CSE 141L: Introduction to Computer Architecture Lab
Synthesis & Timing

Pat Pannuto, UC San Diego

mailto:ppannuto@ucsd.edu

Milestone 2 is due in 48 hours

* What to submit?
— SOMETHING

* M1 feedback
— Pay attention to things that should be revised for M2
— Make changes obvious!

 M2is about proving individual components work
— How would you prove to your manager your component works?

Today’s Objectives:
Understanding [a little bit of] Synthesis

» Difference between simulation and synthesis

* The parts of synthesis we cover in 141L
— In particular, timing analysis

First, some gargantuan disclaimers

 The material presented today is a vastly simplified overview

* Present an imperfect understanding sufficient for needs in 141L

* Synthesis is very domain specific
— And ultimately so is hardware design
— Best practice for ASIC I= Best practice for FPGA 1= ...
— Real-world, high-performance designs floorplan (coarsely) with arch design!

Okay, but what if | really do want to learn all of this stuff?

* In most cases, advanced hardware design is masters / PhD level
* Anything niche/specialized becomes more an apprenticeship than a class

* Who does this stuff in UCSD CSE? [n.b., there are many in ECE as well!]
— Ryan Kastner (high performance FPGAs)
— C.XK. Cheng, Andrew Kahng, Alex Orailogu (Circuit Simulation, VLSI, and EDA Tools)

— Hadi Esmaeilzadeh, Leo Porter, Pat Pannuto, Steven Swanson, Dean Tullsen, Yiying
Zhang, Jishen Zhao ("Architecture”; very full stack)

— Rajesh Gupta, Ryan Kastner, Pat Pannuto, Tajana Rosing (applied / embedded)
* Who did this stuff for a living for a long time?
— John Eldon

Okay, but what if | really do want to learn all this stuff?
Step 1: Try it yourself

* There are a ton of great resources online for hardware development
— My first google hit for ‘gate delay fpga' is a great post:

* https://stackoverflow.com/questions/8874/05/how-can-i-calculate-propagation-
delay-through-series-of-combinational-circuits-u

* Play around with the tools beyond what | show in class

— Make a new workspace, play with basic circuits, look at all the reports the tools
generate, look at some of the files in the work/ folders, try some of the other
tools, etc etc

* You will also need some more of the ECE fundamentals
— Mostly the solid-state electronics course pathway

https://stackoverflow.com/questions/8874705/how-can-i-calculate-propagation-delay-through-series-of-combinational-circuits-u

Simulation is fast, and comparatively simple

* It looks at ‘conceptually, how do we want hardware to behave?’

* |tdoesn’t always map to things that can actually happen!

— Evaluates time as “all the things that logically happened in this time step”
assign b = a;
assign c = #1 a;

initial begin

a = "1;

#5;

a = '2;
end

“When"” do b and ¢ “become” 1and 2?

Aside: Modeling time in cyber physical systems is a deep,
complex area of work

* Local experts: Rajesh and Tajana, kinda-sorta-maybe Pat

 Whatis time and how do we represent it?
— Edward Lee at UC Berkeley

Synthesis adds all the details

* Comparison of the tool flow circa
2009 [from UCB CS250 FAQ9]

E]V P Compile Design

>

>

>

>

v v P Analysis & Synthesis

B cdit settings
B view Report
P Analysis & Elaboration
P Ppartition Merge
Netlist Viewers
P Design Assistant (Post-Mapping)

P 1jO Assignment Analysis

@1 > P Fitter (Place & Route)

00:00:38

00:00:22

Verilog
Source
(Behav)

Beha

gl \

<
0
o

AL E
o |

https://inst.eecs.berkeley.edu/~cs250/fa09/handouts/tut2-toolflow.pdf

Going from a simulation clock to a real, hardware clock:

|ldeal Clock Jitter Clock trees -> slew

1

a

8
2
g
g
H

.

el

%

2
g
g
E
H

High Level

lowlevel fpgz o = = = = = — e e e = - ——,l - ——

1 Z 5

Graphics from https://download.ni.com/evaluation/pxi/Digital Timing.pdf

10

https://download.ni.com/evaluation/pxi/Digital_Timing.pdf

Synthesis generates netlists

* Netlists express hardware out of basic
building blocks

— Could be literally descriptions of transistors

— For custom chips, commonly “standard cells”

(i.e. a DFF, an OR gate, etc)
* Usually (under NDA) from your fab
— For FPGAs, it's mostly LUTs and connections

* Great blog post that digs into details:

https://yosefk.com/blog/how-fpgas-work-and-
why-youll-buy-one.html

a b
0 0

a = 0 0
0 1

b= 0]
1 0
1 0

c =
1

—_

o =0 =0 =00

[y

out
0
1
0
; = (a&b)|c
1
1
1

A 3-input, 1-output LUT programmed to compute (a&b)|c.
Bits a,b,c are the LUT index, (ab)|c are the stored values.

= e
LuT
(a&b)lc

= = =

n -
T

Routing (a&b)|c from the LUT computing it to another
through switch boxes

2
1
0

0 1 2

Disjoint switch box: signal
from track 1 stays on track 1

2
1
0

0 1 2

Wilton switch box: topology
with track changes

n

https://yosefk.com/blog/how-fpgas-work-and-why-youll-buy-one.html

Netlists are very technology-specific

Both to the underlying synthesized hardware and the EDA toolchain

— n.b. some netlists are ‘just Verilog’, but even then metadata does funny stuff

What's significant to us is that we can simulate synthesized netlists

— Better predict if HW will work
— Still just simulation!

— (CSE148: Fast cores on FPGAs

The hardware design process

pecificatiol
(English language)

Model

(higher-level language
[C.Python, etc])

Validation
Does the model satisfy the spec?
Does the RTL match the model?

ogic Design
e.g. Verilog)

(HDL,

Verification
Does the physical design work?

Test
Does the part work?

Validation: Have we built the right thing?

Verification: Have we built the thing right?

(layout; VLSI/AS|c FPGA)

Why does this technology-specificity matter for 141L?

* Designs must be synthesizable
* And performance must be on a level playing field

in the block diagram file. Everyone will use Questa/ModelSim for simulation and Intel (formerly
Altera) Quartus Il for logic synthesis in the Cyclone IVE family, device eraceaor29cs.

(n.b. lecture switched to live demo after this slide)

Need to tell the tools about your clock — TopLevel. sdc

Mind the filename! This must match your top level module name.

The “create clock ™ command defines a clock for the system

There are _a ton_of additional options for clocks to
capture skew, jitter, distribution, etc; these go beyond
the scope of this class. Your designs will probably want
to modify the period (to go faster!), but nothing else.
create clock -period 20.00 -name main_clock Clk

D N N N TR RN

This will automatically configure setup and hold time throughout your

design, as opposed to you setting uncertainties explicitly. Setting up
uncertainty manually is beyond the scope of this class, however timing
analysis does require that uncertainty be set, so we let the tool do it.
derive clock uncertainty

14

The tools stop if meet your timing, only push if they have to
What if we set clock to 20-16.633 ~=3.0?

Timing Closure Recommendations

Timing Closure Recommendations

This design does not contain any failing setup paths. The worst-case slack is 16.633 ns.
Top Failing Paths

Mo paths fail setup timing.

O Compilation Report - TopLevel (%]
Table of Contents Slow 1200mV 85C Model Setup Summary
> I Fitter A || & <<Filter>>
> I Assembler Clock Slack End Point TNS
v I~ Timing Analyzer 1 main_clock 16633 0.000
2] Summary

B Parallel Compilation

B3 spc File List

EH Clocks

v I~ slow 1200mV 85C Model

B Fmax Summary
@ Timing Closure Recommend
= Setup Summary
B8 Hold Summary
@ Recovery Summary
@ Removal Summary
E= Minimum Pulse Width Sumr

v

B8 worst-Case Timing Paths
[E) Metastability summary
> [Slow 1200mV OC Model

This design does not contain any failing setup paths. The worst-case slack is 0.447 ns.

Top Failing Paths

Mo paths fail setup timing.

Can we push to 3.0 - 0.447 ~=2.07?

Clock Slack End Point TNS

1 main_clock -0.544 -3

Timing Closure Recommendations

This design contains failing setup paths with a worst-case slack of -0.544 ns. Run Report Timing Closure

Recommendations for recommendations on how to close setup timing. For recommendations for any particul
path, click the appropriate link in the table below.

Top Failing Paths

Slack From To Recommendations
1 -0544 ProgCtrPC1|ProgCtr[1] ProgCtr:PC1|ProgCtr[9] Report recommendations for this path
2 -0524 ProgCtrPC1|ProgCtr[0] ProgCtr:PC1|ProgCtr[9] Report recommendations for this path

3 -0.445 ProgCtrPC1|ProgCtr[2] ProgCtr:PC1|ProgCtr[8] Report recommendations for this path

15

