CSE 291: Wireless and Communication in the Internet of Things We will start ~2:05 today, but promptly at 2:00 in the future

Pat Pannuto, UC San Diego ppannuto@ucsd.edu **OInK** TO:ck Human Camera Perception Perception

Today's Goals

- Overview of the course
- Introduction to the Internet of Things
- Introduction to wireless communication

Welcome & Logistics

- Everything is on the course website
 - https://patpannuto.com/classes/2022/winter/cse291/
 - ^This is also the homepage in Canvas
- We will use Gradescope to submit stuff when relevant
- We will use [Slack ? Piazza ? Canvas Forum ? Nothing ?] for a message board
- This is a graduate course
 - No exam
 - Occasional paper reading
 - Small weekly-ish lab assignment
 - Smaller capstone project
- This course expects discussion, interactions, and questions
 - Please webcams on [if you can] while remote
 - No Zoom planned after week 2; could be talked into Zoom option M/W, not F (labs have HW)

Hi, I'm Pat (they/them)

- Originally from Michigan
- BSE CE, MSE CS from U of M
- PhD in EECS from UC Berkeley
- I work in "embedded systems"
 →
- I thrive when abstractions break
 - Resource constrained computing
- Interstitial / highly collaborative
 - 40 co-authors
 - 9 institutions
 - 4 continents

Conference

Workshop

Journal 📃

Outline

• Internet of Things

Course Overview

• Overview of wireless networks

The two hardest things in embedded systems / IoT are power and communication

- This class is about wireless technologies
 - For resource-constrained systems [the IoT]
- We will focus on the tradeoffs between technologies
 - How they balance differing constraints [power, spectrum, complexity, etc]
 - And the technical foundations of these designs and differences

Energy is *the* **defining constraint of emerging technologies**

What is the IoT anyway?

• Seriously: let's define "Internet of Things"

Thought experiment on capabilities

- What if the Nest thermostat was powered by...
 - a desktop: 8-core x86-64 processor, 32 GB RAM, 1 TB SSD
 - a laptop?
 - an iPad?
- Would that still count as IoT?
- Why don't we see "desktop IoT" in practice?

"Google Nest Hub"

Thought experiment on energy

- IoT devices include a mix of batteries, wall power, (and energyharvesting)
- Why do we put so much focus on systems with batteries?
 - Why do they need batteries?

Pat's Take on the Internet of Things

- Pretty literal
- My early grad school essays described the "last inch" problem
- Now I often say "expanding the reach of digital world"
- For me, it is about 'networked' 'things'
 - Which implicitly adds some computational capacity
 - [Though not always? Backscatter sensors break this definition...]

Branden's take on the Internet of Things

- Key features
 - Computation
 - Local to the device
 - With some capability for arbitrary compute and storage
 - Connectivity
 - Almost certainly wireless
 - Likely Internet, possibly local
 - Interaction
 - Sensing or Actuation
- Secondary features
 - Low energy
 - (Relatively) Low cost

Outline

• Internet of Things

Course Overview

• Overview of wireless networks

General course structure

- Mondays and Wednesdays
 - Lecture and discussion about IoT communication technology
- Fridays
 - Labs and projects

Grading

- 65% Participation during the quarter
 - Discussion / questions / engagement on M/W
 - Lab / reports on or from F
- 35% Final project

- No exams or homework or participation points
 - The point of in-class material is to teach you and prepare you for projects
 - Come because you want to learn it

Labs

- Semi-guided efforts of getting wireless communication working on real hardware
 - LoRa
 - BLE
 - Thread
- In a perfect world we would also do something with WiFi, cellular radios, and probably backscatter
 - Would need additional hardware
 - And extra time that we don't have this quarter

Lab grading

- Submit something on Gradescope
 - "Prove to me that you did this lab"
 - Point me at public Github code. Include pictures of debug output/network visualization. Discuss what did/didn't work.
 - NOT a formal lab writeup
 - When you work in groups, put all the names at the top and each of you submit copies of the same thing (just logistically easier for me)
- Playing this pretty loose since it's a small, experimental class
 - There's always a chance something in labs *won't* work

Final "Project"

- Trying something different, and invite you to try something different
- Tap into your inner hacker/maker/artist/creative and build/do/make/create something interesting take a risk, have some fun
 - Build an 'advisor-tracker' that detects my wearables and alerts my students to look productive before I open the door to their office
 - It's winter quarter? Crochet a scarf with a complete LoRa packet waveform [maybe just the payload, no one is tall enough to wear the preamble...]
 - Wither 2G? Drive around San Diego county, can you find any active 2G networks? What are they being used for?
 - Find a community group that needs data on something; can you build something useful that might help measure something important [quick-build bike counter? Wearable UV dosimeter? Ambient noise monitor / cheap SPL montior?]
- Reasonable budget available, plus any HW we use in the labs

Project Proposals

- Due at 2pm, Wednesday February 2nd
 - That's the middle of Week 5, halfway through the quarter
 - Note: Not much time after week 10 before showtime
- Start thinking about ideas now

Outline

• Internet of Things

Course Overview

• Overview of wireless networks

Bluetooth Low Energy

- Bluetooth Classic was good for enabling device to device communication
 - But not particularly fast or low energy
- Bluetooth Low Energy was developed to improve this
 - Focuses on low-energy interactions
 - Much lower throughput that Bluetooth
- Supported by hardware devices already in smartphones
 - Humans can interact directly with nearby devices!!

802.15.4 & Thread

- 802.15.4 is a low-energy physical layer
 - Radio chips have been widely available for 15-20 years
- *Significant* amounts of sensor network research have focused on building layers on top of 802.15.4
 - Access control layers
 - Network layers
- Thread is a selection of these possibilities to make a network
 - Uses IPv6 networking!!

WiFi (802.11)

- Ubiquitous wireless communication
 - High energy requirements for high throughput communication
- Now accessible through relatively low power radios
 - ESP32, Electric Imp, and company
 - Still significantly more effort than BLE or Thread
- IoT devices can use the same WiFi that's already available
 - No need for additional infrastructure!!

LPWANs (Low-Power Wide-Area Networks)

- How do we collect data from city-scale deployments?
 - There's an unmet need for long-range, but low-throughput networks
 - Existing cellular technologies focus on human requirements
- Still a brand new space (relatively)
 - Unlicensed-band technologies in last decade: Sigfox and LoRaWAN
 - Cellular technologies in last half-decade: LTE-M and NB-IoT
- Focus on long-range, low-energy, low-throughput
 - One gateway can cover an entire city!!

Extras

- Extremely active research areas
- Backscatter
 - Insanely low-energy communication
 - Enables energy-harvesting indoor devices
- Localization
 - How do we find all this stuff?
 - And how do devices determine where they are relative to each other?
- Other topics are possible if desired. Tell me what focus you want.

Why use wireless?

- There are no wires!
- No need to install and maintain wires
 - Reduces cost
 - Simplifies deployment place devices wherever makes sense
- Supports mobile users
 - Move around office, campus, city
 - Move devices around home

What is hard about wireless?

- There are no wires!
- Wired networks are constant, reliable, and physically isolated
 - Ethernet has the same throughput minute-to-minute
 - Bits sent through Ethernet or USB are (usually) received
- Wireless networks are variable, error-prone, and shared
 - WiFi throughput changes based on location and walls
 - Signals from nearby devices interfere with your signals
 - Individual bits might flip or never be heard at all

Wireless is a shared medium

- Wired communication has signals confined to a conductor
 - Copper or fiber
 - Guides energy to destination
 - Protects signal from interference
- Wireless communication is inherently broadcast
 - Energy is distributed in space
 - Signals must compete with other signals in same frequency band

Increasing network capacity is challenging

- Wired networks just add more wires
 - Buses are many signals in parallel to send more data
- Wireless networks are harder
 - Adding more links just increases interference
 - Need to expand to different frequencies

RF communication

Wireless snectrum is allocated to snecific uses

STATES FREQUENCY

UNITED

ALLOCATIONS

THE RADIO SPECTRUM

NAME AND TAXABLE AND TAXABLE ADDRESS OF TAXABLE ADD

Unlicensed bands are where IoT thrives

- 902 MHz 928 MHz
 - LPWANs
- 2.4 GHz to 2.5 GHz – WiFi, BLE, Thread
- 5 GHz
 - Faster WiFi

• Cellular uses licensed bands

Model of RF communication

- Energy that radiates spherically from an antenna
- Attenuation with distance
 - Density of energy reduces over time, distance
 - Signal strength reduced, errors go up
- Two key features
 - Error rates depend on distance
 - Spatial reuse of frequencies

Next Time: How does the Regular ol' Internet work?

• Aka Pat tries to speedrun most of CSE123 in fifty minutes

