
CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

CSE 141L: Introduction to Computer Architecture Lab
Synthesis & Timing

Pat Pannuto, UC San Diego
ppannuto@ucsd.edu

mailto:ppannuto@ucsd.edu

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Milestone 2 is due in 48 hours

• What to submit?

– SOMETHING

• M1 feedback
– Pay attention to things that should be revised for M2
– Make changes obvious!

• M2 is about proving individual components work
– How would you prove to your manager your component works?

2

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Today’s Objectives:
Understanding [a little bit of] Synthesis

• Difference between simulation and synthesis

• The parts of synthesis we cover in 141L
– In particular, timing analysis

3

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

First, some gargantuan disclaimers

• The material presented today is a vastly simplified overview

• Present an imperfect understanding sufficient for needs in 141L

• Synthesis is very domain specific
– And ultimately so is hardware design
– Best practice for ASIC != Best practice for FPGA != …
– Real-world, high-performance designs floorplan (coarsely) with arch design!

4

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Okay, but what if I really do want to learn all of this stuff?

• In most cases, advanced hardware design is masters / PhD level

• Anything niche/specialized becomes more an apprenticeship than a class

• Who does this stuff in UCSD CSE? [n.b., there are many in ECE as well!]
– Ryan Kastner (high performance FPGAs)
– C.K. Cheng, Andrew Kahng, Alex Orailogu (Circuit Simulation, VLSI, and EDA Tools)
– Hadi Esmaeilzadeh, Leo Porter, Pat Pannuto, Steven Swanson, Dean Tullsen, Yiying

Zhang, Jishen Zhao (”Architecture”; very full stack)
– Rajesh Gupta, Ryan Kastner, Pat Pannuto, Tajana Rosing (applied / embedded)

• Who did this stuff for a living for a long time?
– John Eldon

5

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Okay, but what if I really do want to learn all this stuff?
Step 1: Try it yourself

• There are a ton of great resources online for hardware development
– My first google hit for ‘gate delay fpga’ is a great post:

• https://stackoverflow.com/questions/8874705/how-can-i-calculate-propagation-
delay-through-series-of-combinational-circuits-u

• Play around with the tools beyondwhat I show in class
– Make a new workspace, play with basic circuits, look at all the reports the tools

generate, look at some of the files in the work/ folders, try some of the other
tools, etc etc

• You will also need some more of the ECE fundamentals
– Mostly the solid-state electronics course pathway

6

https://stackoverflow.com/questions/8874705/how-can-i-calculate-propagation-delay-through-series-of-combinational-circuits-u

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Simulation is fast, and comparatively simple

• It looks at ‘conceptually, how do we want hardware to behave?’

• It doesn’t always map to things that can actually happen!
– Evaluates time as “all the things that logically happened in this time step”

assign b = a;
assign c = #1 a;

initial begin
a = '1;
#5;
a = '2;

end

7

“When” do b and c “become” 1 and 2?

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Aside: Modeling time in cyber physical systems is a deep,
complex area of work

• Local experts: Rajesh and Tajana, kinda-sorta-maybe Pat

• What is time and how do we represent it?
– Edward Lee at UC Berkeley

8

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Synthesis adds all the details

• Comparison of the tool flow circa
2009 [from UCB CS250 FA09]

9

https://inst.eecs.berkeley.edu/~cs250/fa09/handouts/tut2-toolflow.pdf

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Going from a simulation clock to a real, hardware clock:

10

JitterIdeal Clock

Clock Aberrations

Graphics from https://download.ni.com/evaluation/pxi/Digital_Timing.pdf

1 is really 0.8, hysteresis gets us back

Clock trees -> slew

https://download.ni.com/evaluation/pxi/Digital_Timing.pdf

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Synthesis generates netlists

• Netlists express hardware out of basic
building blocks
– Could be literally descriptions of transistors
– For custom chips, commonly “standard cells”

(i.e. a DFF, an OR gate, etc)
• Usually (under NDA) from your fab

– For FPGAs, it’s mostly LUTs and connections
• Great blog post that digs into details:

https://yosefk.com/blog/how-fpgas-work-and-
why-youll-buy-one.html

11

https://yosefk.com/blog/how-fpgas-work-and-why-youll-buy-one.html

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Netlists are very technology-specific

• Both to the underlying synthesized hardware and the EDA toolchain
– n.b. some netlists are ‘just Verilog’, but even then metadata does funny stuff

• What’s significant to us is that we can simulate synthesized netlists
– Better predict if HW will work
– Still just simulation!

– CSE148: Fast cores on FPGAs

12

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Why does this technology-specificity matter for 141L?

• Designs must be synthesizable
• And performance must be on a level playing field

(n.b. lecture switched to live demo after this slide)

13

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

Need to tell the tools about your clock — TopLevel.sdc

14

Mind the filename! This must match your top level module name.

The `create_clock` command defines a clock for the system
#
There are _a ton_ of additional options for clocks to
capture skew, jitter, distribution, etc; these go beyond
the scope of this class. Your designs will probably want
to modify the period (to go faster!), but nothing else.
create_clock -period 20.00 -name main_clock Clk

This will automatically configure setup and hold time throughout your
design, as opposed to you setting uncertainties explicitly. Setting up
uncertainty manually is beyond the scope of this class, however timing
analysis does require that uncertainty be set, so we let the tool do it.
derive_clock_uncertainty

CSE 141L CC BY-NC-ND Pat Pannuto – Content derived from materials from John Eldon, Dean Tullsen, Steven Swanson, and others

The tools stop if meet your timing, only push if they have to

15

What if we set clock to 20-16.633 ~= 3.0?

Can we push to 3.0 – 0.447 ~= 2.0??

