will tell which

logic [15:0] instruction;

instruction

16

instruction

16

16

IllegalLegal

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

wire keyword denotes a hardware net that has >=1 drivers,

or that has unknown (or bi-) directionality

wire [15:0] bus_A;

wire [15:0] bus_B;

wire [7:0] small_net;

b
u

s_
A

b
u

s_
B

b
u

s_
A

sm
a

ll
_

n
e

t

?

Absolutely no type safety

when connecting nets!

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Bit literals

• Binary literals

– 8’b0000_0000

– 8’b0xx0_1xx1

• Hexadecimal literals

– 32’h0a34_def1

– 16’haxxx

• Decimal literals

– 32’d42

4’b10_11

Underscores
are ignored

Base format
(d,b,o,h)

Decimal number
representing size in bits

We’ll learn how to actually

assign literals to nets a little

later

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

SV Fundamentals

• What is System Verilog?

• Data types

• Structural SV

• RTL SV

– Combinational Logic

– Sequential Logic

FA FA FA FA

module adder(input [3:0] A, B,

output cout,

output [3:0] S);

wire c0, c1, c2;

FA fa0(A[0], B[0], 1’b0, c0, S[0]);

FA fa1(A[1], B[1], c0, c1, S[1]);

FA fa2(A[2], B[2], c1, c2, S[2]);

FA fa3(A[3], B[3], c2, cout, S[3]);

endmodule

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

A SV module has a name and a port list

adder

a_i b_i

sum_ocy_o

// HDL modeling of
// adder functionality
module adder(input [3:0] a_i,

input [3:0] b_i,
output cy_o,
output [3:0] sum_o);

endmodule

Note the semicolon at the

end of the port list!

Ports must have a direction and a bitwidth.

In this class we use _i to denote in port variables

and _o to denote out port variables.

4 4

4

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

A module can instantiate other modules

adder

a_i b_i

sum_ocy_i

FA FA FA FA

module adder(input [3:0] a_i, b_i,
output cy_o,
output [3:0] sum_o);

logic c0, c1, c2;
FA fa0(...);
FA fa1(...);
FA fa2(...);
FA fa3(...);

endmodule

module FA(input a_i, b_i, cy_i
output cy_o, sum_o);

// HDL modeling of 1 bit
// full adder functionality

endmodule

FA

b_ia_i

sum_o

cy_icy_o

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Connecting modules

adder

A B

Scout

FA FA FA FA

module adder(input [3:0] a_i, b_i,
output cy_o,
output [3:0] sum_o);

logic c0, c1, c2;
FA fa0(a_i[0], b_i[0], 1’b0, c0, sum_o[0]);
FA fa1(a_i[1], b_i[1], c0, c1, sum_o[1]);
FA fa2(a_i[2], b_i[2], c1, c2, sum_o[2]);
FA fa3(a_i[3], b_i[3], c2, cy_o, sum_o[3]);

endmodule
Carry Chain

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Only connect ports by name and not by position.

Connecting ports by ordered list is compact but bug prone:

FA fa0(a_i[0], b_i[0], 1’b0, c0, sum_o[0]);

Connecting by name is less compact but leads to fewer bugs. This is how you

should do it in this class. You should also line up like parameters so it is easy

to check correctness.

FA fa0(.a_i(a_i[0])

,.b_i(b_i[0])
,.cy_i(1’b0)

,.cy_o(c0)

,.sum_o(sum_o[0])

);

Connecting ports by name yields clearer

and less buggy code. In the slides, we

may do it by position for space. But you

should do it by name and not position.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

SV Fundamentals

• What is System Verilog?

• Data types

• Structural SV

• RTL SV

– Combinational Logic

– Sequential Logic

FA FA FA FA

module adder(input [3:0] A, B,

output cout,

output [3:0] S);

wire c0, c1, c2;

FA fa0(A[0], B[0], 1’b0, c0, S[0]);

FA fa1(A[1], B[1], c0, c1, S[1]);

FA fa2(A[2], B[2], c1, c2, S[2]);

FA fa3(A[3], B[3], c2, cout, S[3]);

endmodule

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Combinational Verilog: assign

assign z_o = (x_i | y_i) & z_i;

z_o

=

|

&

x_i y_i

z_i

z_o

x_i y_i

z_i

very straightforward mapping to hardware

variables are names of wires; operators are gates

parse tree tree of gates

Language-defined operators:

| is ’OR’

& is ‘AND’

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

A module’s behaviour can be described in many

different ways but it should not matter from outside

Example: mux4

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

module mux4(input a_i, b_i, c_i, d_i,
input [1:0] sel_i,

output z_o);

logic t0, t1;

assign z_o = ~((t0 | sel_i[0]) & (t1 | ~sel_i[0]));

assign t1 = ~((sel_i[1] & d_i) | (~sel_i[1] & b_i));

assign t0 = ~((sel_i[1] & c_i) | (~sel_i[1] & a_i));

endmodule

mux4:

Using continuous assignments to generate combinational logic

The order of these continuous assign statements in the source code does not affect

functionality – they are just specifying a bunch of gates – a combinational cloud.

Any time an input to the combinational cloud changes, it propagates through the cloud

of gates and the outputs are updated. (Be careful not to create combinational cycles!)

A couple of combinational

trees that

connect to each

other

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

mux4:

Using ? :

// Four input multiplexer
module mux4(input a_i, b_i, c_i, d_i,

input [1:0] sel_i,
output z_o);

assign z_o = (sel_i == 0) ? a_i :
(sel_i == 1) ? b_i :
(sel_i == 2) ? c_i :
(sel_i == 3) ? d_i : 1’bx;

endmodule If sel_i is X or Z, without the 1’bX condition, it would get d_i in behavioural

simulation but maybe not in timing. Bad!

Having the 1’bx will help make sure your timing simulation looks the same as

your behavioural.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

mux4:

Using combinational always_comb or always @(*) block

module mux4(input a_i, b_i, c_i, d_i,
input [1:0] sel_i,
output logic z_o);

logic t0, t1;

always_comb // system verilog; replaces always @(*)
begin

t0 = (sel_i[1] & c_i) | (~sel_i[1] & a_i);
t1 = ~((sel_i[1] & d_i) | (~sel_i[1] & b_i));
t0 = ~t0;
z_o = ~((t0 | sel_i[0]) & (t1 | ~sel_i[0]));

end

endmodule

Within the always_comb block, the synthesis tool synthesizes the lines in order.

Each L-value (variable to the left of =) creates a name for the wire that is at the top of a logic tree.

If a variable is assigned again (like t0), then the mapping is updated – no cycles are created.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

always_comb permits more advanced combinational idioms

always @*
begin
if (sel_i == 2’d0)

z_o = a_i;
else if (sel_i == 2’d1)
z_o = b_i;

else if (sel_i == 2’d2)
z_o = c_i;

else if (sel_i == 2’d3)
z_o = d_i;

else
z_o = 1’bx;

end
endmodule

always_comb
begin
case (sel_i)

2’d0 : z_o = a_i;
2’d1 : z_o = b_i;
2’d2 : z_o = c_i;
2’d3 : z_o = d_i;
default: z_o = 1’bX;

endcase
end

endmodule

module mux4(input a_i,b_i,c_i,d_i

input [1:0] sel_i,

output logic z_o);

Good idea for avoiding behavioral

versus timing mismatches.

If none of these match, behavioral

will just use last value. Timing will

give you an X probably.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Synthesis of if/else

logic t0, t1, sel;

always_comb

begin
…

if (sel)
t0 = t1+1;

else
t1 = t0+1;

…

end

+

t1 1

t0

+

t0 1

t1

1 0 1 0

t0 t1

t1t0

sel

Note: a mux is created for every L-value written by all branches of the if/else or case statement.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Synthesis of if/else

logic t0, t1, sel;

always_comb

begin
t0 = 1’b1;

if (sel)
t0 = t0+1;

else
t1 = t0+1;

…

end

+

t0 1

t0

+

t0 1

t1

1 0 1 0

t0 t1

t1t0

sel

Note: no L-value should be undefined on any path; behavior is undefined; Verilog will create a latch (ugh)!

1 ?

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Synthesis of if/else

logic t0, t1, sel;

always_comb

begin
t0 = 1’b1;

if (sel)
t0 = t0+1;

else
;

…

end

+

t0 1

t0

1 0

t0

t0

sel

Is this example okay?

1

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

What happens if the case statement is not complete?

module mux3(input a_i, b_i, c_i,
input [1:0] sel_i,
output logic z_o);

always @(*)
begin
case (sel_i)
2’d0 : z_o = a_i;

2’d1 : z_o = b_i;
2’d2 : z_o = c_i;

endcase
end

endmodule

What have we created?

If sel = 3, mux will output

the previous value!

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

What happens if the case statement is not complete?

module mux3(input a_i, b_i, c_i
input [1:0] sel_i,
output logic z_o);

always @(*)

begin
case (sel_i)
2’d0 : z_o = a_i;
2’d1 : z_o = b_i;

2’d2 : z_o = c_i;
default : z_o = 1’bx;

endcase
end

endmodule

We CAN prevent creating a latch

with a default statement

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

What happens if the case statement is not complete?

module mux3(input a_i, b_i, c_i
input [1:0] sel_i,
output logic z_o);

always @(*)

always_comb

begin
case (sel_i)
2’d0 : z_o = a_i;

2’d1 : z_o = b_i;
2’d2 : z_o = c_i;
default : z_o = 1’bx;

endcase
end

endmodule

SystemVerilog will protect you!

Be wary, many examples online are

still plain ol’ Verilog, and will work

fine … until they don’t L

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Parameterized mux4

module mux4 #(parameter width_p = 1)

(input[width_p-1:0] a_i, b_i, c_i, d_i,
input [1:0] sel_i,
output[width_p-1:0] z_o);

wire [width_p-1:0] t0, t1;

assign t0 = (sel_i[1]? c_i : a_i);
assign t1 = (sel_i[1]? d_i : b_i);

assign z_o = (sel_i[0]? t0 : t1);
endmodule

Instantiation

mux4#(.width_p(32))
alu_mux
(.a_i (op1),

.b_i (op2),

.c_i (op3),

.d_i (op4),

.sel_i(alu_mux_sel),

.z_o(alu_mux_out));

default value

Parameterization is a good practice for reusable modules

Writing a muxn is challenging, but can be done with

“idiomatic” verilog.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

SV Fundamentals

• What is System Verilog?

• Data types

• Structural SV

• RTL SV

– Combinational Logic

– Sequential Logic

FA FA FA FA

module adder(input [3:0] A, B,

output cout,

output [3:0] S);

wire c0, c1, c2;

FA fa0(A[0], B[0], 1’b0, c0, S[0]);

FA fa1(A[1], B[1], c0, c1, S[1]);

FA fa2(A[2], B[2], c1, c2, S[2]);

FA fa3(A[3], B[3], c2, cout, S[3]);

endmodule

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

logic q_r, q_n;

always_ff @(posedge clk)

q_r <= q_n;

Sequential Logic: Creating a flip flop

1) This line simply creates two signals, one called q_r and the other called q_n.

2) always_ff keyword indicates our intent to create registers; you could use the always

keyword instead, but this makes it clear what you want!

3) @(posedge clk) indicates that we want these registers to be triggered on the positive edge

of the clk clock signal.

4) Combined with 2) and 3), the <= creates a register whose input is wired to q_n and whose output

is wired to q_r. Use _r to indicate a wire that comes directly out of a register, and _n (i.e., next) to

indicate a wire that goes directly into one, and becomes the new output on the next cycle.

1

2 3

4

note: always use <= with always_ff and = with always_comb

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Sequential Logic: flip-flop idioms

D Q Xnext_X

clk

D Q Xnext_X

clk

enable

module FF (input clk, input d_i,
input en_i, output logic q_r_o);

always_ff @(posedge clk)

begin
if (en_i)
q_r_o <= d_i;

end
endmodule

module FF0 (input clk, input d_i,
output logic q_r_o);

always_ff @(posedge clk)

begin
q_r_o <= d_i;

end
endmodule

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

idiom: flip-flops with reset

always_ff @(posedge clk)
begin
if (reset)

Q <= 0;
else if (enable)
Q <= D;

end

D Q Xnext_X

clk

enable

reset

synchronous reset

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Register (i.e. a vector of parallel flip-flops)

module register#(parameter width_p = 1)
(
input clk,
input [width_p-1:0] d_i,
input en_i,
output logic [width_p-1:0] q_r_o

);

always_ff @(posedge clk)
begin
if (en_i)
q_r_o <= d_i;

end

endmodule

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Implementing Wider Registers

module register2
(input clk,
input [1:0] d_i,

input en_i,
output logic [1:0] q_r_o
);

always_ff @(posedge clk)

begin
if (en_i)
q_r_o <= d_i;

end

endmodule

module register2
(input clk,
input [1:0] d_i,

input en_i,
output logic [1:0] q_r_o

);
FF ff0 (.clk(clk),
.d_i(d_i[0]),

.en_i(en_i),

.q_r_o(q_r_o[0]));

FF ff1 (.clk(clk),
.d_i(d_i[1]),

.en_i(en_i),

.q_r_o(q_r_o[1]));

endmoduleDo they behave the same? yes

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Syntactic Sugar: always_ff allows you to combine

combinational and sequential logic; but this can be confusing.

module accum #(parameter width_p=1)
(input clk,
input data_i,
input en_i,
output logic [width_p-1:0] sum_o;

);

logic [width_p-1:0] sum_r;
assign sum_o = sum_r;

always_ff @(posedge clk)
begin
if (en_i)
sum_r <= sum_r + data_i;

end

module accum #(parameter width_p=1)
(input clk,
input data_i,
input en_i,
output logic [width_p-1:0] sum_o;

);

logic [width_p-1:0] sum_r, sum_next;
assign sum_o = sum_r;

always_comb
begin
sum_next = sum_r;

if (en_i)
sum_next = sum_r + data_i;

end

always_ff @(posedge clk)
sum_r <= sum_next;

more clear shorter

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Syntactic Sugar: You can always convert an always_ff that combines combinational and

sequential logic into two separate always_ff and always_comb blocks.

module accum #(parameter width_p=1)
(input clk,
input data_i,
input en_i,
output logic [width_p-1:0] sum_o;

);

logic [width_p-1:0] sum_r;
assign sum_o = sum_r;

always_ff @(posedge clk)
begin
if (en_i)
sum_r <= sum_r + data_i;

end

module accum #(parameter width_p=1)
(input clk,
input data_i,
input en_i,
output logic [width_p-1:0] sum_o;

);

reg [width_p-1:0] sum_r, sum_next;
assign sum_o = sum_r;

always_comb
begin
sum_next = sum_r;

if (en_i)
sum_next = sum_r + data_i;

end

always_ff @(posedge clk)
sum_r <= sum_next;

When in doubt, use the version on the right.

To go from the left-hand version to the right one:

1. For each register xxx_r, introduce a

temporary variable that

holds the input to each register (e.g.

xxx_next)

2. Extract the combinational part of the

always_ff block into an always_comb
block:

a. change xxx_r <= to xxx_next =
b. add xxx_next = xxx_r; to

beginning of block for default case

3. Extract the sequential part of the

always_ff by creating a separate

always_ff that does xxx_r <=
xxx_next;

more clearshorter

3

2b

2a

1

2

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Register array: we recommend you retain the en_i idiom in the

always_ff block – could reduce # of ports.

always_ff @(posedge clk)
if (en_i)
sum_r[wr_i] <= foo + far;

always_comb
begin

sum_cond_next = foo + far;
end

always_ff @(posedge clk)
if (en_i)
sum_r[wr_i] <= sum_cond_next;

more clearshorter

always_ff @(posedge clk)
if (en_i)
sum_r[wr_i] <= foo + far;

always_comb
begin

sum_cond_next =
en_i ? (foo + far) : sum_r[wr_i];

end

always_ff @(posedge clk)
sum_r[wr_i] <= sum_cond_next;

extra ports? not so good.shorter

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Bit Manipulations

logic [15:0] x;
logic [31:0] x_sext;

logic [31:0] hi, lo;
logic [63:0] hilo;

// concatenation

assign hilo = { hi, lo};
assign { hi, lo } = { 32’b0, 32’b1 };

// duplicate bits (16 copies of x[15] + bits 15..0 of x)
assign x_sext = {{16 { x[15] }}, x[15:0]};

// select top_p bits starting at 0 (same as [top_p-1:0])

assign foo = x[0+:top_p];

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Beware of assignment shortcuts

logic [15:0] x;

assign x = y; logic [15:0] x = y;

wire [15:0] x = y;

“initialization”

non-synthesizable

“continuous assignment”

synthesizable

“Unlike nets, a variable cannot have an implicit

continuous assignment as part of its

declaration. An assignment as part of the

declaration of a variable is a variable

initialization, not a continuous assignment.”

IEEE 1800-2009 (SystemVerilog Standard) p. 50

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

unique and priority for case and if

unique exactly one branch or case item must execute; otherwise it is an error.

priority choices must be evaluated in order, and that one branch must execute.

Synopsys VCS: Does not generate X output, just says:

RT Warning: No condition matches in 'unique case' statement.

"system.v", line 20, for testbench.dut.cu, at time 100.

So, using 1’bX as the default condition still has some purpose, since it shows up in the waveform viewer. On the other

hand, this tells you when the issue happens.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Note: Our SV Subset

• SV is a big language with many features not concerned with synthesizing

hardware.

• The code you write for your processor should contain only the language

structures discussed in these slides.

• Anything else is not synthesizable, although it will simulate fine.

• We will be mixing in some more synthesizable SystemVerilog later in the

course to improve maintainability of your code.

