CSE 141L: Introduction to Computer Architecture Lab Synthesis & Timing

Pat Pannuto, UC San Diego

ppannuto@ucsd.edu

CSE 141L

CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and other

Milestone 2 is due in 48 hours

- What to submit?
 - <u>SOMETHING</u>
- M1 feedback
 - Pay attention to things that should be revised for M2
 - Make changes obvious!
- M2 is about proving individual components work
 - How would you prove to your manager your component works?

Today's Objectives: Understanding [a little bit of] Synthesis

- Difference between simulation and synthesis
- The parts of synthesis we cover in 141L
 - In particular, timing analysis

First, some gargantuan disclaimers

- The material presented today is a vastly simplified overview
- Present an imperfect understanding sufficient for needs in 141L
- Synthesis is *very* domain specific
 - And ultimately so is hardware design
 - Best practice for ASIC != Best practice for FPGA != ...
 - Real-world, high-performance designs floorplan (coarsely) with arch design!

Okay, but what if I really do want to learn all of this stuff?

- In most cases, advanced hardware design is masters / PhD level
- Anything niche/specialized becomes more an *apprenticeship* than a *class*
- Who does this stuff in UCSD CSE? [n.b., there are many in ECE as well!]
 - Ryan Kastner (high performance FPGAs)
 - C.K. Cheng, Andrew Kahng, Alex Orailogu (Circuit Simulation, VLSI, and EDA Tools)
 - Hadi Esmaeilzadeh, Leo Porter, Pat Pannuto, Steven Swanson, Dean Tullsen, Yiying Zhang, Jishen Zhao ("Architecture"; very full stack)
 - Rajesh Gupta, Ryan Kastner, Pat Pannuto, Tajana Rosing (applied / embedded)
- Who did this stuff for a living for a long time?
 - John Eldon

Okay, but what if I really do want to learn all this stuff? Step 1: <u>Try it yourself</u>

- There are a ton of great resources online for hardware development
 - My first google hit for 'gate delay fpga' is a *great* post:
 - <u>https://stackoverflow.com/questions/8874705/how-can-i-calculate-propagation-delay-through-series-of-combinational-circuits-u</u>
- Play around with the tools *beyond* what I show in class
 - Make a new workspace, play with basic circuits, look at all the reports the tools generate, look at some of the files in the work/ folders, try some of the other tools, etc etc
- You will also need some more of the ECE fundamentals
 - Mostly the solid-state electronics course pathway

Simulation is fast, and comparatively simple

- It looks at 'conceptually, how do we want hardware to behave?'
- It doesn't always map to things that can actually happen!
 - Evaluates time as "all the things that logically happened in this time step"

```
assign b = a;
assign c = #1 a;
initial begin
    a = '1;
    #5;
    a = '2;
end
```

"When" do b and c "become" 1 and 2?

Aside: Modeling time in cyber physical systems is a <u>deep</u>, complex area of work

- Local experts: Rajesh and Tajana, kinda-sorta-maybe Pat
- What is time and how do we represent it?
 - Edward Lee at UC Berkeley

Synthesis adds all the details

 Comparison of the tool flow circa 2009 [from UCB CS250 FA09]

Going from a simulation clock to a real, hardware clock:

Synthesis generates *netlists*

- Netlists express hardware out of basic building blocks
 - Could be literally descriptions of transistors
 - For custom chips, commonly "standard cells" (i.e. a DFF, an OR gate, etc)
 - Usually (under NDA) from your **fab**
 - For FPGAs, it's mostly LUTs and connections
 - Great blog post that digs into details:

https://yosefk.com/blog/how-fpgas-work-andwhy-youll-buy-one.html

11

Netlists are very technology-specific

- Both to the underlying synthesized hardware and the EDA toolchain
 - n.b. some netlists are 'just Verilog', but even then metadata does funny stuff
- What's significant to us is that we can simulate synthesized netlists
 - *Better* predict if HW will work
 - Still just simulation!
 - CSE148: Fast cores on FPGAs

Why does this technology-specificity matter for 141L?

- Designs must be synthesizable
- And performance must be on a level playing field

in the block diagram file. Everyone will use Questa/ModelSim for simulation and Intel (formerly Altera) Quartus II for logic synthesis in the Cyclone IVE family, device EP4CE40F29C6.

(n.b. lecture switched to live demo after this slide)

Need to tell the tools about your clock — TopLevel.sdc

Mind the filename! This must match your top level module name.

The `create_clock` command defines a clock for the system
#

There are _a ton_ of additional options for clocks to # capture skew, jitter, distribution, etc; these go beyond # the scope of this class. Your designs will probably want # to modify the period (to go faster!), but nothing else. create_clock -period 20.00 -name main_clock Clk

This will automatically configure setup and hold time throughout your # design, as opposed to you setting uncertainties explicitly. Setting up # uncertainty manually is beyond the scope of this class, however timing # analysis does require that uncertainty be set, so we let the tool do it. derive_clock_uncertainty

CSE 141L

The tools stop if meet your timing, only push if they have to

Summary
This design does not contain any failing setup paths. The worst-case slack is 16.633 ns.
Top Failing Paths

No paths fail setup timing.

	Compilation Rep	ort - Top	oLeve	ι	×	
Та	ble of Contents	џ 8	Slo	w 1200mV 850	Model Set	tup Summary
>	Fitter	^	٩	< <filter>></filter>		
>	Assembler			Clock	Slack	End Point TN
~	📂 Timing Analyzer		1	main_clock	16.633	0.000
	Summary	- 64				
	=== Parallel Compilation					
	=== SDC File List					
	== Clocks					
	Y 📂 Slow 1200mV 85C Model					
	📅 Fmax Summary					
	Timing Closure Recomm	nend				
	📰 Setup Summary					
	Hold Summary					
	Recovery Summary					
	Removal Summary					
	📅 Minimum Pulse Width S	umr				
	> 📙 Worst-Case Timing Path	ns				
	Metastability Summary					
	> 📙 Slow 1200mV 0C Model					
<		>				

What if we set clock to 20-16.633 ~= 3.0?

Timing Closure Recommendations							
Summary							
This design does not contain any failing setup paths. The worst-case slack is 0.447 ns.							
Top Failing Paths							
No paths fail setup timing.							

Can we push to 3.0 - 0.447 ~= 2.0??

Clock	Slack	End	d Poin	IT TNS								
main_clock	-0.544	-2 Ti	Timing Closure Recommendations									
		S	ummary	1								
		Th <u>Re</u> pa	nis desig <u>ecomme</u> ath, click op Failir	n contains failing setup <u>ndations</u> for recomment the appropriate link in ng Paths	paths with a worst-case s dations on how to close se the table below.	lack of -0.544 ns. Run <u>Report Timing Clos</u> tup timing. For recommendations for any	s <u>ure</u> parti					
Slack From To				То	Recommendations							
		1	-0.544	ProgCtr:PC1 ProgCtr[1]	ProgCtr:PC1 ProgCtr[9]	Report recommendations for this path						
		2	-0.524	ProgCtr:PC1 ProgCtr[0]	ProgCtr:PC1 ProgCtr[9]	Report recommendations for this path						
		з	-0.445	ProgCtr:PC1 ProgCtr[2]	ProgCtr:PC1 ProgCtr[9]	Report recommendations for this path						