
CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

CSE 141L: Introduction to Computer Architecture Lab

Microprocessor Architecture & ISAs

Pat Pannuto, UC San Diego
ppannuto@ucsd.edu

mailto:ppannuto@ucsd.edu

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Logistics Update: Waitlists

• This is a big, hard project class
– You now have the full scope of the big, hard project

If you are considering dropping this course, please do so ASAP
Please do not wait until the deadline [Friday!]

• If you are far back on the waitlist for 141, then please make room in 141L
• 141 will be offered next quarter

– (I’m teaching it)

2

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Logistics Updates

• Project spec released for the quarter
– Skim the whole document
– Read the all the requirements
– Read Milestone 1 in depth
– Read the all the requirements again
– Focus on the programs to start — what must your processor do?

• Milestone 1 is due in 16 days
• Viva la Zoom

– Full remote through Jan 31 at least
– Remote participation will always be an option for 141L this quarter

3

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Logistics Advice

• Use Version Control
– This is how your group should share across machines

• Shouldn’t matter if you use Questa/ModelSim locally, CloudLabs, etc…

– Good feedback from folks using VSCode to edit & manage code
• Especially as it has built-in git support

– Please no public repositories!

4

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

ISA Design and Processor Architecture are Interrelated

• Your ISA expresses what your processor can do
– So your architecture has to be able to do it!

5

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

The Instruction Set Architecture

• that part of the architecture that is visible to the programmer
– available instructions (“opcodes”)
– number and types of registers
– instruction formats
– storage access, addressing modes
– exceptional conditions

• How do each of these affect your ISA design?

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Key questions to ask when designing an ISA

• operations
– how many?
– which ones?

• operands
– how many?
– location
– types
– how to specify?

• instruction format
– size
– how many formats?

y = x + b
operation

source operands

destination operand

how does the computer know what
0001 0101 0001 0010 means?

Syntax choice Design choice
add r5, r1, r2 add r5, r1– r4
add [r1, r2], r5

add r5, r1, r2

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Instruction Formats: What does each bit mean?

• Having many different instruction formats...
– complicates decoding
– uses more instruction bits (to specify the format)
– Could allow us to take full advantage of a variable-length ISA not in 141L!

VAX 11 instruction format

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

The MIPS Instruction Format

• the opcode tells the machine which format

opcode

opcode

opcode

rs rt rd shamt funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
Register R-type

Immediate I-type

Jump J-type

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Example of instruction encoding:

opcode=0, rs=1, rt=2, rd=5, sa=0, funct=32
000000 00001 00010 00101 00000 100000

00000000001000100010100000100000
0x00222420

opcode

opcode

opcode

rs rt rd shamt funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
Register R-type

Immediate I-type

Jump J-type

add r5, r1, r2

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Accessing the Operands
aka, what’s allowed to go here

• operands are generally in one of two places:
– registers (32 options)
– memory (232 locations)

• registers are
– easy to specify
– close to the processor (fast access)

• the idea that we want to use registers whenever possible led to
load-store architectures.
– normal arithmetic instructions only access registers
– only access memory with explicit loads and stores

add r5, r1, r2

opcode

opcode

opcode

rs rt rd shamt funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
Register R-type

Immediate I-type

Jump J-type

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Poll Q: Accessing the Operands

Faster access Fewer bits to specify More locations

A Mem Mem Reg
B Mem Reg Mem
C Reg Mem Reg
D Reg Reg Mem
E None of the above

There are typically two locations for operands: registers (internal storage - $t0, $a0)
and memory. In each column we have which (reg or mem) is better.

Which row is correct?

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Q: How does all of this align with the project restrictions?

• [After class], re-read the restrictions with these slides in mind
• Design Question you must answer:

– How will your ISA encode operations and operands?
– And how will that impact how your machine operates?

13

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

r6, r7, r8, …How Many Operands?
aka how many of these?

• Most instructions have three operands (e.g., z = x + y).
• Well-known ISAs specify 0-3 (explicit) operands per instruction.
• Operands can be specified implicitly or explicity.

add r5, r1, r2

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Historically, many classes of ISAs have been explored, and
trade off compactness, performance, and complexity

Style # Operands Example Operation

Stack 0 add tos(N-1) ¬ tos(N) + tos(N-1)

Accumulator 1 add A acc ¬ acc + mem[A]

General Purpose 3 add A B Rc mem[A] ¬ mem[B] + Rc
Register 2 add A Rc mem[A] ¬ mem[A] + Rc

Load/Store: 3 add Ra Rb Rc Ra ¬ Rb + Rc
load Ra Rb Ra ¬ mem[Rb]
store Ra A mem[A] ¬ Ra

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Comparing the Number of Instructions

Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator GP Register GP Register
(register-memory) (load-store)

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Comparing the Number of Instructions

Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator GP Register GP Register
(register-memory) (load-store)

Push A
Push B
Add

Pop C

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Comparing the Number of Instructions

Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator GP Register GP Register
(register-memory) (load-store)

Load A
Add B
Store C

Push A
Push B
Add

Pop C

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Comparing the Number of Instructions

Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator GP Register GP Register
(register-memory) (load-store)

Load A
Add B
Store C

ADD C, A, BPush A
Push B
Add

Pop C

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Comparing the Number of Instructions

Code sequence for C = A + B for four classes of instruction sets:

Stack Accumulator GP Register GP Register
(register-memory) (load-store)

Load A
Add B
Store C

ADD C, A, BPush A
Push B
Add

Pop C

Load R1,A
Load R2,B
Add R3,R1,R2

Store C,R3

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

A = X*Y - B*C

Stack Architecture Accumulator GPR GPR (Load-store)

Memory

A
X
Y
B
C
temp

__
12
3
4
5

__

Stack

R1

R2

R3

Accumulator

Exercise: Working through alternative ISAs
[if time]

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Example: load-store (aka register-register) ISA

• load words from memory to reg file
• operate in reg file
• store results into memory from reg file

Instruction Set Architecture

Before Register and Memory

add r1, r2, r3

20
2
1

r3

12
8

r2
r1
r0

PC

63

24
23
22

0
2
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)

After Register and Memory

Registers

Memory

21
2

20

r3

12
8

r2
r1
r0

PC

63

24
23
22

0
2
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

Assumptions
� 8 bit ISA
� # of registers = 4 + PC (Program Counter)
� Memory size = 64B

Instruction Set Architecture

Before Register and Memory

lw r2, 1(r0)

After Register and Memory

22
2

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
2
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

21
2

20

r3

12
8

r2
r1
r0

PC

63

24
23
22

0
2
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

Assumptions
� 8 bit ISA
� # of registers = 4 + PC (Program Counter)
� Memory size = 64B

Instruction Set Architecture

Before Register and Memory

sw r3, 0(r0)

After Register and Memory

23
2

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
8
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

22
2

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
2
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

Assumptions
� 8 bit ISA
� # of registers = 4 + PC (Program Counter)
� Memory size = 64B

Instruction Set Architecture

Before Register and Memory

beq r0, r1, 2

After Register and Memory

24
2

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
8
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

23
2

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
8
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

Assumptions
� 8 bit ISA
� # of registers = 4 + PC (Program Counter)
� Memory size = 64B

Instruction Set Architecture

Before Register and Memory

j 15

After Register and Memory

15
0

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
8
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

24
0

20

r3

7
8

r2
r1
r0

PC

63

24
23
22

0
8
7

40

2
1

3

··20
21

··

(add r1, r2, r3)
(lw r2, 1(r0))
(sw r3, 0(r0))
(beq r0, r1, 2)
(j 15)Registers

Memory

Assumptions
� 8 bit ISA
� # of registers = 4 + PC (Program Counter)
� Memory size = 64B

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Addressing Modes
aka: how do we specify the operand we want?

• Register direct R3
• Immediate (literal) #25
• Direct (absolute) M[10000]

• Register indirect M[R3]
• Base+Displacement M[R3 + 10000]
• Base+Index M[R3 + R4]
• Scaled Index M[R3 + R4*d + 10000]
• Autoincrement M[R3++]
• Autodecrement M[R3 - -]

• Memory Indirect M[M[R3]]

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

What does memory look like anyway?

• Viewed as a large, single-dimension array, with an address.
• A memory address is an index into the array
• "Byte addressing" means that the index (address) points to a byte of

memory.
0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Which kinds of things can a processor do?

• arithmetic
– add, subtract, multiply, divide

• logical
– and, or, shift left, shift right

• data transfer
– load word, store word

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

“Control Flow” describes how programs execute

• Jumps
• Procedure call (jump subroutine)
• Conditional Branch

– Used to implement, for example, if-then-else logic, loops, etc.

• Control flow must specify two things
– Condition under which the jump or branch is taken
– If take, the location to read the next instruction from (“target”)

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

How do you specify the destination of a branch/jump?

• Unconditional jumps may go long distances
– Function calls, returns, …

• Studies show that almost all conditional branches go short distances
from the current program counter
– loops, if-then-else, …

• A relative address requires (many) fewer bits than an absolute address
– e.g., beq $1, $2, 100 => if ($1 == $2): PC = (PC+4) + 100 * 4

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

MIPS in one slide
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locat ions for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instruct ions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words dif fer by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper
immediate

lui $s1, 100 $s1 = 100 * 2 16 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

More Information? More Machine Types?

• 141 will talk some about other machine types
– The 141 textbook goes into more detail

• I will post a collection of slides and resources from others in Canvas
• Many additional resources online

35

