
CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

CSE 141L: Introduction to Computer Architecture Lab

SystemVerilog II

Pat Pannuto, UC San Diego
ppannuto@ucsd.edu

mailto:ppannuto@ucsd.edu

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Milestone 1 is due in 48 hours [before class Wed]

• What to submit?

– SOMETHING

• M1 is graded for completion, not accuracy
– The purpose of milestones is to help you manage large, long-term project
– TAs will use gradescope “grades” to help give feedback
– Recall: Only Milestone 4 (final submission) is actual grade*

• *With exceptions for things such as skipping milestones altogether

2

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Today’s Objectives:
Learning more about SystemVerilog

• We’ll get through ~half+ these slides today, and the rest on Wednesday

• Treat these slides as a reference
– It’ll go kind of fast, goal is to expose to you things you can learn more about on

your own

3

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Logistics Updates — Course Modality Poll

• Not matter what, remote attendance will be an option all quarter
– Will always stream via Zoom and recordings in Canvas

• Current guidance is that we can resume in-person instruction next week
– We are also permitted up to 5 weeks to shift modality
– And this class does not meet during week 10 [all project hours]

• POLL: Would you come to CENTR 115 M/W from 12-1 every day?
– A: Definitely Yes
– B: Maybe leaning Yes
– C: Maybe leaning No
– D: Definitely No

4

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

SYNTHESIZABLE SYSTEM VERILOG I –
FUNDAMENTALS

[Picking this back up from week 1]

FA FA FA FA module adder(input [3:0] A, B,
output cout,
output [3:0] S);

wire c0, c1, c2;
FA fa0(A[0], B[0], 1’b0, c0, S[0]);
FA fa1(A[1], B[1], c0, c1, S[1]);
FA fa2(A[2], B[2], c1, c2, S[2]);
FA fa3(A[3], B[3], c2, cout, S[3]);

endmodule

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

A module’s behaviour can be described in many
different ways but it should not matter from outside

Example: mux4

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

module mux4(input a_i, b_i, c_i, d_i,
input [1:0] sel_i,
output z_o);

logic t0, t1;

assign z_o = ~((t0 | sel_i[0]) & (t1 | ~sel_i[0]));
assign t1 = ~((sel_i[1] & d_i) | (~sel_i[1] & b_i));
assign t0 = ~((sel_i[1] & c_i) | (~sel_i[1] & a_i));

endmodule

mux4:
Using continuous assignments to generate combinational logic

The order of these continuous assign statements in the source code does not affect
functionality – they are just specifying a bunch of gates – a combinational cloud.

Any time an input to the combinational cloud changes, it propagates through the cloud
of gates and the outputs are updated. (Be careful not to create combinational cycles!)

A couple of combinational
trees that
connect to each
other

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

mux4:
Using ? :
// Four input multiplexer
module mux4(input a_i, b_i, c_i, d_i,

input [1:0] sel_i,
output z_o);

assign z_o = (sel_i == 0) ? a_i :
(sel_i == 1) ? b_i :
(sel_i == 2) ? c_i :
(sel_i == 3) ? d_i : 1’bx;

endmodule If sel_i is X or Z, without the 1’bX condition, it would get d_i in behavioural
simulation but maybe not in timing. Bad!

Having the 1’bx will help make sure your timing simulation looks the same as
your behavioural.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

mux4:
Using combinational always_comb or always @(*) block
module mux4(input a_i, b_i, c_i, d_i,

input [1:0] sel_i,
output logic z_o);

logic t0, t1;

always_comb // system verilog; replaces always @(*)
begin

t0 = (sel_i[1] & c_i) | (~sel_i[1] & a_i);
t1 = ~((sel_i[1] & d_i) | (~sel_i[1] & b_i));
t0 = ~t0;
z_o = ~((t0 | sel_i[0]) & (t1 | ~sel_i[0]));

end

endmodule
Within the always_comb block, the synthesis tool synthesizes the lines in order.
Each L-value (variable to the left of =) creates a name for the wire that is at the top of a logic tree.
If a variable is assigned again (like t0), then the mapping is updated – no cycles are created.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

always_comb permits more advanced combinational idioms

always @*
begin
if (sel_i == 2’d0)
z_o = a_i;

else if (sel_i == 2’d1)
z_o = b_i;

else if (sel_i == 2’d2)
z_o = c_i;

else if (sel_i == 2’d3)
z_o = d_i;

else
z_o = 1’bx;

end
endmodule

always_comb
begin
case (sel_i)
2’d0 : z_o = a_i;
2’d1 : z_o = b_i;
2’d2 : z_o = c_i;
2’d3 : z_o = d_i;
default: z_o = 1’bX;
endcase

end
endmodule

module mux4(input a_i,b_i,c_i,d_i
input [1:0] sel_i,
output logic z_o);

Good idea for avoiding behavioral
versus timing mismatches.

If none of these match, behavioral
will just use last value. Timing will
give you an X probably.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Synthesis of if/else

logic t0, t1, sel;

always_comb
begin
…

if (sel)
t0 = t1+1;

else
t1 = t0+1;

…
end

+

t1 1

t0

+

t0 1

t1

1 0 1 0

t0 t1

t1t0

sel

Note: a mux is created for every L-value written by all branches of the if/else or case statement.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Synthesis of if/else

logic t0, t1, sel;

always_comb
begin
t0 = 1’b1;

if (sel)
t0 = t0+1;

else
t1 = t0+1;

…
end

+

t0 1

t0

+

t0 1

t1

1 0 1 0

t0 t1

t1t0

sel

Note: no L-value should be undefined on any path; behavior is undefined; Verilog will create a latch (ugh)!

1 ?

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Synthesis of if/else

logic t0, t1, sel;

always_comb
begin
t0 = 1’b1;

if (sel)
t0 = t0+1;

else
;

…
end

+

t0 1

t0

1 0

t0

t0

sel

Is this example okay?

1

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

What happens if the case statement is not complete?

module mux3(input a_i, b_i, c_i,
input [1:0] sel_i,
output logic z_o);

always @(*)
begin
case (sel_i)
2’d0 : z_o = a_i;
2’d1 : z_o = b_i;
2’d2 : z_o = c_i;

endcase
end

endmodule

What have we created?

If sel = 3, mux will output
the previous value!

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

What happens if the case statement is not complete?

module mux3(input a_i, b_i, c_i
input [1:0] sel_i,
output logic z_o);

always @(*)

begin
case (sel_i)
2’d0 : z_o = a_i;
2’d1 : z_o = b_i;
2’d2 : z_o = c_i;
default : z_o = 1’bx;

endcase
end

endmodule

We CAN prevent creating a latch
with a default statement

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

What happens if the case statement is not complete?

module mux3(input a_i, b_i, c_i
input [1:0] sel_i,
output logic z_o);

always @(*)

always_comb

begin
case (sel_i)
2’d0 : z_o = a_i;
2’d1 : z_o = b_i;
2’d2 : z_o = c_i;
default : z_o = 1’bx;

endcase
end

endmodule

SystemVerilog will protect you!

Be wary, many examples online are
still plain ol’ Verilog, and will work

fine … until they don’t L

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Parameterized mux4

module mux4 #(parameter width_p = 1)
(input[width_p-1:0] a_i, b_i, c_i, d_i,

input [1:0] sel_i,
output[width_p-1:0] z_o);

wire [width_p-1:0] t0, t1;

assign t0 = (sel_i[1]? c_i : a_i);
assign t1 = (sel_i[1]? d_i : b_i);
assign z_o = (sel_i[0]? t0 : t1);

endmodule

Instantiation
mux4#(.width_p(32))
alu_mux
(.a_i (op1),

.b_i (op2),

.c_i (op3),

.d_i (op4),

.sel_i(alu_mux_sel),

.z_o(alu_mux_out));

default value

Parameterization is a good practice for reusable modules
Writing a muxn is challenging, but can be done with
“idiomatic” verilog.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

SV Fundamentals

• What is System Verilog?
• Data types
• Structural SV
• RTL SV

– Combinational Logic
– Sequential Logic

FA FA FA FA

module adder(input [3:0] A, B,
output cout,
output [3:0] S);

wire c0, c1, c2;
FA fa0(A[0], B[0], 1’b0, c0, S[0]);
FA fa1(A[1], B[1], c0, c1, S[1]);
FA fa2(A[2], B[2], c1, c2, S[2]);
FA fa3(A[3], B[3], c2, cout, S[3]);

endmodule

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

logic q_r, q_n;

always_ff @(posedge clk)
q_r <= q_n;

Sequential Logic: Creating a flip flop

1) This line simply creates two signals, one called q_r and the other called q_n.

2) always_ff keyword indicates our intent to create registers; you could use the always
keyword instead, but this makes it clear what you want!

3) @(posedge clk) indicates that we want these registers to be triggered on the positive edge
of the clk clock signal.

4) Combined with 2) and 3), the <= creates a register whose input is wired to q_n and whose output
is wired to q_r. Use _r to indicate a wire that comes directly out of a register, and _n (i.e., next) to
indicate a wire that goes directly into one, and becomes the new output on the next cycle.

1

2 3

4

note: always use <= with always_ff and = with always_comb

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Sequential Logic: flip-flop idioms

D Q Xnext_X
clk

D Q Xnext_X
clk

enable

module FF (input clk, input d_i,
input en_i, output logic q_r_o);

always_ff @(posedge clk)
begin
if (en_i)
q_r_o <= d_i;

end
endmodule

module FF0 (input clk, input d_i,
output logic q_r_o);

always_ff @(posedge clk)
begin

q_r_o <= d_i;
end

endmodule

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

idiom: flip-flops with reset

always_ff @(posedge clk)
begin
if (reset)
Q <= 0;

else if (enable)
Q <= D;

end

D Q Xnext_X
clk

enable

reset

synchronous reset

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Register (i.e. a vector of parallel flip-flops)

module register#(parameter width_p = 1)
(
input clk,
input [width_p-1:0] d_i,
input en_i,
output logic [width_p-1:0] q_r_o

);

always_ff @(posedge clk)
begin
if (en_i)
q_r_o <= d_i;

end

endmodule

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Implementing Wider Registers

module register2
(input clk,
input [1:0] d_i,
input en_i,
output logic [1:0] q_r_o
);

always_ff @(posedge clk)
begin
if (en_i)
q_r_o <= d_i;

end

endmodule

module register2
(input clk,
input [1:0] d_i,
input en_i,
output logic [1:0] q_r_o

);
FF ff0 (.clk(clk),
.d_i(d_i[0]),

.en_i(en_i),

.q_r_o(q_r_o[0]));

FF ff1 (.clk(clk),
.d_i(d_i[1]),
.en_i(en_i),
.q_r_o(q_r_o[1]));

endmoduleDo they behave the same? yes

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Syntactic Sugar: always_ff allows you to combine
combinational and sequential logic; but this can be confusing.

module accum #(parameter width_p=1)
(input clk,
input data_i,
input en_i,
output logic [width_p-1:0] sum_o;

);

logic [width_p-1:0] sum_r;
assign sum_o = sum_r;

always_ff @(posedge clk)
begin
if (en_i)
sum_r <= sum_r + data_i;

end

module accum #(parameter width_p=1)
(input clk,
input data_i,
input en_i,
output logic [width_p-1:0] sum_o;

);

logic [width_p-1:0] sum_r, sum_next;
assign sum_o = sum_r;

always_comb
begin
sum_next = sum_r;

if (en_i)
sum_next = sum_r + data_i;

end

always_ff @(posedge clk)
sum_r <= sum_next;

more clear shorter

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Syntactic Sugar: You can always convert an always_ff that combines combinational and
sequential logic into two separate always_ff and always_comb blocks.

module accum #(parameter width_p=1)
(input clk,
input data_i,
input en_i,
output logic [width_p-1:0] sum_o;

);

logic [width_p-1:0] sum_r;
assign sum_o = sum_r;

always_ff @(posedge clk)
begin
if (en_i)
sum_r <= sum_r + data_i;

end

module accum #(parameter width_p=1)
(input clk,
input data_i,
input en_i,
output logic [width_p-1:0] sum_o;

);

reg [width_p-1:0] sum_r, sum_next;
assign sum_o = sum_r;

always_comb
begin
sum_next = sum_r;

if (en_i)
sum_next = sum_r + data_i;

end

always_ff @(posedge clk)
sum_r <= sum_next;

When in doubt, use the version on the right.
To go from the left-hand version to the right one:
1. For each register xxx_r, introduce a
temporary variable that

holds the input to each register (e.g.
xxx_next)
2. Extract the combinational part of the
always_ff block into an always_comb
block:

a. change xxx_r <= to xxx_next =
b. add xxx_next = xxx_r; to

beginning of block for default case
3. Extract the sequential part of the
always_ff by creating a separate
always_ff that does xxx_r <=
xxx_next;

more clearshorter

3

2b

2a

1

2

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Register array: we recommend you retain the en_i idiom in the
always_ff block – could reduce # of ports.

always_ff @(posedge clk)
if (en_i)
sum_r[wr_i] <= foo + far;

always_comb
begin

sum_cond_next = foo + far;
end

always_ff @(posedge clk)
if (en_i)
sum_r[wr_i] <= sum_cond_next;

more clearshorter

always_ff @(posedge clk)
if (en_i)
sum_r[wr_i] <= foo + far;

always_comb
begin

sum_cond_next =
en_i ? (foo + far) : sum_r[wr_i];

end

always_ff @(posedge clk)
sum_r[wr_i] <= sum_cond_next;

extra ports? not so good.shorter

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Bit Manipulations

logic [15:0] x;
logic [31:0] x_sext;
logic [31:0] hi, lo;
logic [63:0] hilo;

// concatenation
assign hilo = { hi, lo};
assign { hi, lo } = { 32’b0, 32’b1 };

// duplicate bits (16 copies of x[15] + bits 15..0 of x)
assign x_sext = {{16 { x[15] }}, x[15:0]};

// select top_p bits starting at 0 (same as [top_p-1:0])
assign foo = x[0+:top_p];

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Beware of assignment shortcuts

logic [15:0] x;
assign x = y; logic [15:0] x = y;

wire [15:0] x = y;

“initialization”
non-synthesizable

“continuous assignment”
synthesizable

“Unlike nets, a variable cannot have an implicit
continuous assignment as part of its
declaration. An assignment as part of the
declaration of a variable is a variable
initialization, not a continuous assignment.”

IEEE 1800-2009 (SystemVerilog Standard) p. 50

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

unique and priority for case and if

unique exactly one branch or case item must execute; otherwise it is an error.

priority choices must be evaluated in order, and that one branch must execute.

Synopsys VCS: Does not generate X output, just says:

RT Warning: No condition matches in 'unique case' statement.
"system.v", line 20, for testbench.dut.cu, at time 100.

So, using 1’bX as the default condition still has some purpose, since it shows up in the waveform viewer. On the other
hand, this tells you when the issue happens.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Note: Our SV Subset

• SV is a big language with many features not concerned with synthesizing
hardware.

• The code you write for your processor should contain only the language
structures discussed in these slides.

• Anything else is not synthesizable, although it will simulate fine.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

SYSTEM VERILOG II –
DESIGN EXAMPLES

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Verilog can be used at several levels

automatic tools to
synthesize a low-level
gate-level model

High-Level Behavioral

Register Transfer Level

Gate Level

A common approach is to
use C/C++ for initial
behavioral modeling, and
for building test rigs

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

• Use continuous assignments (assign)
assign c_i = b_o + 1;

• Use always_comb blocks with blocking assignments (=)

always_comb
begin
out = 2’d0;
if (in1 == 1)

out = 2’d1;
else if (in2 == 1)

out = 2’d2;
end

• Every variable should have a default value to avoid inadvertent
introduction of latches

• Don’t assign to same variable from more than one always block. Race conditions
in behavioral sim, synthesizes incorrectly.

Recap: Combinational logic

always blocks allow
more expressive
control structures,
though not all will
synthesize

default value

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Recap: Sequential Logic

• Use always_ff @(posedge clk) only with non-blocking assignment operator (<=)

always_ff @(posedge clk)
c_o <= c_i;

• Careful when mixing pos-edge & neg-edge triggered flip-flops

• Do not assign the same variable from more than one always block. Race condition in behavioral
simulation; synthesizes incorrectly.

• Do not mix blocking and non-blocking assignments
– only use non-blocking assignments (<=) for sequential logic.
– only use block assignments (=) for combinational logic.

• Like in software engineering, express your design as a module hierarchy that corresponds to
logical boundaries in the design. Also, separate datapath and control (more later).

34

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

An Example: Good Style

logic a_n, b_n, c_n;
logic a_r, b_r, c_r;

always_ff @(posedge clk)
begin
a_r <= a_n;
b_r <= b_n;
c_r <= c_n;

end

assign b_n = a_r + 1;
assign c_n = b_r + 1;

+1

a

+1

b c

Readable, combinational
and sequential logic are
separated.

Consistent naming: A_r is
the output of the
register and A_n (or A_n)
is the input.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

An Example: Good Style

logic a_n;
logic b_n, c_n;
logic a_r, b_r, c_r;

always_ff @(posedge clk)
begin
a_r <= a_n; // list in any order
b_r <= b_n;
c_r <= c_n;

end

always_comb
begin
b_n = a_r + 1; // triggers when a_r or b_r changes
c_n = b_r + 1;

end

+1

a

+1

b c

Readable,
combinational and
sequential logic are
separated.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Alternate implementation?

logic a_n, b_n, c_n;
logic a_r, b_r, c_r;

always_ff @(posedge clk)
begin
a_r <= a_n;
b_r <= b_n;
c_r <= c_n;
assign b_n = a_r + 1;
assign c_n = b_r + 1;

end

+1

a

+1

b c

Syntactically
Incorrect.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

An Example: Okay, but less readable?

logic a_n;
logic a_r, b_r, c_r;

always_ff @(posedge clk)
begin
a_r <= a_n;
b_r <= a_r + 1;
c_r <= b_r + 1;

end

+1

a

+1

b c

Is (b_r == a_n+1) ?

Nope - Why?

a_r <= a_n creates
a register between
a_n and a_r, not a wire.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Another style – multiple always blocks

logic a_n, b_n, c_n;
logic a_r, b_r, c_r;

always_ff @(posedge clk)
a_r <= a_n;

assign b_n = a_r + 1;

always_ff @(posedge clk)
b_r <= b_n;

assign c_n = b_r + 1;

always_ff @(posedge clk)
c_r <= c_n;

+1

a

+1

b c

Does it have the
same functionality?

It generates the
same
underlying circuit.

Yes. But why?

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

logic a_n, b_n, c_n;
logic a_r, b_r, c_r;

always @(posedge clk)
begin
a_r = a_n;
b_r = b_n;
c_r = c_n;

end

assign b_n = a_r + 1;
assign c_n = b_r + 1;

How about this one?

+1

a

+1

b c

Will this synthesize?

à Maybe

Is it correct?

à No; Don’t use “blocking assignments” in
@posedge clk blocks. It creates race conditions. Also,
use instead.

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

What does this do? (This is correct but bad code.)

logic b_i, c_i;
logic a_r;
logic sel;

always @(posedge clk)
begin
a_r <= 1’b0;
a_r <= b_i;

if (sel)
a_r <= c_i;

end

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Desugar into separate comb. and seq. logic.

logic b_i, c_i;
logic a_r;

sel;

always @(posedge clk)
begin
a_r <= 1’b0; // redundant!
a_r <= b_i;

if (sel)
a_r <= c_i;

end

logic a_n, b_i, c_i;
logic a_r;

sel;

always_comb
begin
a_n = a_r; // default;

// rdt. but safe
a_n = b_i;

if (sel)
a_n = c_i;

end

always_ff @(posedge clk)
a_r <= a_n;

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

What does this do?
For each always_comb, assign, always_ff statement, draw the gates and wires.

logic a_n, b_i, c_i;
logic a_r;

choose;

always_comb
begin
a_n = a_r; // default

a_n = b_i;

if (choose)
a_n = c_i;

end

always_ff @(posedge clk)
a_r <= a_n;

b_i

c_i

choose

•0
•1 a_n

a_ra_n

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Verilog execution semantics

- Confusing

- Best solution is to write synthesizable Verilog that corresponds exactly to logic you have already
designed on paper. Separate combinational from sequential logic.

- Debugging is difficult for Verilog. Don’t write code and “see if it works.” Test each “unknown”
thing individually until you know what it does; then combine into larger entities.

- Before you try to simulate, manually check every wire to make sure that it is correctly (1) defined,
connected to (2) source and (3) destination, and that (4) the logic driving it appears to be
correct.

- This is faster than finding the same bugs in the waveform viewer!

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Useful operators: reduction

(| c) // all of the bits of C or’d together (“or reduce”)
(& c) // all of the bits of C and’d together (“and reduce”)
(^ c) // all of the bits of C xor’d together (“xor reduce”)

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

SystemVerilog struct example
typedef struct packed {
logic [17-1:0] instr;
logic [10-1:0] addr;

} instr_packet_s;

instr_packet_s ip_n, ip_A_r, ip_B_r, ip_C_r;

assign ip_n = ‘{addr: addr_i
, instr: instr_i};

assign { addr_o, instr_o }
= { ip_C_r.addr, ip_C_r.instr };

always_ff @(posedge clk)
{ ip_A_r, ip_B_r, ip_C_r } <=

{ ip_n, ip_A_r, ip_B_r };

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Helpful SV Primitives

•$bits() - number of bits required to hold value:
• logic[31:0] foo; // $bits(foo) = 32
• struct happy foo; // $bits(struct happy) =

•$clog2() - number of address bits for a memory of size
• - ceiling of log base 2 of X (eg for RF impl.)
• // $clog2(2) = 1, $clog2(3,4) = 2,
• // $clog2(5,6,7,8) = 3, …

•’1,’0,’X,’Z – all 1’s, all 0’s, all X’s, etc.

logic [63:0] Word; logic [3:0] Byte; // byte = keyword
Word[Byte*8 +: 8] ; start at Byte*8; grab 8 bits upwards
Word[Byte*8 –: 8]; start at Byte*8; grab 8 bits downwards

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Helpful SV Primitives, Cont.
•typedef enum [2:0] { eFetch, eDecode, eExecute, eMemory, eWriteback } state_e;

•state_e substate_r, substate_next;

•always_ff @(posedge clk)
• substate_r <= reset ? eFetch : substate_next;

•always_comb
•unique case (substate_r)
• eFetch: substate_next = eDecode;
• eDecode: substate_next = eExecute;
• eExecute:
• unique casez (instr_reg)
• `SW: `LW: substate_next = eMemory;
• default: substate_next = eWriteback;
• endcase
• eMemory:
• unique casez(instruction)
• `LW: substate_next = eWriteback;
• default: substate_next = eFetch;
• endcase
• eWriteback: substate_next = eFetch;
• default: substate_next = eFetch;
• endcase

Breakdown of Verilog case types:
http://www.verilogpro.com/verilog-case-casez-casex/

always @(irq) begin
{int2, int1, int0} = 3'b000;
casez (irq)
3'b1?? : int2 = 1’b1;
3'b?1? : int1 = 1’b1;
3'b??1 : int0 = 1’b1;
default: {int2, int1, int0} = 3'b000;

endcase end

http://www.verilogpro.com/verilog-case-casez-casex/

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

That was a lot.

Remember, these slides are meant as a reference.

You are not expected to have internalized all of this in real time in
lecture, but to have ‘aha’ moments when implementing.

49

