CSE 291: Wireless and Communication in the Internet of Things WiFi – Return of the MAC

Pat Pannuto, UC San Diego

ppannuto@ucsd.edu

CSE 291 [WI22]

CC BY-NC-ND Pat Pannuto – Content derived from materials from Branden Ghena

Today's Goals

- Introduce MAC layer concepts in 802.11
- Understand what exists, what is actually used, and why
- Explore two additional areas in 802.11
 - Microcontroller use of WiFi
 - Future of WiFi

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC

- Bonus topics
 - Microcontrollers and WiFi
 - Future of WiFi

Basic WiFi network

- Star topology network
- Basic Service Set (BSS)
 - Access point(s)
 - Multiple connected clients
- Service Set ID (SSID)
 - Identifies network
 - Broadcast by access point in beacons

WiFi superframe structure

- Beacon followed by contention-free period followed by contention
 - Repeats periodically (default ~100 ms)
 - 802.15.4 adopted a similar superframe
- This is more hypothetical than real

WiFi superframe in practice

- Continuous contention access period
 - Any device may send at any time
 - PCF is unused in practice
- Periodic beacons
 - Which also use CSMA and therefore may be delayed

802.11 beacons

- Transmitted periodically (~100 ms by default)
 - Enable discovery of network
 - Contain capabilities and SSID for the network (802.11b/g/n/ac/ax...)
 - Assign contention-free slots if used
 - Notify devices of waiting packets
 - Traffic Indication Map (TIM) has a bitmap specifying which devices data is for
 - Enables devices to sleep, skipping a number of beacons
 - Handles broadcast/multicast messages
 - Every N beacons includes a notation of available broadcast messages
 - Messages are transmitted during next contention access period using normal CSMA
 - Defines maximum sleep period for devices (must listen to these beacons)

Contention-free access

- Known as Point Coordination Function (PCF)
 - Allocates a contention-free period for specific devices
 - Access Point decides when to grant based on requests
- Drawbacks
 - Latency depends on beacon intervals
 - Mechanism for explicit Quality of Service is unclear
- PCF is not used in practice

Contention-based access

- Known as Distributed Coordination Function (DCF)
 - Base communication method for WiFi (essentially always)
 - All packets are immediately ACK'd by receiving device
 - Uses CSMA/CA to determine when it can send
 - With random backoff
 - Problem: packets can be very long (up to 20 milliseconds)
 - Solution: Network Allocation Vector (NAV)
 - Packets include a notation of their duration
 - Sensing the beginning of a packet allows backoff to skip the whole packet duration before continuing

Reminder: hidden terminal problem

- Two devices communicating with Access Point may not be able to hear each other
 - CSMA fails and Access Point losses both messages

• A solution: RTS/CTS (Request/Clear To Send)

Drawbacks of RTS/CTS

- Four packets per data (RTS, CTS, Data, Ack)
 - Could have just sent data instead of RTS
- Significant portion of traffic are application-layer Acks
 - Probably better to just have it fail and try again later
- RTS/CTS only used for very large packets in practice
 - *It's mentioned still in 802.11n and 802.11ac, so not entirely unused

Backoff in WiFi

- Listen for activity
 - If free
 - Wait for Inter Frame Spacing (IFS)
 - If still free, transmit
 - If busy
 - Randomly select a number of backoff Slots
 - Count down slots whenever medium is not busy
 - If busy when backoff completes:
 - Increase maximum backoff Slots
 - Repeat
- Slot time: basic time unit for protocol
 - Total time of: switch from Rx to Tx, plus processing time, plus propagation delay

Prioritizing packets with varying IFS

- Tiered Contention Multiple Access (TCMA)
 - Idea: assign different inter-frame spacing based on traffic class
 - Inherently prioritizes communication
- Acknowledgements sent with Short IFS (SIFS)
 - Will always transmit before new data clears CSMA check
- New data sent with DCF IFS (DIFS)

Putting backoff together

- Two variables
 - Contention Window (CW) maximum backoff amount
 - Backoff Count (BO) current remaining backoff
- When attempting to send, if busy Backoff selected in [0, CW]
 - Countdown Backoff slots whenever medium is not busy
 - At 0, attempt to transmit if not busy
 - If busy, double Window and select Backoff again
- 802.11g values:
 - Slot time= 20 μs, CWmin= 15 slots, CWmax= 1023 slots
 - SIFS= 10 μ s, PIFS= 30 μ s, DIFS= 50 μ s

- A and B want to send and see the medium is busy
 - Followed by an Acknowledgement after SIFS

- Each chooses a random backoff [0, CW] (we'll say CW is 32)
 - Start counting down backoff slots

- C wants to send, waits DIFS, and can send immediately
 - No other traffic is going on
 - A and B pause backoff for packet duration

- A and B used NAV to pause backoff for entire traffic plus ACK
 - After DIFS, resume backoff count from its previous value

- B reaches zero backoff, finds channel empty, transmits
 - A pauses its backoff again for duration plus ACK

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC

- Bonus topics
 - Microcontrollers and WiFi
 - Future of WiFi

Field	Frame	Duration,	Address	Address	Address	Sequence	Address	QoS	HT	Frame	Frame check
Field	control	id.	1	2	3	control	4	control	control	body	sequence
Length (Bytes)	2	2	6	6	6	0, or 2	6	0, or 2	0, or 4	Variable	4

- Frame control (various bits)
 - Type of packet (Control, Management, Data)
 - Subtype (Association, RTS, CTS, Ack, etc.)
 - Indication of to/from "distribution system" (Internet rather than intranet)
- Duration
 - Specifies on-air time of full packet in μ s
 - Note: no actual length field

Surprising, but smart!

Recall MCS vary — but everyone needs to be able to parse header (for duration, for NAV)

Length can be very large (e.g. in ac: 5.5 ms max duration is 4.5 MB length!); sent at full data rate

Field	Frame	Duration,	Address	Address	Address	Sequence	Address	QoS	HT	Frame	Frame check
	control	<u>id</u> .	1	2	3	control	4	control	control	body	sequence
Length (Bytes)	2	2	6	6	6	0, or 2	6	0, or 2	0, or 4	Variable	4

- Sequence control
 - 4-bit fragment number
 - 12-bit sequence number
- Quality of Service control
 - Identifies traffic category
- High Throughput Control
 - Configurations for selecting best data rate

• Frame body

- Max size depends on PHY
 - ~2000 for lower rates
 - ~8000 for 802.11n
 - ~11000 for 802.11ac
- Frame check sequence
 - 32-bit CRC

Devices filter on Address 1

	To DS	From DS	Address 1	Address 2	Address3	Address4	Use Case
1	0	0	Destination Addr	Source Addr	BSS ID	-	Direct communication
2	0	1	Destination Addr	BSS ID	Source Addr	-	Traffic from Internet
3	1	0	BSS ID	Source Addr	Destination Addr	-	Traffic to Internet
4	1	1	Receiver Addr	Transmitter Addr	Destination Addr	Source Addr	Repeater

Devices filter on Address 1

	To DS	From DS	Address 1	Address 2	Address3	Address4	Use Case
1	0	0	Destination Addr	Source Addr	BSS ID	-	Direct communication
2	0	1	Destination Addr	BSS ID	Source Addr	-	Traffic from Internet
3	1	0	BSS ID	Source Addr	Destination Addr	-	Traffic to Internet
4	1	1	Receiver Addr	Transmitter Addr	Destination Addr	Source Addr	Repeater

Devices filter on Address 1

	To DS	From DS	Address 1	Address 2	Address3	Address4	Use Case
1	0	0	Destination Addr	Source Addr	BSS ID	-	Direct communication
2	0	1	Destination Addr	BSS ID	Source Addr	-	Traffic from Internet
3	1	0	BSS ID	Source Addr	Destination Addr	-	Traffic to Internet
4	1	1	Receiver Addr	Transmitter Addr	Destination Addr	Source Addr	Repeater

Devices filter on Address 1

	To DS	From DS	Address 1	Address 2	Address3	Address4	Use Case
1	0	0	Destination Addr	Source Addr	BSS ID	-	Direct communication
2	0	1	Destination Addr	BSS ID	Source Addr	-	Traffic from Internet
3	1	0	BSS ID	Source Addr	Destination Addr	-	Traffic to Internet
4	1	1	Receiver Addr	Transmitter Addr	Destination Addr	Source Addr	Repeater

CC BY-NC-ND Pat Pannuto – Content derived from materials from Branden Ghena

Sending frames in WiFi

- Frame bursting
 - Transmit multiple frames in a row

- Frame fragmentation
 - Split service data over multiple frames
- Frame aggregation
 - Multiple service data in a single frame
 - Allows multiple packets to reach Access Point in a single transmission

Calculating packet durations

- Example duration for a 1500 byte 802.11g packet
 - 6 Mbps for header
 - 24 Mbps for payload
 - 566 μ s for total packet
 - Plus 10 μ s for SIFS
 - Plus 34 μ s for ACK
- <u>https://sarwiki.informatik.hu-</u> berlin.de/Packet transmission ti me_in_802.11

	Data transmission bitrate		24 Mbaa	
	(802.11g / a*):	Bitrate	l ength	Time
		(Mbit/s)	(bits)	(µs)
	DIFS			28
D	PHY header: PLCP preamble	-	-	16
A	PHY header: PLCP header	6	24	4
	MAC headers (28 bytes) + MAC			
т	body	24	12246	512
A	signal extension time			6
	tx time data:			566
	SIFS			10
A	PHY header: PLCP preamble	-	-	16
С	PHY header: PLCP header	6	24	4
ĸ	MAC headers + PHY pad	24	134	8
	signal extension time			6
	tx time ack:			44
	tx time data + ack:			610

Implementation Drives Specification Sometimes

- SIFS nominally defined by processing time
 - Aside: Big challenge for SDRs
- Convolutional decoders need(ed)
 16 μs to finish processing
 - For highest-rate MCS (ERP-OFDM)
- Processing must finish before next packet starts
 - To be able to decode NAV in header

Data transmission bitrate		24		
(802.11g / a*):		Mbps		
	Bitrate	Length	Time	
	(Mbit/s)	(bits)	(µs)	
DIFS			28	
PHY header: PLCP preamble	-	-	16	
A PHY header: PLCP header	6	24	4	
MAC headers (28 bytes) + MAC				
T body	24	12246	512	
A signal extension time			6	
A signal extension time tx time data:			6 566	_
A signal extension time tx time data: SIFS			6 566 10	
 A signal extension time tx time data: SIFS A PHY header: PLCP preamble 	_	_	6 566 10 16	
 A signal extension time tx time data: SIFS A PHY header: PLCP preamble C PHY header: PLCP header 	- 6	- 24	6 566 10 16 4	
 A signal extension time tx time data: SIFS A PHY header: PLCP preamble C PHY header: PLCP header K MAC headers + PHY pad 	- 6 24	- 24 134	6 566 10 16 4 8	
 A signal extension time tx time data: SIFS A PHY header: PLCP preamble C PHY header: PLCP header K MAC headers + PHY pad signal extension time 	- 6 24	- 24 134	6 566 10 16 4 8 6	
 A signal extension time tx time data: SIFS A PHY header: PLCP preamble PHY header: PLCP header MAC headers + PHY pad signal extension time tx time ack: 	- 6 24	- 24 134	6 566 10 16 4 8 6 4	

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC

- Bonus topics
 - Microcontrollers and WiFi
 - Future of WiFi

802.11e improves MAC layer

- Hybrid Coordination Function (HCF)
 - Modifies contention-free access (still no one uses it)
 - Modifies contention-based access: Enhanced Distributed Channel Access (EDCA)
- EDCA: Modifies Quality of Service based on application
 - Example of breaking layering for an optimization
 - Categories (lowest to highest priority):
 - Background
 - Best Effort
 - Video
 - Voice

Different priority for different application category

- Expand to more IFS lengths for different traffic categories
 - Smallest AIFS (equal to DIFS) goes to Voice, Largest to Background
 - Contention Window min and max also change for each category

Multiple queues within a single device

Figure 4. [3] Legacy 802.11 station and 802.11e station with four ACs within one station.

802.11e also adds maximum durations

- 802.11e also defines duration a device can transmit for
 - Based on PHY in use and Application category
 - Background/Best Effort: one frame per contention win
 - Example, up to 11 ms for Voice on 802.11ac
 - Could be one really big frame at a low data rate
 - Could be multiple frames in a row separated by SIFS

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC

- Bonus topics
 - Microcontrollers and WiFi
 - Future of WiFi

Why, why not, talk WiFi in a wireless for IoT class

- Pros
 - Ubiquitous
 - High-performance
- Cons
 - Complex configuration
 - And security requirements
 - UCSD-DEVICE anyone?
 - Expensive in e^{-} , \$

WiFi capability in microcontrollers

- ESP32 (extremely popular; there are others)
 - Microcontroller plus WiFi radio in single chip
 - (Same idea as nRF52840)
- Capabilities
 - 802.11b/g/n 2.4 GHz only
 - 20 MHz or 40 MHz channels
 - Single antenna only (no MIMO)
 - MCSO-7
 - 7 Mbps 150 Mbps
 - Tx power up to 20.5 dBm

Low power WiFi

- Question: should a microcontroller stay connected or reconnect?
 - Light sleep: stay connected always, only listening to beacons
 - Deep sleep: reconnect to network each time data is ready
- Answer for ESP32 depends on security and data interval
 - Resecuring during connection takes lots of energy
 - Crossover point is about 60 seconds
 - Insecure transmissions have a crossover of 5-15 seconds

https://blog.voneicken.com/2018/lp-wifi-esp-comparison/#conclusions

Outline

- 802.11 Access Control
- 802.11 Frame format
- 802.11e Improvements to MAC

- Bonus topics
 - Microcontrollers and WiFi
 - Future of WiFi

802.11.ax: 6 GHz band is an enormous amount of bandwidth

802.11.ax:

Orthogonal Frequency Division Multiple Access

- OFDM: split channel into subcarriers and transmit on those
- OFDMA: allocate subcarriers to a device for an amount of time
 - Turns OFDM into an access control mechanism
 - Complicated question: which device gets which subcarriers at which time?

WiFi 7: 802.11.be "EHT — Extremely High Throughput"

- Targeting release ~Q2 2023
- Goals / plans
 - 40 Gbps [~= Thunderbolt 3, #WhoNeedsWires]
 - Up to 320 MHz channels (from 160 now)
 - 16-stream MIMO
 - Better support for many devices
 - Enhance AP coordination
 - Better link adaptation and retransmission
 - Lots of timing related features
 - For sync, video streaming, QoS, and cross-network performance

Next week: Weirder stuff

CSE 291 [WI22]