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Milestone 2 is due in 48 hours

• What to submit?

– SOMETHING

• M1 feedback
– Pay attention to things that should be revised for M2
– Make changes obvious!

• M2 is about proving individual components work
– How would you prove to your manager your component works?
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Today’s Objectives:
Understanding [a little bit of] Synthesis

• Difference between simulation and synthesis

• The parts of synthesis we cover in 141L
– In particular, timing analysis
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First, some gargantuan disclaimers

• The material presented today is a vastly simplified overview

• Present an imperfect understanding sufficient for needs in 141L

• Synthesis is very domain specific
– And ultimately so is hardware design
– Best practice for ASIC != Best practice for FPGA != …
– Real-world, high-performance designs floorplan (coarsely) with arch design!
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Okay, but what if I really do want to learn all of this stuff?

• In most cases, advanced hardware design is masters / PhD level

• Anything niche/specialized becomes more an apprenticeship than a class

• Who does this stuff in UCSD CSE? [n.b., there are many in ECE as well!]
– Ryan Kastner (high performance FPGAs)
– C.K. Cheng, Andrew Kahng, Alex Orailogu (Circuit Simulation, VLSI,  and EDA Tools)
– Hadi Esmaeilzadeh, Leo Porter, Pat Pannuto, Steven Swanson, Dean Tullsen, Yiying

Zhang, Jishen Zhao (”Architecture”; very full stack)
– Rajesh Gupta, Ryan Kastner, Pat Pannuto, Tajana Rosing (applied / embedded)

• Who did this stuff for a living for a long time?
– John Eldon
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Okay, but what if I really do want to learn all this stuff?
Step 1: Try it yourself

• There are a ton of great resources online for hardware development
– My first google hit for ‘gate delay fpga’ is a great post:

• https://stackoverflow.com/questions/8874705/how-can-i-calculate-propagation-
delay-through-series-of-combinational-circuits-u

• Play around with the tools beyondwhat I show in class
– Make a new workspace, play with basic circuits, look at all the reports the tools 

generate, look at some of the files in the work/ folders, try some of the other 
tools, etc etc

• You will also need some more of the ECE fundamentals
– Mostly the solid-state electronics course pathway
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Simulation is fast, and comparatively simple

• It looks at ‘conceptually, how do we want hardware to behave?’

• It doesn’t always map to things that can actually happen!
– Evaluates time as “all the things that logically happened in this time step”

assign b = a;
assign c = #1 a;

initial begin
a = '1;
#5;
a = '2;

end
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“When” do b and c “become” 1 and 2?
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Aside: Modeling time in cyber physical systems is a deep, 
complex area of work

• Local experts: Rajesh and Tajana, kinda-sorta-maybe Pat

• What is time and how do we represent it?
– Edward Lee at UC Berkeley
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Synthesis adds all the details

• Comparison of the tool flow circa 
2009 [from UCB CS250 FA09]
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https://inst.eecs.berkeley.edu/~cs250/fa09/handouts/tut2-toolflow.pdf
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Going from a simulation clock to a real, hardware clock:
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JitterIdeal Clock

Clock Aberrations

Graphics from https://download.ni.com/evaluation/pxi/Digital_Timing.pdf

1 is really 0.8, hysteresis gets us back

Clock trees -> slew

https://download.ni.com/evaluation/pxi/Digital_Timing.pdf
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Synthesis generates netlists

• Netlists express hardware out of basic 
building blocks
– Could be literally descriptions of transistors
– For custom chips, commonly “standard cells” 

(i.e. a DFF, an OR gate, etc)
• Usually (under NDA) from your fab

– For FPGAs, it’s mostly LUTs and connections
• Great blog post that digs into details:

https://yosefk.com/blog/how-fpgas-work-and-
why-youll-buy-one.html
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Netlists are very technology-specific

• Both to the underlying synthesized hardware and the EDA toolchain
– n.b. some netlists are ‘just Verilog’, but even then metadata does funny stuff

• What’s significant to us is that we can simulate synthesized netlists
– Better predict if HW will work
– Still just simulation!

– CSE148: Fast cores on FPGAs
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Why does this technology-specificity matter for 141L?

• Designs must be synthesizable
• And performance must be on a level playing field

(n.b. lecture switched to live demo after this slide)
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Need to tell the tools about your clock — TopLevel.sdc
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# Mind the filename! This must match your top level module name.

# The `create_clock` command defines a clock for the system
#
# There are _a ton_ of additional options for clocks to
# capture skew, jitter, distribution, etc; these go beyond
# the scope of this class. Your designs will probably want
# to modify the period (to go faster!), but nothing else.
create_clock -period 20.00 -name main_clock Clk

# This will automatically configure setup and hold time throughout your
# design, as opposed to you setting uncertainties explicitly. Setting up
# uncertainty manually is beyond the scope of this class, however timing
# analysis does require that uncertainty be set, so we let the tool do it.
derive_clock_uncertainty
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The tools stop if meet your timing, only push if they have to
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What if we set clock to 20-16.633 ~= 3.0?

Can we push to 3.0 – 0.447 ~= 2.0??


