CSE 291: Wireless and Communication in the Internet of Things IEEE 802.15.4

Pat Pannuto, UC San Diego

ppannuto@ucsd.edu

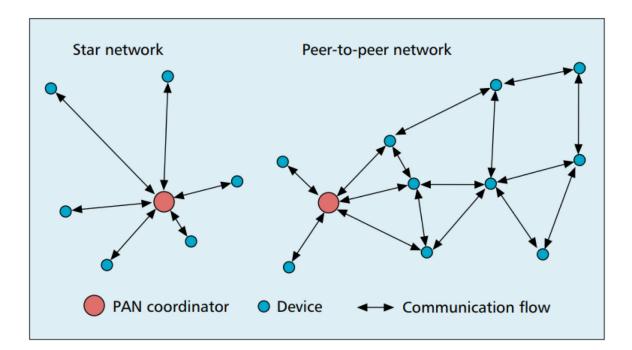
CSE 291 [WI22]

CC BY-NC-ND Pat Pannuto - Content derived from materials from Branden Ghena

Today's Goals

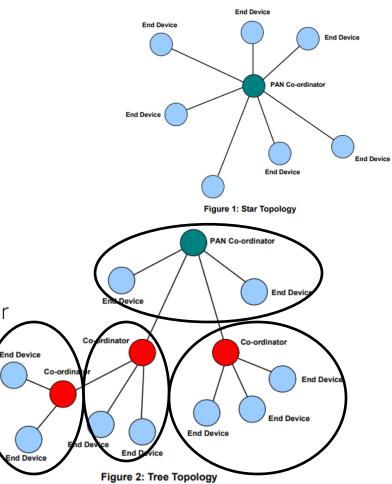
- Exploration of link layer
 - Network topologies
 - Communication structure
 - Access control
 - Packet structure

Outline


• Link Layer

• Packet Structure

• Thread


802.15.4 network topologies

• Only specifies PHY and MAC, but has use cases in mind

Star and Tree topologies

- PAN Coordinator
 - Receives and relays all messages
 - Most capable and power-intensive
- Coordinators (a.k.a. Routers)
 - Control "clusters"
 - Receives and relays to its children
 - Communicates up to parent coordinator
- End Devices
 - Only communicate with single parent coordinator
 - Least capable and power intensive

Mesh networks

- Most devices are capable of communicating with multiple neighbors
- What are advantages of mesh?

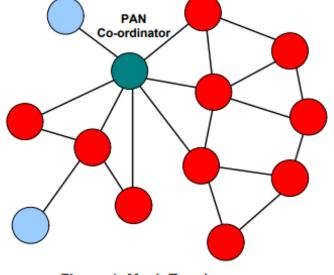
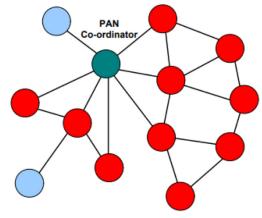


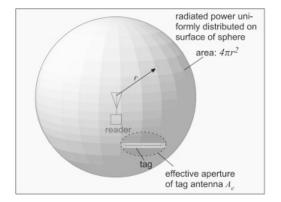
Figure 4: Mesh Topology

• What are disadvantages of mesh?

Mesh networks

- Most devices are capable of communicating with multiple neighbors
- What are advantages of mesh?
 - Devices can communicate over longer distances
 - Device failures less likely to collapse the entire network
- What are disadvantages of mesh?
 - Some nodes have to spend more energy communicating
 - Network protocol becomes more complicated to manage routing



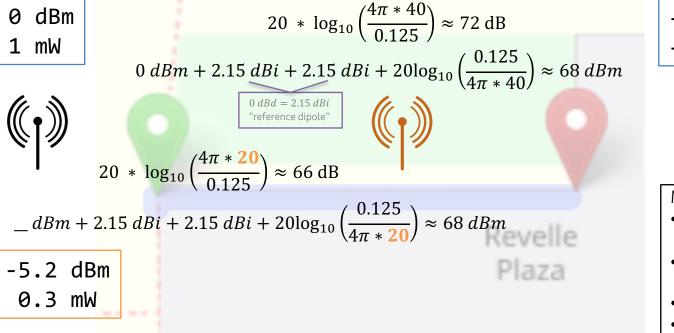

Figure 4: Mesh Topology

Quantitative intuition of 'why bother meshing'

- Free Space Path Loss (FSPL) and the Friis transmission equation
 - Measure how RF signals travel through space

$$-FSPL = 20 * \log_{10}(\frac{4\pi R}{\lambda})$$
, measured in dB

-
$$P_{RX} = P_{TX} * \frac{G_{TX} * G_{RX} * \lambda^2}{(4\pi R)^2 * L}$$
, measured in W [Friis]


-
$$P_r = P_t + G_t + G_r + 20\log_{10}(\frac{\lambda}{4\pi d})$$
, Friis, re-written in dB
Traditionally written as transmit distance

CC BY-NC-ND Pat Pannuto – Content derived from materials from Branden Ghena

A hand-wavy quantitative analysis of 'why bother meshing'

The tent is ~40m wide; how to get from one side to the other?

 $\frac{3e8 \ m/s}{2.4e9 \ Hz} = 0.125 \ m = \ \lambda$

Multi-hop mesh...

- Reduces TX power
 - But adds RX, <u>sync</u> cost!
- Improves aggregate network coverage
- Can improve robustness
- Reduces collision domain

Reminder: CSMA/CA

Carrier Sense Multiple Access with Collision Avoidance

- 1. First, wait a random amount (collision avoidance part)
- 2. Then, listen for a duration and determine if anyone is transmitting (carrier sense part)
 - If idle, you can transmit
 - If busy, repeat step 1 (often increasing maximum wait time)
- Can be combined with notion of slotting [note: not TDMA]
 - Synchronize to slots (smaller than transmit times)
 - Wait for a number of slots
 - Listen for idle slots

Modes of operation

- Beacon-enabled PAN
 - Slotted CSMA/CA
 - Structured communication patterns
 - Optionally with some TDMA scheduled slots
- Non-beacon-enabled PAN
 - Unslotted CSMA/CA
 - No particular structure for communication
 - Could be defined by other specifications, like Thread or Zigbee

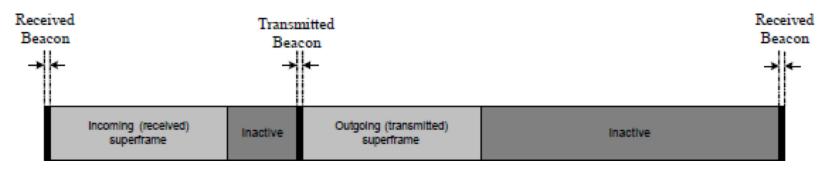
One annoying takeaway

- There are many competing modes that are all "15.4"
- Historically, each vendor picked their own
 - (and, as we will see later, incompatible parameters within a PAN operation mode)
- Interoperability nightmare
 - The Internet of Things Has a Gateway Problem

Thomas Zachariah, et al. HotMobile'15

Beacon-enabled superframe structure

- Beacons occur periodically [15 ms 245 seconds]
 - Devices must listen to each beacon
- Contention Access Period
 - Slotted CSMA/CA synchronized by beacon start time
- Inactive Period
 - No communication occurring. Assumes sleepy devices


Guaranteed Time Slots (GTS)

- PAN Coordinator may create a Contention Free Period with Guaranteed Time Slots
 - TDMA schedule assigned to specific devices
 - Slots eat up part of the Contention Access Period
 - No CSMA/CA within a slot

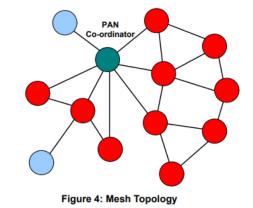
Handling tree-based topologies

- All coordinators listen to beacon from PAN coordinator
 - And can participate in that contention period
- Send their own beacons to child devices during inactive period
 - Children participate in that contention period

Non-beacon-enabled PAN

Contention Access Period

- Same idea, just no beacons
 - Which removes synchronization benefit (and slotted CSMA/CA)
 - Also removes beacon listening cost
 - Devices only need to check for activity before transmitting
 - Still need an algorithm to determine when it should receive data
 - All the time is a huge energy drain
 - Algorithms can get complicated here
 - Does BLE mechanism of listen-after-send apply?


Non-beacon-enabled PAN

Contention Access Period

- Same idea, just no beacons
 - Which removes synchronization benefit (and slotted CSMA/CA)
 - Also removes beacon listening cost
 - Devices only need to check for activity before transmitting
 - Still need an algorithm to determine when it should receive data
 - All the time is a huge energy drain
 - Algorithms can get complicated here
 - Does BLE mechanism of listen-after-send apply?
 - Only if sending to a high-power device, not among equals

Receiving messages

- 1. Listen during entire contention period
 - Can receive direct messages from any other device
 - Can immediately respond to messages as well
- 2. Request messages from Coordinator
 - Make all communication go through Coordinator
 - Send a request-for-data packet to coordinator to get information
 - Coordinator can include list of devices with pending data in beacon
- More complicated listening algorithms are possible

Clear Channel Assessment (CCA)

- The "listen" part of CSMA/CA
- Variety of implementations are acceptable
- 1. Energy above threshold
 - Energy for 8 symbol durations above threshold (RSSI)
- 2. Carrier sense
 - Valid 802.15.4 carrier signal
- 3. Energy AND/OR Carrier

Slotted CSMA/CA operation

- Have data to send
- Wait for next backoff slot (synchronized from beacon)
- Wait for 0-7 backoff slots (slot is 20 symbol durations: 320 us)
- Listen for two empty slots
 - Idle: Transmit
 - Occupied: wait 0-15 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat (upper limit configurable)
 - Next time: 0-31 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat
 - Timeout

Unslotted CSMA/CA operation

- Have data to send
- Wait for next backoff slot (synchronized from beacon)
- Wait for 0-7 backoff slots (slot is 20 symbol durations: 320 us)
- Listen for two empty slots
 - Idle: Transmit
 - Occupied: wait 0-15 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat (upper limit configurable)
 - Next time: 0-31 backoff slots and repeat
 - Next time: 0-31 backoff slots and repeat
 - Timeout

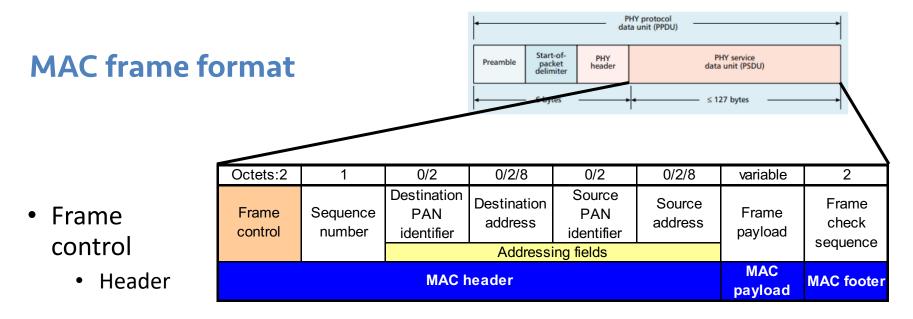
Outline

• Link Layer

• Packet Structure

• Thread

Base packet format


- Synchronization
 - Preamble: four bytes of zeros
 - Start-of-Packet: 0xA7
- PHY Header
 - One field: length 0-127
 - Why still 8 bits?

PHY protocol data unit (PPDU)									
Preamble	Start-of- packet delimiter	PHY header	PHY service data unit (PSDU)						
4	6 bytes		≤ 127 bytes →						

Base packet format

- Synchronization
 - Preamble: four bytes of zeros
 - Start-of-Packet: 0xA7
- PHY Header
 - One field: length 0-127
 - Why still 8 bits? Because computers depend on bytes

	◄ PHY protocol data unit (PPDU)								
Preamble	Start-of- packet delimiter	PHY header	PHY service data unit (PSDU)						
	- 6 bytes		≤ 127 bytes →						

- Sequence number
 - 8-bit monotonically increasing
- Addressing fields
 - PAN and addresses
 - Varies based on frame type

- Frame payload
 - Depends on frame type
- Frame check sequence
 - 16-bit CRC

	Octets:2	1	0/2	0/2/	/8 0	/2 (0/2/8	variable	2
Frame control	Frame control	Sequence number	Destinatio PAN identifier	Destina	etion P		Idress	Frame payload	Frame check sequence
				Ado	dressing fiel	ds			Sequence
	MA C header						I	MAC bayload	MAC footer
	Bits: 0-2	3	4	5	6	7-9	10-11	12-13	14-15
	Frame type	Security enabled	Frame pending	Ack. Req.	PAN ID compression	Reserved	Dest. addressing mode	Frame version	Source addressing mode

- Frame type
 - Type of payload included
- Security enabled
 - Packet is encrypted
 - (extra 0-14 byte header)
- Frame pending
 - Fragmented packet

- Acknowledgement required
- PAN ID compression
 - No PAN ID if intra-network
- Addressing modes
 - Which fields to expect

Why no length field?

	Octets:2	1	0/2	0/2	/8 0)/2	0/2/8	variable	2
Frame control	Frame control	Sequence number	Destinati PAN identifie	Destina	ess P	AN I	dress	Frame payload	Frame check sequence
				Ad	dressing fiel	lds			Sequence
	MAC header						I	MAC payload	MAC footer
	Bits: 0-2	3	4	5	6	7-9	10-11	12-13	14-15
	Frame type	Security enabled	Frame pending	Ack. Req.	PAN ID compression	Reserved	Dest. addressing mode	Frame version	Source addressing mode

- Frame type
 - Type of payload included
- Security enabled
 - Packet is encrypted
 - (extra 0-14 byte header)
- Frame pending
 - Fragmented packet

- Acknowledgement required
- PAN ID compression
 - No PAN ID if intra-network
- Addressing modes
 - Which fields to expect

Why no length field?

Already in prior header

Frame types - Beacon

• Beacon

- Information about the communication structure of this network
- Sent in response to requests from scanning devices
- Sent periodically at start of Superframes (if in use)
 - Sent without CSMA/CA
- MAC Header
 - Source address only, broadcast to everyone
- Packet contents
 - Superframe details, including Guaranteed Time Slots (if any)
 - Pending addresses lists devices for which Coordinator has data

2		variable	variable	variable		
Superfi Specifi		GTS fields (Figure 45)	Pending address fields (Figure 46)	Beacon Payload		
MAC Payload						

Frame types - Data

- Data
 - Data from higher-layer protocols
- MAC Header
 - Source and/or Destination addresses as necessary
- Packet Contents
 - Whatever bytes are desired (122 bytes address sizes)
 - May be fragmented across packets

Frame types – MAC Command

- MAC Command
 - Various commands for supporting link layer
 - Join/leave network
 - Change coordinator within network
 - Request data from coordinator
 - Request Guaranteed Time Slot
- MAC Header
 - Source and/or Destination addresses as necessary

1	variable
Command Frame Identifier	Command Payload
MAC Payload	

Frame types - Acknowledgement

- Acknowledgement
 - Acknowledges a Data or MAC Command packet
 - Not beacons or other acknowledgements
 - What happens if acknowledgement isn't received?
- MAC Header
 - Repeats Sequence Number of acknowledged packet
 - No Source or Destination addresses
- Sent T_{IFS} after the packet it is acknowledging (immediately)

Frame types - Acknowledgement

- Acknowledgement
 - Acknowledges a Data or MAC Command packet
 - Not beacons or other acknowledgements
 - What happens if acknowledgement isn't received?
 - Packet will be transmitted again
- MAC Header
 - Repeats Sequence Number of acknowledged packet
 - No Source or Destination addresses
- Sent T_{IFS} after the packet it is acknowledging (immediately)

Analysis: maximum goodput

- Assume best possible case for data transmission
 - 122 Bytes per packet
 - At 250 kbps -> 3.904 ms
 - Plus Inter-frame spacing of 40 symbols
 - At 62.5 kBaud -> 0.640 ms
 - 122 Bytes / 4.544 ms -> 214 kbps
 - Compare to BLE advertisements: 9.92 kbps
 - Compare to BLE connections: 520 kbps

Shifting gears

• Link Layer

Packet Structure

• Thread

- Overview
- Addressing
- Runtime

Modes of operation

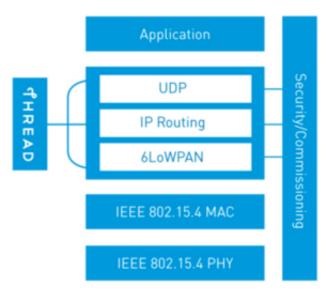
- Beacon-enabled PAN
 - Slotted CSMA/CA
 - Structured communication patterns
 - Optionally with some TDMA scheduled slots

Non-beacon-enabled PAN

- Unslotted CSMA/CA
- No particular structure for communication
 - Could be defined by other specifications, like Thread or Zigbee

Outline

[n.b. expect to get only part way through this; probably just overview]

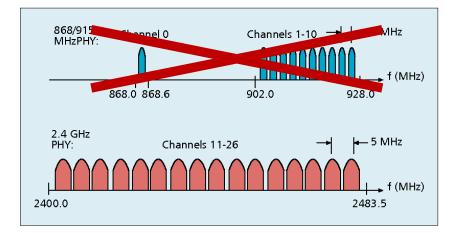

- Thread
 - Overview
 - Addressing
 - Runtime

Thread overview

- Build a networking layer on top of 15.4
 - Reuses most of PHY and MAC
 - Adds IP communication
 - Handles addressing and mesh maintenance

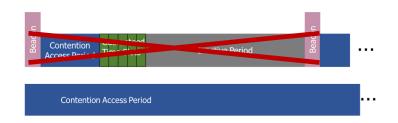
Goals

- Simplicity easy to install and operate
- Efficiency years of operation on batteries
- Scalability hundreds of devices in a network
- Security authenticated and encrypted communication
- Reliability mesh networking without single point of failure
- Industry-focused, but based in academic research

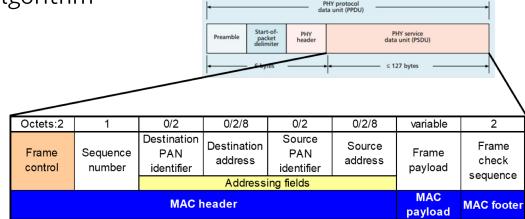


References on Thread

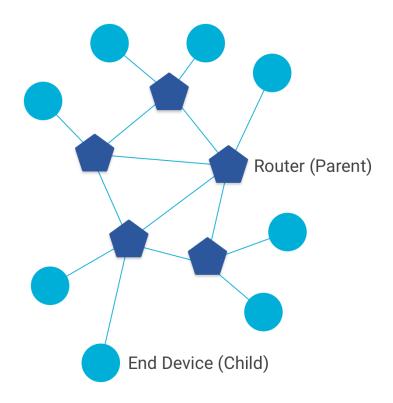
- Request for specification: https://www.threadgroup.org/ThreadSpec
 - Frustratingly locked down 😡
- Overview on capabilities: <u>https://openthread.io/guides/thread-primer</u>
 - Excellent overview
 - Lifting heavily for these slides


Changes to Physical Layer

- Remove all non-2.4 GHz PHY options
- Otherwise the same
 - OQPSK
 - 16 channels, 5 MHz spacing
 - Typical TX power 0 dBm
 - Typical RX sensitivity -100 dBm

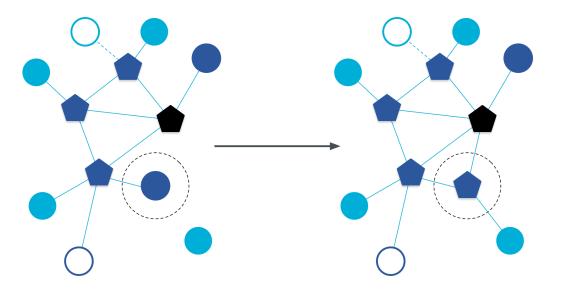

Changes to Link Layer and MAC

- Non-beacon-enabled PAN only
 - No superframe structure
 - No periodic beacons
 - No Guaranteed Time Slots
- Throw out most existing MAC Commands
 - Remove network joining/leaving
 - Remove changing coordinators
 - Remove Guaranteed Time Slot request
 - Network joining will be handled at a higher layer


Changes to Link Layer and MAC

- Keep unslotted CSMA/CA algorithm
- Keep packet structure
- Keep Frame Types
 - Beacon
 - MAC Command
 - Beacon Request
 - Data Request
 - Data
 - Acknowledgement

Combination of star and mesh topology


- Routers (parent)
 - Mesh communication with other routers
 - Radio always on
 - Forwards packets for network devices
 - Enables other devices to join network
 - 32 routers per network
- End devices (child)
 - Communicates with one parent (router)
 - Does not forward packets
 - Can disable transceiver to save power
 - Send packets periodically to avoid timeout
 - 511 end devices per router

Router promotion


• "Router Eligible End Device"

- A router without any children
- Can operate as an end device with one connection (lower power)
- Promotes to a router when a joining end device relies on it
 - If there is room for an additional router (max 32, typical 16-23)

Other special roles

- Thread leader
 - Device in charge of making decisions
 - Addresses, Joining details
 - Automatically selected from routers
 - One leader at any given time
 - Additional leader is selected if the network partitions
- Border router
 - Router that also has connectivity to another network
 - Commonly WiFi or Ethernet
 - Provides external connectivity
 - Multiple border routers may exist at once

Outline

[n.b. expect to get only part way through this; probably just overview]

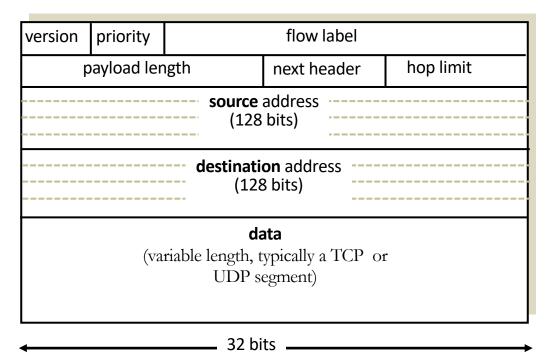
- Thread
 - Overview
 - Addressing
 - Runtime

Thread uses IPv6 for communication

- Why IP?
 - If Wireless Sensor Networks represent a future of billions of connected devices distributed throughout the physical world
 - Why shouldn't they run standard protocols wherever possible?
 - Why IPv6?
 - Generalized, Flexible, Capable
- Benefits
 - Interoperability with normal computers and networks
 - Reuse state of the art developed standards instead of remaking them
 - Security, Naming, Discovery, Services
- Costs
 - Packet overhead can be high (will fix)
 - Complexity for supporting protocols

Background: IPv6

- Replacement to Internet Protocol v4
 - (Something unrelated used version number 5)
- Extended addressing for devices
 - 32-bits for IPv4 addresses -> 128-bits for IPv6 addresses
 - Example: a39b:239e:ffff:29a2:0021:20f1:aaa2:2112
- Supports multiple transmit models
 - Broadcast: one-to-all
 - Multicast: one-to-many
 - Unicast: one-to-one
- Various other improvements


Background: IPv6 address notation rules

- Groups of zeros can be replaced with "::"
 - Can only use "::" in one place in the address
- Leading zeros in a 16-bit group can be omitted

0000:0000:0000:0000:0000:0000:0001 → ::1 2345:1001:0023:1003:0000:0000:0000:0000 → 2345:1001:23:1003:: aecb:0222:0000:0000:0000:0000:0010 → aecb:222::10

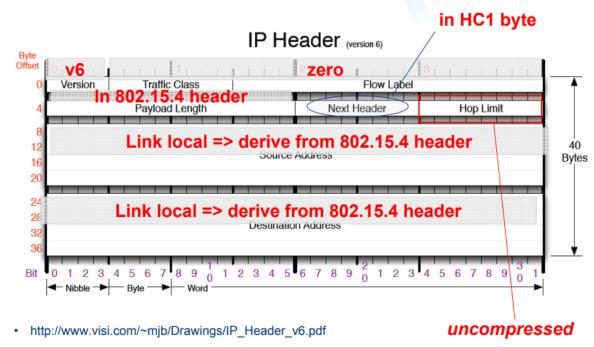
- Special addresses
 - Localhost ::1 (IPv4 version is 127.0.0.1)
 - Link-Local Network fe80:: (bottom 64-bits are ~device MAC address)
 - Local Network fc00:: and fd00::
 - Global Addresses 2000:: (various methods for bottom bits; just whois currently)

Background: IPv6 datagram format

- **Priority**: like "type of service" in IPv4.
- Flow label: ambiguous
- Next header: TCP, UDP
- Hop limit = TTL

how much overhead?

- 40 bytes of IPv6
- 20 more than IPv4


6LoWPAN

- Method for running IPv6 over 802.15.4 links
 - IPv6 over Low-Power Wireless Personal Area Networks
 - IETF Standard (RFC4944 + updates in RFC6282)
- Directly out of the research world (Jonathan Hui + David Culler)
 - Research Paper: IP is Dead, Long Live IP for Wireless Sensor Networks
 - Thesis of work: sensor networks can and should use IPv6
- Important goals
 - Compress IPv6 headers
 - Handle fragmentation of packets
 - Enable sending packets through mesh

6LoWPAN header compression

- 40 bytes of IPv6 header are a lot for a 127-byte payload
- Most important goals
 - Communication with devices in the 15.4 network should be low-overhead
 - Communication outside of the 15.4 network should still minimize overhead where possible
- Assume a bunch of common parameters to save space
 - A bunch of options are set to default values
 - Payload length can be re-determined from packet length
 - Source/Destination addresses can often be reassembled from link layer data
 - Plus information about network address assignment known by routers
- Border router "inflates" the packet before sending externally

Example of compression

• Note: Thread actually uses IPHC (not HC1) from rfc6282

6LoWPAN fragmentation

- Only the first packet of the fragments will hold the IPv6 header
 - Tag, offset, and size are used to reconstruct

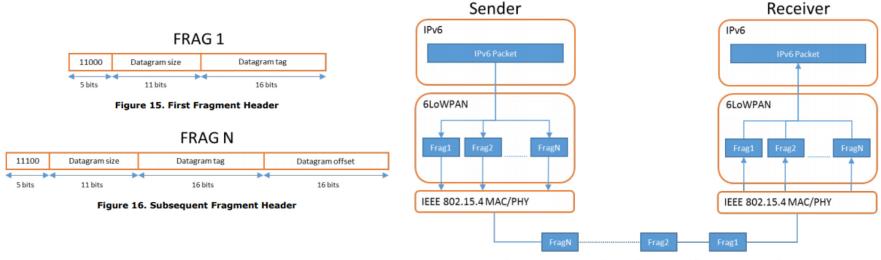


Figure 14. Fragmenting and Reassembling an IPv6 Packet

6LoWPAN mesh forwarding

• Additional header with originator and final addresses

Figure 17. Mesh Header Format

• Which of these headers are used depends on the packet

IEEE 802.15.4 header	IPv6 header compression	IPv6 payload		
IEEE 802.15.4 header	Fragment header	IPv6 header compression	IPv6 payload	
IEEE 802.15.4 header	Mesh addressing header	Fragment header	IPv6 header compression	IPv6 payload

Figure 4. 6LoWPAN stacked headers

Sidebar: IPv6 over BLE

• RFC7668 defines 6LoWPAN techniques for BLE connections

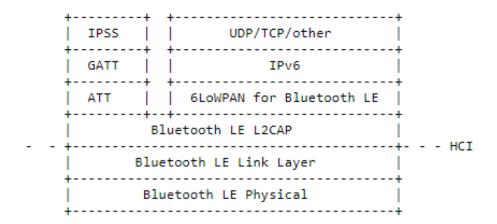
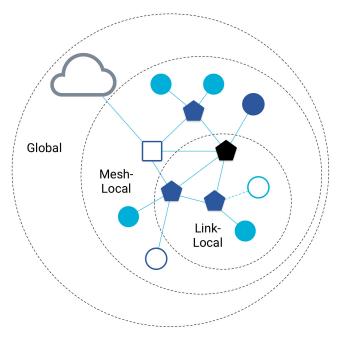
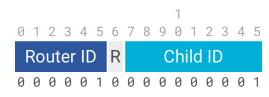



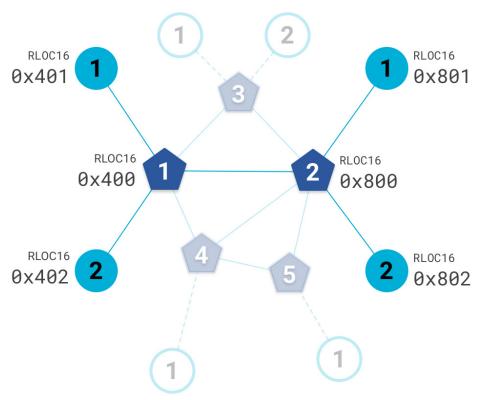
Figure 3: IPv6 and IPSS on the Bluetooth LE Stack

Benefit to IPv6: multiple address spaces per Thread device

- Each device gets an IPv6 address for each way to contact it
 - Global IP address
 - Mesh-local IP address
 - Link-local IP address
 - Topology-based IP address
 - Role-based IP address(es)



Traditional addresses in Thread


- Link-Local Addresses
 - FE80::/16
 - Bottommost 64-bits are EUI-64 (MAC address with 0xFFFE in the middle)
 - Permanent for a given device (no matter the network)
 - Used for low-layer interactions with neighbors (discovery, routing info)
- Mesh-Local Addresses
 - FD00::/8 (FD00:: and FC00:: are for local networks)
 - Remaining bits are randomly chosen as part of joining the network
 - Permanent while connection is maintained to a network
 - Used for application-layer interactions
- Global Addresses
 - 2000::/3
 - Public address for communicating with broader internet through Border Router
 - Various methods for allocation (SLAAC, DHCP, Manual)

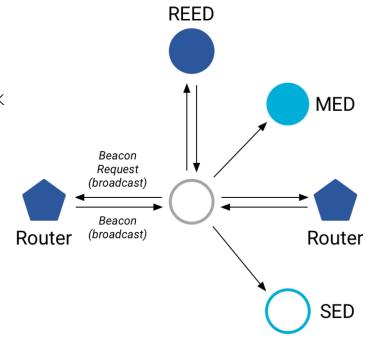
Topology-based addresses in Thread

- FD00::00ff:fe00:RLOC16
 - Same top bits as mesh-local
- Routing Locator (RLOC)
 - Router ID plus Child ID

- Changes with network topology
 - Used for routing packets

Role-based addresses in Thread

- Multicast
 - FF02::1 link-local, all listening devices
 - FF02::2 link-local, all routers/router-eligible
 - FF03::1 mesh-local, all listening devices
 - **FF03::2** mesh-local, all routers/router-eligible
- Anycast
 - FD00::00FF:FE00:FCxx
 - 00 Thread Leader
 - 01-0F DHCPv6 Agent
 - 30-37 Commissioner
 - etc.


Outline

[n.b. expect to get only part way through this; probably just overview]

- Thread
 - Overview
 - Addressing
 - Runtime

Discovering Thread networks

- Beacon request MAC command
 - Routers/Router-eligible devices respond
 - Payload contains information about network
- Thread network specification
 - PAN ID 16-bit ID
 - XPAN ID extended 64-bit ID
 - Network Name human-readable
- Active scanning across channels can quickly find all existing nearby networks

Creating a new network

- Select a channel (possibly by scanning for availability)
- Become a router
 - Elect yourself as Thread Leader
 - Respond to Beacon Requests from other devices
- Further organization occurs through Mesh-Level Establishment protocol

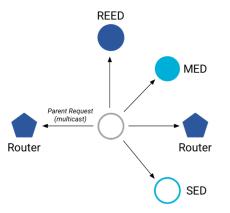
Mesh-Level Establishment

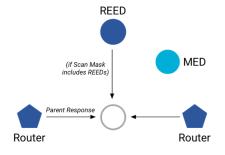
- Creating and configuring mesh links
 - Payloads placed in UDP packets within IPv6 payloads
- Commands for mesh
 - Establish link
 - Advertise link quality
 - Connect to parent

0 Command Type	TLV		TLV	
-------------------	-----	--	-----	--

OR (secure version)

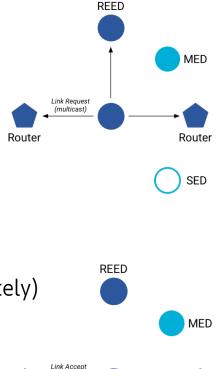
255	Aux Header	Command Type	TLV		TLV	MIC
-----	---------------	-----------------	-----	--	-----	-----


- TLVs (Type-Length-Value)
 - Various data types that may be helpful within those packets
 - Addresses, Link Quality, Routing Data, Timestamps


Joining an existing network

- All devices join as a child of some existing router
- 1. Send a Parent Request (to all routers/router-eligible)
 - Using the multicast, link-local address
- 2. Receive a Parent Response (from all routers/router-eligible separately)
 - Contains information on link quality
- 3. Send a Child ID Request (to router with best link)
 - Contains parameters about the new child device
- 4. Receive a Child ID Response (from that router)
 - Contains address configurations

62


SED

Becoming a router

- Thread tries to maintain 16-23 routers (max 32)
 - Goals: path diversity, extend connectivity
- 1. Send a Link Request (to all routers/router-eligible)
 - Using the multicast, link-local address
- 2. Receive Link Accept and Request (from each router separately)
 - Forms bi-directional link
- 3. Send a Link Accept (to each router individually)

Router

SED

and Request

Router

Next time: More Thread, Maybe Zigbee

CSE 291 [WI22]