
CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

CSE 141L: Introduction to Computer Architecture Lab
SystemVerilog Verification

Pat Pannuto, UC San Diego
ppannuto@ucsd.edu

mailto:ppannuto@ucsd.edu

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Milestone 2 is due in 9 days

• What to submit?

– SOMETHING

• M1 feedback
– Should be released by Wednesday
– Pay attention to things that should be revised for M2

• M2 is about proving individual components work
– How would you prove to your manager your component works?

2

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Today’s Objectives:
Validation & Verification in Hardware Design

• Real-world hardware design process
– And where we are cutting corners to simplify for class

• Mapping verification in theory to verification in practice

3

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

The hardware design process

4

Specification
(English language)

Model
(higher-level language

[C,Python, etc])

RTL Logic Design
(HDL, e.g. Verilog)

Physical Design
(layout; VLSI/ASIC, FPGA)

Manufactured Part
(actual hardware)

Verification
Does the physical design work?

Validation
Does the model satisfy the spec?
Does the RTL match the model?

Test
Does the part work?

Validation: Have we built the right thing?

Verification: Have we built the thing right?

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

V&V is standard practice across engineering disciplines

5

Figure 2. Systems Engineering "V,”
Washington State DOT, July 2010, WSDOT
Design Manual, Chapter 1050.03, Systems
Engineering: Systems Engineering "V."

http://www.wsdot.wa.gov/publications/manuals/fulltext/M22-01/1050.pdf

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

So what is verification to us?

• Complete validation of all functionality of Device Under Test (DUT)
– Q: Did the ALU testbench example last week do this?

• How do you know that it did / didn’t?

• Mechanistically: Stimulating DUT with all possible inputs

6

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Conceptual view of Verification

7

Stimulus Generator
DUT

{say, an adder}

A

B

Compare
&

VERIFY

“Golden results”

Reference
Implementation

A B C S

A B | C S
1 1 1 1
1 0 0 1
0 1 0 1
0 0 0 0

C

S

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Pragramatic view of Verification [for this class!]

8

Stimulus Generator
DUT

{say, an adder}

A

B

Compare
&

VERIFY

“Golden results”

Reference
Implementation

A B C S

C

S

adder_tb.sv

adder.sv

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Can we find these pieces in last week’s alu_tb.sv?

9

`timescale 1ns/ 1ps

module ALU_tb;

// Signals to interface with the ALU module
logic [7:0] INPUTA; // data inputs
logic [7:0] INPUTB;
logic [2:0] op; // ALU opcode
bit SC_IN = 'b0;
wire[7:0] OUT;
wire Zero;

// Define a helper wire for comparison
logic [7:0] expected;

// Loop variables
integer i, j;

// Instatiate and connect Unit Under Test
ALU uut(
.InputA(INPUTA),
.InputB(INPUTB),
.SC_in(SC_IN),
.OP(op),
.Out(OUT),
.Zero(Zero)

);

// The actual testbench logic
initial begin
$display("STarting!");

INPUTA = 1;
INPUTB = 1;
op= 'b000; // ADD
test_alu_func; // void function call
#5;

INPUTA = 4;
INPUTB = 1;
op= 'b100; // AND
test_alu_func; // void function call
#5;

op= 'b011; // XOR
for (i=0; i<256; i++) begin
for (j=0; j<256;j++) begin
INPUTA = i;
INPUTB = j;
test_alu_func;
#5;

end // j end
end // i end

$display("End: all test cases passed.");

end // initial begin's end

task test_alu_func; begin
case (op)
0: expected = INPUTA + INPUTB; // ADD
1: expected = {INPUTA[6:0], SC_IN}; // LSH
2: expected = {1'b0, INPUTA[7:1]}; // RSH
3: expected = INPUTA ^ INPUTB; // XOR
4: expected = INPUTA & INPUTB; //AND
5: expected = INPUTA - INPUTB; // SUB

endcase
#1;
if(expected == OUT) begin
//$display("%t YAY!! inputs = %h %h, opcode

= %b, Zero %b",$time, INPUTA,INPUTB,op, Zero);
end else begin
$display("%t FAIL! inputs = %h %h, opcode =

%b, zero %b",$time, INPUTA,INPUTB,op, Zero);
$stop;

end
end
endtask

endmodule

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Straight talk: Some of the ‘little tests’ feel silly

• But I promise it feels worse when a bug was a typo in an ‘easy’ module

• Take advantage of groups
– One of you implement your ALU, according to your specification
– Someone else implement the ALU testbench, according to your specification
– … does it actually match?

10

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Pragmatic considerations for verification

• A few slides back…
– “Mechanistically: Stimulating DUT with all possible inputs”

• What defines “all possible inputs” for
– A half-adder?
– Our example ALU?
– Your processor?

11

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

So what can we do to actually test well?

• Exhaustive coverage?

• Principled, corner-case test design?

• Randomized coverage?

• All of the above?

12

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Questions on anything so far?
Then hopping over to look at some examples of rand

• SystemVerilog random testing?

rand bit [7:0] inputA // rand picks random values independently
rand bit [7:0] inputB // and can repeat choices throughout the run
randc bit [2:0] opc // “cycle” random won’t repeat until all seen

constraint legal_ops { opc < 6; /* can add more here */ }

13

We’ll f
ix this Wednesday

with alternative approach!

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Open Q&A on testbench design, more live examples

14

