
0018-9219 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

 Vol. 106, No. 9, September 2018 | Proceedings of the IEEE 1527

ABSTRACT | In this paper, we describe a component-based

software architecture for the Internet of Things in which proxies

for Things and services that we call ªaccessorsº interact with one

another under a concurrent, time-stamped, discrete-event (DE)

semantics. These proxies are analogous to web pages, which

proxy a cloud-based service such as a bank, but instead of being

designed to interface those services with humans, accessors are

designed to interface services and Things with other services

and Things. A deterministic DE semantics is combined with a

widely used pattern for handling network interactions that we

call asynchronous atomic callbacks (AACs). AAC enables many

concurrent pending requests to be active at once without blocking

and without the treacherous concurrency pitfalls of threads. In

effect, our architecture combines AAC with actors where the actor

model has been endowed with a temporal semantics. We show

how this architecture can leverage the previously reported secure

swarm toolkit (SST) to achieve state-of-the-art authentication,

authorization, and encryption of interactions across networks.

Digital Object Identifier: 10.1109/JPROC.2018.2812598

KEYWORDS | Accessors; Callbacks; Discrete Events;

Embedded Software; Internet of Things; JavaScript; Real Time

I . IN TRODUCTION

The Internet of Things (IoT) is the class of cyber–physical
systems (CPSs) that leverage internet technology for inter-
actions between the physical world and the cyber world.
The vision embodied by IoT appeals to the imagination of
many—our environment and virtually anything in it will
turn “smart” by having otherwise ordinary things be fur-
nished with sensors, actuators, and networking capability,
so that we can patch these Things together and have them be
orchestrated by sophisticated feedback and control mecha-
nisms. Supported by Wegner’s argument that interaction
is more powerful than algorithms [45], Lohstroh and Lee
[30] point out that interaction indeed opens up limitless
possibilities for Things to harness their environment and
compensate for a lack of self-sufficient cleverness; sensors
aside, a connection to the internet alone allows a Thing to
tap into an exceedingly rich environment—unleashing a
real potential for making things smarter.

Ensuring safety, reliability, privacy, and security of sys-
tems that rely on open networks is extremely challenging.
There is precedent, however, for high confidence systems
that use open networks. Today, the world’s financial system
operates almost entirely electronically and with heavy use of
the open internet. No engineered system is perfect, but the
benefits appear to outweigh the risks, and losses due to tech-
nical failures and malicious actors are simply factored into
the cost of operation. Can CPSs achieve the same balance,
where the benefits of open networks outweigh the costs?

The web focuses on the interaction between people and
information or services hosted on servers or in the cloud.

Manuscript received August 30, 2017; revised January 12, 2018; accepted
February 22, 2018. Date of publication April 20, 2018; date of current version
September 14, 2018. This work was supported by the TerraSwarm Research Center, one of
six centers administered by STARnet phase of the Focus Center Research Program (FCRP),
a Semiconductor Research Corporation program sponsored by MARCO and DARPA; by
the National Science Foundation (NSF) under Award 1446619 (Mathematical Theory of
CPS); by the iCyPhy Research Center at the University of California Berkeley, supported by
the following companies: Denso, Ford, IHI, National Instruments, Siemens, and Toyota;
and by the Fulbright Scholar Program, a program of the U.S. Department of State Bureau
of Educational and Cultural Affairs. (Corresponding author: Edward A. Lee.)
C. Brooks, H. Kim, E. A. Lee, M. Lohstroh, B. Osyk, and M. Weber are with the
University of California at Berkeley, Berkeley, CA 94720 USA (e-mail: cxh@eecs.
berkeley.edu; hokeunkim@eecs.berkeley.edu; eal@eecs.berkeley.edu; marten@eecs.
berkeley.edu; beth@eecs.berkeley.edu; matt.weber@eecs.berkeley.edu).
C. Jerad is with the University of California at Berkeley, Berkeley, CA 94720 USA
and also with the University of Manouba, Manouba 2010, Tunisia (e-mail: chadlia.
jerad@eecs.berkeley.edu).
V. Nouvellet is with the University of California at Berkeley, Berkeley, CA 94720
USA and also with Institut National des Sciences AppliqueÂes de Lyon, 69100
Villeurbanne, France (e-mail: victor.nouvellet@eecs.berkeley.edu).

A Component Architecture for
the Internet of Things
This paper addresses heterogeneity in those CPSs that leverage internet
technology for interactions between the cyber world and the physical world. It
presents a design pattern called accessors to serve as proxies for heterogeneous
components and services, and a design environment CapeCode to compose
accessors and facilitate the system design.

By Chr ist opher Bro ok s, Ch a dl i a Jer a d , hok eu n k i m , edwa r d a. lee , Fellow IEEE,
ma rt en lohst roh , ViC tor nou V el l et , Bet h osy k, a nd mat t weBer

https://orcid.org/0000-0002-5442-3098
https://orcid.org/0000-0003-1450-5248
https://orcid.org/0000-0002-5663-0584
https://orcid.org/0000-0001-8833-4117
https://orcid.org/0000-0001-5023-9157

Brooks et al . : A Component Architecture for the Internet of Things

1528 Proceedings of the IEEE | Vol. 106, No. 9, September 2018

The IoT, on the other hand, will emphasize interactions
between Things and Things, Things and cloud services, and
Things and people, rather than people with cloud services. In
this paper, we describe a design pattern that we call accessors,1
where an accessor is like a web page for a Thing or service, but
instead of being designed for humans to interact with it, it is
designed for other things and services to interact with it.

Accessors are based on an adapted actor model, where an
accessor is a parameterized actor with input ports and out-
put ports through which timed events stream. The accessor
serves as a proxy for a Thing or service that may be local or
remote. This proxy is analogous to the proxying of a service
that occurs in your web browser when you download HTML
and JavaScript from a web server. The browser instantiates
a proxy for a remote service, such as your bank. The proxy
runs on the local host, your computer, but interacts with a
remote service using mechanisms that are largely invisible
and irrelevant to you, the user of the proxy.

The input ports and parameters of an accessor are anal-
ogous to form boxes on web pages, and output ports are
analogous to rendered pages. But form boxes are designed
for human input, and rendered pages for human consump-
tion. The input and output ports of accessors are designed
for interaction with other Things and services. The accessor
itself provides functionality analogous to the scripts that a
web page runs in the browser, which communicate in propri-
etary ways with the (possibly remote) Thing or service. A crit-
ical part of our model is that the host environment that exe-
cutes the accessor must have standardized capabilities, just as
browsers today (mostly) support common languages (HTML
and JavaScript) with a common set of bindings that the pro-
gram can use (the Window object and the XMLHttpRequest
object, for example). This enables web designers to design a
proxy that will work in any browser. Analogously, accessors
are designed to execute in a variety of hosts, ranging from
deeply embedded processors to cloud servers.

We also describe a design environment called CapeCode2
that can be used to compose accessors to create services
which can then further be proxied by accessors. CapeCode
is, in effect, a computer-aided design tool for IoT applica-
tions. It facilitates debugging and design-space exploration
by providing a friendly graphical environment that includes
all of the analytical tools of Ptolemy II, on which it is based.

Our focus in this paper will be to show how the particular
actor model by which accessors interact with one another, a
timed discrete-event (DE) model, matches well the require-
ments of IoT applications. It provides a measure of determin-
ism that helps to counter the chaos of unpredictable latencies
and unreliable networks that is intrinsic to applications that are
distributed on the open internet. In particular, its determinis-
tic semantics enables well-defined test cases, rigorous specifi-
cations, and reliable error checking. Deterministic semantics
means that there is a well-defined notion of “correct behavior,”

and that behavior is repeatable. Our semantics also enables a
more deterministic use of timing by replacing best effort time-
outs with a model of time that has a semantic notion of simul-
taneity and well-defined ordering of events. Finally, we show
how accessors can leverage edge computing to improve secu-
rity, privacy, predictability, and robustness to network outages.

II . MOTI VATING E X A MPLE

Consider a device, such as a tablet, a smartphone, or augmented
reality (AR) goggles, that has a camera, an interactive screen,
an audio speaker, and a microphone. Consider an app on this
device that invokes an image processing service to recognize
Things seen by its camera and then overlays the Things in the
display with current sensor data and any interactive controls
provided by the Thing. Fig. 1 shows such an overlay in what
might be a mechanical room of the future. Consider further that
the device can respond to voice commands to scroll through a
suite of recognized Things in the field of view or turn on and off
the overlay display. Such an app would be useful, for example,
for factory floor inspection, equipment maintenance, configur-
ing smart conference rooms, and myriad other applications.

All of the technology exists today to build such an app,
and indeed similar systems are familiar to those working in
the field of augmented reality. But anyone familiar with the
technologies involved will realize that the complexity is con-
siderable and that the result is likely to be brittle. Very likely,
a realization today will be a stovepiped solution, where every
component is entirely under the control of a single vendor.
But making something that is open, for example something
that is able to discover devices from new vendors in the local
environment or to leverage machine learning that integrates
data from outside sources will be extremely challenging.

Fig. 2 shows a prototype of such a system built using
accessors in the CapeCode design environment. Our proto-
type constructs the overlay display shown in Fig. 1, a user
interface for a Thing detected in the local environment. The
app tracks movement as the camera pans over the scene. As

Fig. 1. Augmented reality display.

1http://accessors.org
2http://capecode.org

Brooks et al . : A Component Architecture for the Internet of Things

 Vol. 106, No. 9, September 2018 | Proceedings of the IEEE 1529

motivation for subsequent discussion, we walk you through
what the components of this prototype do. Hopefully, the
reader will see readily that this is, in fact, a prime example of
the use of reusable components in a platform-based design. It
will also lend insight into the reasons for our choice of using
a DE semantics to govern the interactions between accessors.

First, the three boxes in the figure whose icons contain
“JS” encapsulate small, simple scripts that are specific to this
app. These are the only components in the design that are
not intended to be reusable. They are specific to this app. In
our prototype, they are written in a few lines of JavaScript
using the same framework used to create the reusable com-
ponents, which we call “accessors.” All remaining compo-
nents, those with icons not containing “JS,” are accessors
and are intended to be reusable.

Beginning at the left of the top row of icons, the Camera
accessor provides access to a hardware device: a camera,
connected to the host computer that runs this app. That
accessor outputs a stream of images and has parameters for
controlling the frame rate, resolution, and selection of cam-
era, in case there is more than one camera on the host. It can
alternatively provide access to a network-connected camera,
in which case the structure of the app does not change at all.
Only the parameters change.

To the upper right, receiving the stream of images, is an
ObjectRecognizer accessor. This can use any of a variety of
technologies to recognize Things in images. In our prototype,
we simply assume that Things are labeled with AR tags, which
are like simplified QR codes that are easier for cameras to rec-
ognize at a distance. Three AR tags can be seen in Fig. 1. More
elaborate technologies could identify objects by their visual
appearance, with the help of a challenge–response interaction,
leveraging indoor localization and device telemetry, or with
the help of a discovery service such as the Summon app [46].

The script labeled “TagToAccessor” receives from the
ObjectRecognizer an array of zero or more IDs for AR tags
found in each image frame along with the X–Y position of

the tag in the field of view. Based on the “index” input (which
comes from the lower loop of icons, discussed below), it selects
one of these tags and looks up an accessor for a Thing associ-
ated with the tag’s ID. In the simplest case, TagToAccessor
could perform a table lookup to match a tag with an accessor
for a Thing. A more advanced TagToAccessor implementa-
tion would use a location-based discovery service to dynami-
cally obtain the tag to accessor matching for the user’s cur-
rent environment and update the matching when new AR
tags are deployed. The accessor itself could come from a web
service or from a local edge computer that is aware of devices
in the local environment. TagToAccessor feeds that accessor
to an accessor labeled “Mutable.”

Mutable is perhaps the most interesting component here.
It accepts as input an accessor, which it checks for compati-
bility with its ports, and if it is compatible, reifies the accessor
and delegates handling of streaming inputs and outputs to it.
The input to Mutable is the source code for an accessor that it
instantiates and begins executing. Note that since this source
code can be downloaded at the time of instantiation, it can
be assumed to be up-to-date and compatible with the current
version of the Thing’s API, which itself may be periodically
updated, for example, to patch for security vulnerabilities.

The Mutable accessor can be seen as an abstract inter-
face specification for candidate accessors. The reified acces-
sor effectively replaces the Mutable accessor, taking its place
in the block diagram. If later a new accessor appears, it will
be reified and will replace the previously reified accessor,
which will be shut down. In this case, Mutable expects the
provided accessor to have an input port named “control” and
two output ports, “data” and “schema.” All three ports are
typed to handle JSON formatted data. It can also accept acces-
sors that partially match, for example, omitting the control
input port, as we explain below. The schema output provides
the app with a specification of what is expected on the control
input port. That specification is used by the ConstructUI script
to build an HTML table with input boxes as shown in Fig. 1.

Fig. 2. Augmented reality application for interacting with sensors and actuators. This composition of accessors generates the interface
shown in Fig. 1.

Brooks et al . : A Component Architecture for the Internet of Things

1530 Proceedings of the IEEE | Vol. 106, No. 9, September 2018

The UserInterface accessor uses any resource on the local host
that can display HTML5. On a laptop computer this could be a
browser, whereas on a mobile device it could be a service pro-
vided by the operating system or app development framework
such as Apache Cordova.

The reified accessor in Mutable is a proxy running on
the local host that represents the Thing identified in the
camera’s field of view. Depending on the capabilities of the
host, the reified accessor may communicate with the Thing
via Bluetooth, WiFi, ZigBee, or any other technology sup-
ported by both the host and the Thing. The actual commu-
nication mechanism and protocols can be proprietary to the
Thing and its accessor, just as the details of the communica-
tion between a web page and a bank are specific to the bank.

The design pattern here is similar to what has proven
so effective in the web. To make browsers talk to banks,
for example, the world’s banks could have collaborated and
established a standard messaging protocol that would include
specifications for messages to view balances, make payments,
etc., but this is not what happened. Instead, the designers
of browsers standardized an execution environment within
which a proxy for the bank, in the form of downloaded
JavaScript code, could execute. Analogously, the makers of
Things could get together to establish standard messaging
protocols, for example to turn on lights or establish a tem-
perature setpoint. But that strategy is not likely to work very
well; it will be foiled by the very richness of the IoT ecosys-
tem and its dynamically evolving nature. Our design pattern
is inspired by what has worked so well in the web. We stand-
ardize on the execution environment for proxies for Things.

Once the Thing’s accessor has been reified, it begins pro-
ducing output data. Notice here a subtle but important point.
The diagram in Fig. 2 is not a simple flowchart nor a sim-
ple dataflow diagram. Were it either of these, the Mutable
accessor block would produce one datum on its output in
reaction to each accessor and/or control input. But this is
not what it does. Each time it receives a new unique acces-
sor input, it reifies the accessor, and that accessor begins to
produce outputs that can be either spontaneous or reactions
to inputs. If the outputs are spontaneous, they occur at some
rate determined by the device and will continue to emerge
from the Mutable accessor until a new accessor input is
received or the device itself stops providing data.

The sensor data emerging from the Mutable accessor
streams right to the ConstructUI script actor. In our pro-
totype, this script produces HTML and CSS code to be
overlaid on the image, as shown in Fig. 1. This HTML code
includes input elements that can be used to send control
data back to the accessor that reifies Mutable. In Fig. 1, the
“step size” and “sampling period” controls are fed back to
the Thing’s accessor whenever the user taps or clicks on the
Submit button.

The loop at the bottom illustrates the integration of entirely
disjoint technologies into the app in order to get voice con-
trol. This could be used, for example, to scroll between tags

in the event that multiple AR tags are detected in the image.
Beginning at the bottom left, the “VoicePromptGenerator
and Tag Selector” script starts off by outputting text which
then gets converted to an audio signal using a text-to-speech
service. This could be a cloud-based service such as those
provided by Google or Amazon or a locally realized service.
The resulting audio data are fed to an AudioPlayer accessor,
which provides access to the local audio hardware. Having
produced a voice prompt, the AudioCapture accessor is trig-
gered, which listens for a response. The resulting audio signal
is sent to a SpeechToText accessor, which again could use a
cloud-based service or a local one. In our prototype, we then
further process the resulting text using a natural language
engine, in our case the one provided by Google at API.AI,
which can convert natural language into specified fulfillment
commands. This is fed back to the leftmost script, which can
produce a new prompt and/or an index to select a new tag
in the image. This part of the app could, for example, state,
“I found three devices. Is this the device you want?” If the
user says “no” or “not really” (the natural language processor
would handle such variability) it could scroll to the next one
and state “How about this one?”

III . THE ACCESSOR PAT TER N

An early version of the accessor pattern is given by Latronico
et al. [24], who explain them using a diagram similar to Fig. 3.
The upper part of the figure shows a “swarmlet,” which is
a composition of components called “actors” connected
by streams. The middle actor is an accessor and serves as a
proxy for a “swarm service or Thing.” The proxy runs on the
accessor host and communicates with the service or Thing
by some proprietary mechanism. Lohstroh and Lee [30] dis-
tinguish the interaction between the proxy and its service
or Thing which conforms to a “vertical contract,” from the
interaction between the accessor and the other actors in
the swarmlet, which conforms to a “horizontal contract.”
The horizontal contract enables composition of multiven-
dor services and Things whereas the vertical contract ena-
bles device and host-specific interaction mechanisms, using,

Fig. 3. Accessor in a network of actors.

Brooks et al . : A Component Architecture for the Internet of Things

 Vol. 106, No. 9, September 2018 | Proceedings of the IEEE 1531

for example, any of a variety of radio or networking tech-
nologies and protocols such as HTTP, CoAP, TCP sockets,
or WebSockets.

The host that runs the accessor may be a microcon-
troller, mobile device, edge computer, or server, whereas a
Thing it interacts with is typically a separate piece of hard-
ware, not necessarily proximate to the host. In addition to
accessing Things accessors can access cloud-based services
and mediate their interaction with Things.

A simple accessor definition is shown in Fig. 4. The
“setup” function defines two ports, an untyped “trigger”
input and JSON-typed “data” output. The accessor then
declares that it requires an “http-client” module, which
must be provided by the host if the host is to be compat-
ible with this accessor. The host, moreover, can restrict the
sorts of HTTP requests that the module supports, as done,
for example, by the “same-origin” policy in browsers, which
enhances security of web pages. The “initialize” function
adds an input handler for the “trigger” input. Whenever
an event arrives on this input, this handler function will
be invoked. On line 13, the input handler function uses the
required module to make an HTTP request. It provides to
that module a callback function that will parse the response
and send it to the “data” output port. Of course, a better
designed accessor should check for errors and handle time-
outs, but we hope this is enough to get a feel for how an
accessor is specified.

In this example, inputs at the “trigger” port cause an
output to be produced sometime later. These inputs and
outputs interact with other accessors or actors according
to the horizontal contract, which is based on actors [1],
[17], but with a more deterministic temporal semantics
similar to that used in DE simulators. We explain this in
the next section.

I V. COOR DINATION

Coordination can be thought of as constrained interaction
[44]. Much like type systems, which can prevent programs

from “going wrong” [35], coordination can make programs
satisfy certain desirable properties, such as determinism,
liveness, and fairness, by construction. Importantly, disci-
plined coordination reduces the need for burdensome vali-
dation and testing. A coordination model or language [38]
implements coordination rules that endow a coordinated
ensemble with a semantics, often called a model of compu-
tation (MoC). For accessors, the host realizes the MoC.

The MoC is common for all accessors, but the mecha-
nism by which the accessor interacts with a Thing or service
is not. That mechanism can be built on top of established
standards, such as HTTP, MQTT, datagrams, WebSockets,
etc., but there is too much diversity among devices and
services to reasonably expect common details to emerge.
Hence, an accessor can be thought of as an adapter that
translates between two incompatible protocols. Such adapt-
ers have been used in other design frameworks for hetero-
geneous systems such as Metropolis [10]. Of course, within
specific application domains, such as internet-controlled
lighting, manufacturers could benefit from establishing
local standards. This would enable, for example, the same
accessor to work with products from multiple vendors. But
nothing about our approach requires the establishment of
such standards. Our approach is therefore friendlier to inno-
vation, multivendor compositions, and new entrants into
markets.

As illustrated by the example in Fig. 2, IoT applications
tend to be highly concurrent, so concurrency needs to fig-
ure prominently in the MoC. In that application, concur-
rency appears in two ways. First, the actors in the model
are concurrent in that they can (conceptually or physically)
execute at the same time modulo data dependencies. The
ObjectRecognizer and the AudioPlayer, for example, are
concurrent with no data dependencies between them.
Second, several of these actors spawn remote actions on
Things or cloud-based services and there can be several
pending actions awaiting responses all active at the same
time. The ObjectRecognizer, TextToSpeech, SpeechToText,
and NaturalLanguage accessors, for example, may all use
cloud-based services with RESTful APIs. Notice that neither
of these forms of concurrency is about performance, i.e.,
execution speed of software. Instead, concurrency is intrin-
sic in the distributed nature of IoT applications and the inter-
action of software with Things. If the application designer
attempts to manage this concurrency using threads, chaos is
likely to ensue, with unexpected nondeterminism and dead-
locks a constant threat. The accessors framework instead
provides a much more structured concurrent MoC, which
we describe in this section. The key idea is to combine a DE
model of computation with asynchronous atomic callbacks.

A. Discrete-Event Systems

The diagram in Fig. 2 is an executable model given in
a graphical syntax. Each icon represents a reactive piece of

Fig. 4. Simple accessor for a RESTful service.

Brooks et al . : A Component Architecture for the Internet of Things

1532 Proceedings of the IEEE | Vol. 106, No. 9, September 2018

software, either an accessor from a reusable library or an
application-specific script. We call these pieces of software
“actors.” Each actor has parameters and input and output
ports. The “wires” connecting ports convey messages from
one actor to another. In our semantics, these messages
are events occurring at a logical time. An event has a time
stamp, and the execution semantics ensures that an actor
sees input events in time-stamp order. Moreover, if events
with the same time stamp are received on multiple ports,
our semantics ensures that the actor can see all such events
in the same reaction. We thereby avoid a form of nondeter-
minism in which simultaneous events (those with identical
time stamps) may be processed in nondeterministic order,
as they would be in a more classical actor model.

Such DE systems have a long history and have been used
primarily for simulation [7], [8], [15], [25], [31], [47]. In our
case, we are using DE semantics not for simulation, but for
runtime deployment, as has been done in Ptides [13], [48]
and Spanner [9]. Ptides and Spanner extend the time-stamp
semantics across networks so that time stamps have a global
meaning in a distributed system. Accessors are compatible
with Ptides, in principle, and therefore the semantics of
DE can extend across a network to coordinate actions on
several distributed hosts. Such an extension, however, is
beyond the scope of this paper. We focus instead on how DE
is combined with the highly asynchronous actions of inter-
net interactions.

As with any framework, there is overhead associated
with abstraction. A DE scheduler needs to maintain a list of
pending events to be processed sorted in time-stamp order.
The core part of our implementation, which is shared among
all hosts, supports defining, instantiating, connecting, and
executing accessors and comprises only approximately 3000
lines of heavily commented JavaScript code. The scheduling
operations themselves also incur an execution time cost, but
this cost is highly application dependent and therefore hard
to measure meaningfully.

B. Asynchronous Atomic Callbacks

The asynchronous atomic callback (AAC) concurrency
pattern is used extensively in web programming, both on
the server side (using for example Node.js3 and Vert.x4) and
on the client side, in browsers. On the server side, it has
proven scalable to very large numbers of clients and servers.
It has also been used in some other (nonweb) applications
such as parallel computing (e.g., Active Messages [43]) and
embedded systems (e.g., TinyOS [28]).

A central feature of this pattern, which drives its scal-
ability, is its dependence on a functional style of program-
ming, where functions are first-class objects in the language.
Functions are invoked asynchronously, typically when some
request that has long and/or variable latency has been

satisfied. For example, the callback function on line 15 in
Fig. 4 will be invoked when a response from an HTTP server
has been received. This callback function is passed as an
argument to the module’s get() function. This nonblocking
behavior prevents programs from becoming unresponsive
while waiting for responses from remote servers.

Importantly, every such asynchronously invoked func-
tion invocation is atomic with respect to every other func-
tion invocation; that is, a callback function invocation waits
until no other function is being executed before beginning,
and the callback function executes to completion before any
other function can begin executing. This atomicity distin-
guishes the AAC concurrency model from interrupt-driven
I/O, threads, and many asynchronous remote procedure call
mechanisms. The same benefits can, in principle, be accom-
plished with threads, but the resulting programs are much
less scalable, more difficult to understand, and vulnerable to
the many nefarious bugs that multithreaded programs inevi-
tably have [26], including unexpected nondeterminism and
deadlocks. Properly written AAC applications do not use
locks explicitly and cannot deadlock.

AAC comes with costs, however. First, it becomes essen-
tial to write code carefully to consist only of quick, small
function invocations. A long-running function will block all
callback functions, reducing the responsiveness of applica-
tions and compromising real-time performance. Second,
AAC accentuates the chaos of asynchrony, where achiev-
ing coordinated action can become challenging. For exam-
ple, if you make multiple requests in sequence to a service,
each time passing a callback function, there is no assurance
that the callbacks will be invoked in the same order as the
requests. Both problems are important for IoT, where heavy
computation may be required to analyze sensor data, and
coordinated physical actions may be dependent on the order
in which things occur.

Because of these limitations, several alternatives mix
AAC with other concurrency models. Many JavaScript
implementations realize a thread-like mechanism called a
Web Worker, which runs tasks in the background concur-
rently with the main AAC function invocations. Unlike
threads, these Web Workers cannot share data with the
main application. Instead, they send messages to the main
application, which, if it is listening, will invoke a callback
to handle the message. ECMAScript 6, a recent version of
JavaScript, enriches AAC with a cooperative multitasking
model, which allows a function to suspend execution at well-
defined points, allowing other functions to be invoked while
it waits for some event. The Vert.x framework enriches AAC
with so-called “verticles” (think “particles”), which can
execute in parallel while preserving atomicity. Verticles can
interact with one another through a publish-and-subscribe
bus or through shared but immutable data structures. All of
these extensions can, in principle, be used with accessors.
But the combination of AAC with DE makes them much less
necessary.

3http://nodejs.org
4http://vertx.io

Brooks et al . : A Component Architecture for the Internet of Things

 Vol. 106, No. 9, September 2018 | Proceedings of the IEEE 1533

C. Combining DE With AAC

DE provides a streaming data model, suitable for many
IoT applications, augmented with time stamps for improved
determinism. AAC provides a mechanism for handling
highly asynchronous delayed events. Both models are
concurrent, are more disciplined than threads, and have
achieved widespread acceptance. Accessors combine the
two, getting the best of both worlds.

Consider again the simple accessor in Fig. 4. A trigger
input that it receives occurs at a logical time and the out-
put data occurs distinctly later than that logical time. Line 5
declares the output to be “spontaneous,” which means that
it does not have an immediate direct dependency on the
input. The accessor host uses this information when ana-
lyzing data dependencies between actors to come up with a
schedule that reacts deterministically to any particular set of
time-stamped inputs.

On line 16, a callback function produces an output. This
occurs asynchronously, but the AAC model ensures that it
occurs atomically. No other actor can be in the middle of
executing anything. This event can therefore be assigned a
time stamp without risk of violating DE semantics by having
events appear “in the past” or by having simultaneous events
(those with identical time stamps) appear at some destina-
tion in two distinct reactions. The actual time stamp that is
assigned to this “data” output is nondeterministic because
it depends on the reaction time of some remote server and
on network latencies. But once the time stamp is assigned,
how the swarmlet reacts to this event is completely deter-
ministic. This semantics makes behaviors more repeatable
and testable. For example, we can write regression tests that
check behavior given particular time-stamp assignments.
The determinism of the model ensures that there is exactly
one “correct” reaction to a set of time-stamped inputs.

The combination of DE with AAC was first realized by
the authors by embedding a JavaScript interpreter in an
actor and coordinating it with the DE director of Ptolemy
II [40], which is implemented in Java. Lohstroh and Lee for-
malized this combination using interface automata [30].

D. Timing

Time stamps in a DE semantics are a logical concept, not
a physical one. But the use of time stamps suggests a con-
nection with the physical world. Indeed, in the IoT, physical
timing of events can be quite important.

The most straightforward connection we can make
between time stamps and physical time is to attempt to
align them as much as possible. For example, the time stamp
assigned to the asynchronous, spontaneous output on line
16 of Fig. 4 may be taken from a physical clock on the host,
and that clock may be synchronized with other clocks on
the network. For this to be valid, the host needs to maintain
a correspondence between the logical notion of “current
time” and the time recorded on the physical clock. A simple

way to do that is to delay handling of time-stamped events
until the physical clock of the host reaches or exceeds the
time of the time stamp. In a distributed system, clock drift
will have to be taken into account as done, for example, in
Ptides [13], [48] and Spanner [9].

Accessors will also need mechanisms to invoke actions
in the future at specified logical times. These are similar
conceptually to the callbacks in Fig. 4, but these future
events will be assigned time stamps deterministically.

To get timed behavior, most AAC frameworks support
delayed callbacks. For example, most JavaScript environ-
ments provide a setInterval (F, T) function, where func-
tion F is to be invoked after T milliseconds and then again
periodically with intervals of T milliseconds. Of course, the
actual time of the function invocations cannot be exactly
every T milliseconds, since that would require a perfect time-
keeper, which does not exist, and it would also require that
the JavaScript engine be idle at every multiple of T millisec-
onds, since the AAC model requires atomicity. We expect
(and get) some jitter in the actual timing of the function invo-
cations. Such jitter is unavoidable in any software platform.

But the situation is worse because the time T actually has
very little meaning at all. It is interpreted in the JavaScript
language as a suggestive guideline to invoke the function at
some time near the multiples of T milliseconds. When there
are multiple such delayed callbacks, there are no guarantees
on the order of invocation of the callbacks even if the time
intervals are identical or related by integer multiples.

In [18], two of the authors (Jerad and Lee) show that
these mechanisms can be given a stronger temporal seman-
tics. For example, it is possible to ensure that if two calls
to setInterval (F, T) and setInterval (G, T) are made
with the same T , then the host can ensure that F and G are
invoked together atomically and hence will appear to any
observer as being simultaneous. Moreover, Jerad and Lee
define labeled logical clock domains (LLCDs), within which
islands of synchrony can be created asynchronously and
coexist with a clean semantics.

These timing mechanisms have been integrated into our
framework. They can be used, for example, to extend the AR
application in Fig. 2 with timed behavior, for example, to
synchronize video and audio feedback to the user. Multiple
clock domains could become useful in more complex applica-
tions where several concurrent islands of synchrony coexist.

Many callbacks, however, are untimed, like the ones
in Fig. 4. Since callbacks are all atomic, during the invoca-
tion of the callback, each logical clock will have a specific
“current time” that is frozen during the invocation of the
callback. This makes it possible for such an asynchronous
callback to then make a request for a timed callback that
will be invoked logically simultaneously with other actions
on the same logical clock domain. Referring again to the
example in Fig. 2, this could enable audio stimuli to be syn-
chronized with visual stimulus even if the onset of events
that trigger these stimuli is asynchronous.

Brooks et al . : A Component Architecture for the Internet of Things

1534 Proceedings of the IEEE | Vol. 106, No. 9, September 2018

Ultimately, no strategy can guarantee that a timing goal
is met. If a Thing fails, it fails! Our contribution is enabling
detectability. A predictable, composable timing semantics is
necessary to detect abnormal timing variability. The order
of events is well defined by time stamps, and any anomalous
order that emerges at runtime is an indicator of a fault.

In addition, accessors are designed to be able to be run
locally, close to the Things they interact with, in contrast
with cloud-based services. This makes latencies more pre-
dictable, repeatable, and controllable. Some functions, how-
ever, are much easier to provide in the cloud than locally.
Fig. 2 uses cloud services for speech synthesis and recogni-
tion and natural-language processing. For fault tolerance,
we can use a “local first” architecture to treat cloud services
as an enhancement instead of a requirement. It would be
easy, for example, to augment Fig. 2 with a fallback user-
interaction mechanism, such as pushbuttons on the screen.
This means that the application can reliably deliver real-
time behavior even if internet connectivity is lost altogether.

E. Context Sensitivity

The Mutable accessor in Fig. 2 provides an example of
a context-sensitive swarmlet, where the actual behavior
depends on the Things that are locally available. Such muta-
tion, if done in an ad hoc way, would amount to self-modi-
fying code, which is usually not a good idea. Self-modifying
code is notoriously difficult to understand and has even
been found suitable as a code obfuscation technique [32].
The mechanism in the accessors framework is much more
disciplined.

The Mutable accessor is a placeholder for an accessor that
can reify it. Before being reified, the Mutable accessor has no
functionality. It ignores input events and produces no output
events, except for input events on the “accessor” input. In our
implementation, when the “accessor” input receives an event,
the Mutable accessor interprets this input event as a request
to reify an accessor that is specified by the value of that event.
The value of the event could be text similar to what is shown
in Fig. 4. If the Mutable accessor has already reified an acces-
sor, then it unreifies it and then reifies the new one. In the
application in Fig. 2, this can be used to provide entirely dif-
ferent visual interfaces to Things in the field of view.

Note that, in principle, this dynamic substitution mech-
anism could be leveraged to optimize for locality or avail-
ability, as done in the example of Fig. 2, but also to cope
with unexpected network outages, or for keeping up with
firmware updates or unpredictable changes to remote APIs.
A new accessor could be downloaded and instantiated at
runtime to replace one that (for whatever reason) no longer
optimally performs its function.

Discipline is important, however. The Mutable accessor
has a specific role in this swarmlet, and not all accessors can
satisfy this role. The role is specified by its input and output
ports, “control” and “data.” These ports have types, and the
reified accessor must have matching ports that conform to

those types. A perfect match, however, is not required. We
follow the type refinement schema for actors similar to that
of Lee and Seshia [27, Ch. 14]. An output data type of a rei-
fied accessor, for example, can be a subtype of the type of the
corresponding output of the Mutable accessor. Conversely,
an input type of the reified accessor can be a supertype of
the corresponding input port of the Mutable accessor. In
addition, the reified accessor need not match all the input
and output ports present in the Mutable accessor. Any out-
put port that is present in the reified accessor but not in the
Mutable accessor will have its events ignored, and any input
present in the Mutable accessor but not in the reified acces-
sor will not be receiving events. Of course, a useful reifica-
tion will have at least some input ports that match.

Dynamically reified accessors may be downloaded from
the internet as part of a discovery process. Hence, as we
will discuss in Section VI, the accessor to reify is likely to
not be completely trusted. Much as a browser controls the
local resources that a web page can access, our hosts control
the resources that the reified accessor can access. All access
to resources is mediated by modules, like the http-client
module that is required in Fig. 4. The module is imple-
mented by the host and hence can be constrained in any way
appropriate.

F. Hierarchy

The model in Fig. 2 is an instance of what we call a com-
posite accessor. In that example, the composite accessor
itself has no input and output ports, so it cannot be directly
embedded in another swarmlet. But our accessor frame-
work supports composite accessors with input and output
ports, so models can be constructed hierarchically.

Even more interestingly, the swarmlet in Fig. 2 interacts
with outside services through the network, for example, by
making HTTP requests. Those outside services could them-
selves be swarmlets, and they may have embedded within
them an accessor designed for accessing the services of the
swarmlet in Fig. 2.

This schema is illustrated in Fig. 5. In that figure, two net-
worked hosts have each instantiated a swarmlet containing

Fig. 5. Schema whereby swarmlets have accessors that can be
instantiated in other swarmlets.

Brooks et al . : A Component Architecture for the Internet of Things

 Vol. 106, No. 9, September 2018 | Proceedings of the IEEE 1535

an accessor for the other swarmlet. When the accessor on
host A receives an input event, it sends a message to the
accessor on host B , which then produces an output event.
The swarmlet on host B constructs a response and provides
that response as input event for the accessor, which sends
a message back to host A . Finally, the accessor on host A
produces an output event with the response. This mecha-
nism can be used to construct services that can then be eas-
ily instantiated remotely; the service (a swarmlet) provides
an accessor that another swarmlet can instantiate.

Of course, once such peer-to-peer interactions exist,
a new form of brittleness appears. One piece of a distrib-
uted application may be updated, for example, without
being able to simultaneously update the other pieces. Some
sort of coordinated deployment and update will have to be
developed.

V. A PL ATFOR M FOR COMPOSING
THINGS

Accessors are generic reusable components that can be
composed in a common semantic domain with an actor-
based DE semantics furnished by a host implementation. As
such, the host can be thought of as a platform in the sense
of platform-based design (PBD) [41]. The key goal of PBD is
to separate functionality (the what) from architecture (the
how) and be able to map a design (or parts of it) onto differ-
ent architectures without having to change the design.

Platforms abound in IoT. A typical philosophy is to
offer an application programming ecosystem deployed on a
certain type of host, such as Node.js or a centralized cloud
service. An application facilitates communication among
Things using information streams, which can be acted on
directly or scanned for events. Generally, the focus has been
on supporting diverse host-to-Thing connections, with some
success. An application developed on a particular platform is
usually not transferable to another platform. This paradigm
works well for a set of Things owned by the same entity and
a community substantial enough to afford its own applica-
tion designers.

Looking to the future, it is desirable to write an applica-
tion once and deploy it on any host connected to the right
Things. How should this application be written? JavaScript
is an attractive candidate due to its widespread usage and
compatibility with heterogeneous hosts, such as web brows-
ers and Node.js.

One underlying problem is that JavaScript host environ-
ments differ, particularly in their mechanisms for allocating
compute resources for large computations, providing per-
manent data storage, and global variable management. Pure
JavaScript provides no such mechanisms, and hence, when
such mechanisms are provided by a host, they are often pro-
vided in a host-specific way. Typically, these mechanisms
are implemented in the host’s native language, such as C,
C++, or Java, and then provided to the JavaScript programs

through modules that must be explicitly “required” by the
program.

To solve this, the Accessor approach leverages an infor-
mation hiding strategy. Accessor code has no direct access
to platform-specific primitives. Instead, an accessor may
declare dependencies on functionality contained in a host-
provided module, like the http-client module in Fig. 4. A
module ideally has a common API for all hosts but may have
a host-specific implementation. Thus, the host implementa-
tion details are hidden from the application developer.

An accessor can execute on any host that meets all its
module dependencies. The binding between an accessor
and the module(s) it relies on takes place upon instantiation
of the accessor on a host. For instance, the Camera acces-
sor in Fig. 1 can run on various hosts without assuming any-
thing about the mechanisms used to access the camera other
than what is defined in the camera module’s API.

The ability to determine whether a host supports an
accessor at runtime provides advantages for IoT applica-
tions. Some Things execute on energy and cost-constrained
leaf nodes, and therefore it may be desirable to reject acces-
sors that push the system over budget. Accessor rejection
may also be a security strategy.

Ideally, since accessors may contain untrusted code, it
is preferable to execute them in a contained environment.
The most straightforward way to do that is with a language
interpreter or a virtual machine that provides a sandbox.
Browsers, for example, already execute JavaScript in such
a sandbox, and our browser host, described below, takes
advantage of this extra measure of security.

Browsers and server-side infrastructure such as Node.
js and Vert.x provide powerful JavaScript interpreters, but
they are not lightweight enough for installation in many
leaf devices. The situation may improve in the future, as a
number of small JavaScript kernels have appeared recently
in open-source form, such as Duktape. Some of these can
execute without much operating system support, and hence
may be suitable for deployment in quite constrained envi-
ronments. In the remainder of this section, we outline the
hosts we have prototyped, thereby demonstrating that the
accessor architecture is deployable on a large variety of
platforms.

A. CapeCode

The CapeCode host is a Ptolemy II configuration that
provides a GUI for composing, executing, and deploying
composite accessors. Ptolemy II is a Java-based open-source
software laboratory that supports experimenting with actor-
oriented design [14]. CapeCode provides a graphical user
interface for building swarmlets. The name of this host is
derived from Cape Cod, MA, USA, where much of the devel-
opment has occurred.

Models that consist solely of accessors may be code gen-
erated into composite accessors that may be executed by

Brooks et al . : A Component Architecture for the Internet of Things

1536 Proceedings of the IEEE | Vol. 106, No. 9, September 2018

any accessor host that implements the modules used by
the accessors. CapeCode can execute the generated com-
posite accessors either locally or deploy them remotely on
the Node host, which we discuss in the next section. These
composite accessors can also be loaded and executed in
the Browser host by embedding a reference in a web page.
Developing composite accessors using the CapeCode GUI
and then deploying them to possibly less powerful remote
machines is an effective development strategy. Further,
CapeCode can execute models combining accessors with
other Ptolemy II actors, thereby providing a rich library of
predefined actors.

A drawback of using a graphical syntax to express a
more complex or elaborate design is that it tends to result in
exceeding the Deutsch limit [12] of 50 graphical elements,
which can make the model unwieldy and difficult to under-
stand. Ptolemy II uses hierarchy to decompose a design into
comprehensible pieces. To scale up to very large numbers
of actors that are widely distributed in networks, we can
consider application builders like Chisel [5], which provides
programmed construction of digital circuits. It leverages
higher order functions featured in the Scala programming
language. In Chisel, rather than directly instantiating and
connecting components, a designer writes a program that
instantiates and connects components when it executes.

B. Node

The Node host is meant for use with Node.js. Node.js
is a popular cross-platform server-side JavaScript runtime
environment. Because of the popularity of Node.js, we
anticipate that the Node host will have the greatest impact
of all of the hosts. In particular, we feel that providing well-
defined temporal semantics to the Node environment could
increase robustness and reliability.

The Node host is available via the Node Package Manager
(npm) as the @terraswarm/accessors module.

C. Browser

The Browser host allows users to inspect and execute
accessors in a web browser. Any web page may load an
accessor by including a <script> tag pointing to the Browser
host script plus a reference to the accessor(s). It is assumed
that some web server is available to provide these files. A
demonstration server is available publicly,5 and it features
an interactive tutorial6 for writing accessors that executes
in the browser host.

The JavaScript engine in a modern browser is designed
to safely execute third-party code in the local environment.
Therefore, the Browser host does not typically have direct
access to the local file system or to machine hardware, leav-
ing it slightly underpowered compared to other hosts. One

advantage of the Browser host is ease of deployability. Any
device with a web browser can download and execute acces-
sors simply by pointing to a URL.

An example of the Browser host is an accessor that uses
a JavaScript implementation of OpenCV [42] to recognize
faces in an image.7

D. Cordova

Smartphones provide access to a wealth of sensors, offer
an uplink to a local area network (LAN) or the internet, and
are mobile, which means that their environment is subject
to change as they are carried around by their owners. These
three aspects combined make smartphones a very appealing
deployment platform.

Apache Cordova8 provides a development toolchain
amenable to a variety of smartphone operating systems.
Apps are constructed much like an ordinary web page,
using HTML, CSS, and JavaScript, and can be deployed to
different targets, including Apple iOS and Google Android.
Superior to a browser-hosted web application, Cordova’s
plugins expose platform-dependent functionality such as
geolocation and a file system to the application’s JavaScript
environment. Hence, unlike the browser host, which can
also be deployed on mobile platforms, the Cordova host can
selectively bypass the browser’s security restrictions, giving
access to platform-specific functionality.

Apache Cordova is itself a platform-based design tool,
where Cordova plugins offer a uniform API while hiding
Android-specific or iOS-specific implementation details.
This points to the scalability of PBD, as the PBD approach
supports a series of platform mappings; here, from accessors
to Cordova, then Cordova to Android or iOS.

E. Duktape

The Duktape accessor host uses the Duktape JavaScript
engine9 to deploy accessors on small embedded systems.

As a proof of concept, we deployed a composite accessor
to a Maxim Integrated MAX32630, which is a Cortex-M4
with 512K RAM and 2-Mb flash. Our simple accessor was
an accessor that produces integers connected to a display
accessor. The executable had the following sizes in bytes:

• text: 291 848—program code in flash;
• data: 2964—initialized data in RAM;
• bss: 8400—uninitialized data in RAM.

This shows that accessors can be deployed on deeply
embedded platforms.

To use the Duktape host on a composite accessor would
require implementing in C/C++ the modules used by the
accessors. For example, to support the accessor in Fig. 4

5http://accessors.org/hosts/browser
6http://accessors.org/hosts/browser/demo/tutorial/tutorial.html

7http://accessors.org/hosts/browser/demo/faceDetector/faceDetec-
tor.html

8https://cordova.apache.org
9http://duktape.org

Brooks et al . : A Component Architecture for the Internet of Things

 Vol. 106, No. 9, September 2018 | Proceedings of the IEEE 1537

requires implementing the http-client module, which would
most likely be implemented in C or C++ using low-level
networking primitives.

V I. SECU R IT Y

Accessors are untrusted code that serve as proxies for sen-
sors, actuators, and services. Inspired by the web, accessors
are therefore executed in a virtualized environment that
controls access to resources and data. Such encapsulation
provides a starting point for ensuring security and privacy,
but it is not sufficient by itself. In particular, the execution
environment will have to grant access to physical resources
such as sensors and actuators in order to realize IoT applica-
tions. How should it authenticate the IoT applications (e.g.,
whether an application running remotely is modified from
the original program components)? Moreover, how can we
make sure we only grant permission to legitimate IoT appli-
cations to access certain resources (authorization or access
control)?

While it is crucial to provide appropriate authentica-
tion and authorization for the IoT applications, it is also
challenging to do so. Many IoT applications can run on a
variety of software/hardware platforms, possibly in a distrib-
uted fashion. Some of them run under a constrained energy
budget or with restricted communication capability. It
would be unreasonable to expect those types of applications
to incorporate traditional security measures for the web,
such as secure socket layer/transport layer security (SSL/
TLS), based on a public key infrastructure (PKI), because it
requires a frequent use of power-hungry public-key cryptog-
raphy. Leveraging the Kerberos authentication system [37]
is also difficult because it requires a constant stable connec-
tion to the authentication server and an interactive prompt
for users to enter passwords. Passwords are not appropriate
for Thing-to-Thing interaction.

In addition, IoT applications tend to operate in open
(or even hostile) environments and thus are at higher risk
of being compromised or subverted. As an example of this,
Ghena et al. [16] demonstrated an attack on traffic control-
lers on the streets of Ann Arbor, MI, USA, by leveraging
access to wireless communication used by traffic control-
lers. Therefore, it is sorely important to monitor the behav-
ior of IoT applications and revoke access to safety-critical
resources as soon as a security breach has been detected.
Due to the scale of IoT applications, in terms of both the
number of applications and the volume of data traffic, it is
not a feasible strategy to solely rely on digital certificates
because a PKI with tens of billions of certificates will quickly
become unmanageable.

Our open-source toolkit, secure swarm toolkit (SST)
[20], provides a set of accessors for bringing authentica-
tion and authorization to the IoT while addressing above-
mentioned challenges. SST uses a local authorization entity
called Auth [21] deployed on edge computing devices that

act as local gateways to the internet for IoT applications.
SST employs a locally centralized, globally distributed [19]
approach, which has two key benefits: 1) dependency on
a reliable connection to Cloud servers is limited, which
improves robustness to network failures; and 2) better scal-
ability can be achieved by distributing the workload for
authentication and authorization among Auths. Various
security configuration alternatives supported by SST also
embrace heterogeneous security requirements and resource
availability in the platforms for IoT applications.

Fig. 6 illustrates a part of an extended version of the
augmented reality example in Fig. 2, secured by one of the
accessors provided by SST, SecureCommClient. A stream
of output data from the Mutable accessor is encrypted and
sent to a cloud server via the SecureCommClient accessor.
Let us assume there is another IoT application, namely
SensorAnomalyDetector, running on a remote cloud server
and programmed using another accessor in SST, called
SecureCommServer. SensorAnomalyDetector takes streams
of data from the distributed augmented reality applications
reporting their sensor data, executes a machine learning
algorithm on collected data, and sends feedback to the appli-
cations when any sensor data anomaly is detected. When a
client application receives feedback on a detected anomaly
from the server, the feedback is sent to the graphic overlay’s
additional input port, metadata, to indicate the anomaly as
part of the overlay.

In this extended example, the main function of these
security accessors is to access the authentication and
authorization services required to establish a secure chan-
nel between two swarmlets, each of which is associated with
its own (possibly different) Auth. It is assumed that a trust
relationship between the involved Auths exists. After being
authenticated and authorized by their respective Auths,
SecureCommClient and SecureCommServer establish a
secure communication channel between each other similar
to that of a client–server connection via SSL/TLS. But with
SST, we have the option to choose the underlying network
protocols (e.g., TCP or UDP) or the cryptographic protocol.
We also do not have to maintain a centralized certificate
authority (CA). Adding SST accessors provides additional

Fig. 6. Modified part of the example in Fig. 2 with a
SecureCommClient accessor for additional security.

Brooks et al . : A Component Architecture for the Internet of Things

1538 Proceedings of the IEEE | Vol. 106, No. 9, September 2018

security guarantees including confidentiality and message
authenticity, preventing network-based attackers from
eavesdropping or staging a man-in-the-middle attack. In
addition to the two aforementioned accessors, SST provides
accessors for constructing IoT applications based on a pub-
lish–subscribe communication style using accessors called
SecurePublisher and SecureSubscriber.

Another benefit of using SST accessors comes from
encapsulation of cryptography operations and crypto-
graphic key management. As Myers and Stylos [36] point
out, design of APIs is critical for software security, espe-
cially in the sense that misuse of APIs can lead to seri-
ous security problems. With SST accessors, all software
developers need to do is to specify configuration parame-
ters and set up initial credentials (e.g., generate a public–
private key pair and register the public key with an Auth).
Even developers with moderate knowledge in security
need not worry about internal cryptographic operations
and encryption key management for accessors once the
accessor design is correct. Specifying security configura-
tions can be further simplified by using the given profiles
as suggested in [20].

Combined with actor-oriented modeling semantics
where actors communicate only through input and output
ports, isolation of cryptographic keys and operations in SST
accessors can enhance security when supported by OS-level
or architecture-level security mechanisms. By sandbox-
ing the execution of SST accessors, a swarmlet host can
restrict the privilege of accessors to read from or write to
arbitrary files or network ports, preventing credentials from
being leaked or being used maliciously (e.g., by an attacker
to spoof the device). If the host is equipped with an archi-
tectural security mechanism such as Intel’s SGX (Software
Guard Extensions) [33], the credentials can be protected
even when other processes on the host or the host’s mid-
dleware or hardware components are compromised. Like
other accessors, SST accessors also require some modules to
be available on the host. These modules include the crypto
module and the TCP or UDP modules.

V II. PR I VAC Y

Fundamentally, accessors are a disciplined form of mobile
code. An accessor can be dynamically downloaded and
instantiated on a wide variety of platforms, including deeply
embedded ones. This has a potential advantage for preserv-
ing privacy because computation can be easily moved to a
data source rather than the more common scenario where
the data are fed into a cloud service for processing.

As Jaron Lanier explains in his book Who Owns the
Future? [23], a key aspect of the business models of Silicon
Valley tech companies that provide such cloud services
(and typically do so free of charge) is the extraction and
accumulation of information from and about their users.
Furthermore, cloud services that make use of virtual

resources, such as those provided by Amazon AWS10 or
Microsoft Azure Cloud,11 may not be designed to spy on
their users but can still be vulnerable to side channel attacks
such as Meltdown [29] and Spectre [22] and potentially leak
sensitive data.

A shift away from a centralized cloud-based paradigm
toward mobile code and local computation could thus be an
effective strategy to foster better privacy on the IoT. Accessors
can reduce the need to transport data over the open internet
and allow for designs that carry out analysis locally and, there-
fore, rely less on the cloud, or they can anonymize data before
sending it into the cloud for further processing.

V III. R EL ATED WOR K

A number of projects adopt an actor-oriented approach
similar to ours for IoT system development. The closest are
probably Calvin [39], Node-RED,12 and NoFlo,13 which use
a dataflow concurrency model for interactions between ser-
vices that are using AAC. Also reasonably close, although
very different in syntax, is Rx (Reactive Extensions), which
combines callbacks with streams [34]. We believe that our
use of DE semantics is unique and offers a solid foundation
for deploying timing-sensitive IoT applications.

Also related are publish–subscribe services such as the
Message Queue Telemetry Transport (MQTT), the Data
Distribution Service (DDS), and the Robot Operating
System (ROS). MQTT is an ISO standard (ISO/IEC PRF
20922) intended for embedded applications where small
footprint code is required and/or network bandwidth is lim-
ited. DDS is an object management group (OMG) machine-
to-machine standard for real-time communication using
publish–subscribe pattern. ROS, an open-source software
framework originated by Willow Garage, is widely used for
building robot applications. These can be used by acces-
sors for vertical communication with Things and services,
and hence are complementary to our work. We have used
MQTT in accessors for wireless sensor-network devices and
ROS in accessors that control robots. But similar to acces-
sors, these services provide a communication fabric that
can stitch together components. Unlike accessors, they use
a publish–subscribe pattern, where a data producer gen-
erates messages for a “topic” and data consumers that are
subscribed to the topic will be notified, typically by a cen-
tralized broker that mediates the communication. None of
these use time stamps to provide a deterministic interaction
semantics, however, so applications are less testable and
harder to deploy in timing-sensitive scenarios. Time stamps
help by controlling the order in which events are handled,
thereby ensuring that given the same inputs, the application
always delivers the same behavior.

10https://aws.amazon.com
11https://azure.microsoft.com
12https://nodered.org
13https://noflojs.org

Brooks et al . : A Component Architecture for the Internet of Things

 Vol. 106, No. 9, September 2018 | Proceedings of the IEEE 1539

IF This Then That (IFTTT) is a free web-based service
originally created by Linden Tibbets and Jesse Tane that
enables composing Things and services using a simple
imperative style with chains of conditional statements.
It is fundamentally a cloud-based approach, and it excels
at integrating with other cloud-based services such as
e-mail, Facebook, and Pinterest. Accessors, in contrast,
need not run in the cloud. An application built with acces-
sors would usually run in a host that is much closer to the
Things it is interacting with. The AR application in Fig. 2,
for example, is designed to run on a phone, a tablet, or
a head-mounted AR display that is in the same room as
the Things it is interacting with. When feedback control
is involved, local execution can be critical because latency
can strongly affect behavior.

Accessors can, in fact, leverage the considerable eco-
system around IFTTT. Like the accessors in Fig. 2 that use
cloud-based services for language and speech, accessors
could be easily designed to interact with IFTTT.

In IFTTT, for the most part, each Thing requires its own
“channel,” the name for the mechanism that IFTTT uses to
interact with the Thing. Accessors, similarly, can be created
independently for each Thing. An application that is built
with such “channels” or Thing-specific accessors will not
work if the Thing is replaced by a variant from another man-
ufacturer. However, as illustrated by the Mutable accessor
in Fig. 2, accessors offer the intriguing possibility of more
vendor-independent applications. The application in Fig. 2
will work with any device for which there is an accessor
that provides JSON-formatted data and (optionally) accepts
JSON-formatted commands. There are many such devices.
We need no prior agreement on what particular JSON struc-
tures are used or even on what communication mechanism
is used to talk to the Thing. The accessor may access the
Thing via the internet, Bluetooth, or ZigBee, for exam-
ple, and it may use protocols such as HTTP, WebSockets,
MQTT, TCP sockets, or datagrams, as long as the host pro-
vides modules supporting these technologies. IFTTT has no
such mechanism for this level of vendor neutrality.

One approach to achieving vendor neutrality is repre-
sented by Home Connect, a protocol and a corresponding
app from BSH Bosch and Siemens Hausgerate that controls
multiple brands of home appliances. This is superficially
similar to accessors in that it integrates Things from diverse
vendors, but it is really quite different. First, it does not
directly support Thing-to-Thing interaction, although its
protocol is supported by IFTTT, and hence, using IFTTT, it
is possible to build Thing-to-Thing interaction with Home
Connect appliances. But more importantly, Home Connect
standardizes the communication protocol between the
Thing and the app. It requires the Thing to use a specific
communication protocol, such as HTTP over the internet,
and it dictates the format that commands and data must
have. Accessors, in contrast, standardize the interface
between an accessor and its host, like web browsers, which

standardize the interface between a downloaded JavaScript
program and the computer on which the browser runs.
Accessors do not standardize the mechanism that is used to
communicate with the Thing.

Accessors, fundamentally, are stitched together by a
coordination language, which has a syntax and a semantics.
Recent years have seen an explosion of innovation in pro-
gramming languages and programming models. New lan-
guages, such as Rust, Scala, Clojure, Julia, F#, Go, and Dart,
and frameworks, such as Apache Spark, Microsoft Orleans
[6], and Akka, codify programming models that manage
parallel computing resources, scalable workloads, and/or
long network latencies. A common thread in the new lan-
guages is to embrace elements of functional programming,
particularly to make functions first-class objects in the
language. Functional programming can be used to realize
design patterns such as asynchronous atomic callbacks and
structured parallelism such as map-reduce [11]. A common
thread in the frameworks (Spark, Orleans, Akka) is support
for stream computation based on actors [1], [17]. Our work
overlaps with these by embracing functional programming
and stream-based computation, but our work appears to be
unique in its adoption of DE semantics.

Another recent trend that pays more attention to tim-
ing is the focus on real-time data analytics. The IoT prom-
ises a flood of sensor data. Many organizations already are
collecting but not effectively using vast amounts of data.
The research and consulting firm Forrester defines “per-
ishable insights” as “urgent business situations (risks and
opportunities) that firms can only detect and act on at a
moment’s notice.” Fraud detection for credit cards is one
example of such perishable insights. This has a real-time
constraint in the sense that once a fraudulent transaction
is allowed, the damage is done. In CPS, a perishable insight
may be, for example, a determination of whether to apply
the brakes on a car, where a wrong or late decision can be
quite destructive.

Real-time data analytics implies both timing constraints
and streaming data. Computing on streaming data funda-
mentally means that you do not have all the data, but you
have to deliver results. It differs from standard computation
in that the data sets are unbounded, not just big, and you
cannot do random access on input data, which constrains
the types of algorithms you can use. Major research efforts,
such as the industry-funded RISELab launched at Berkeley
in 2016 (Real-time Intelligent Secure Execution14), are get-
ting a lot of attention. Examples of algorithmic innovations
for real-time streaming data include adaptations of machine
learning and optimization algorithms [2], [3] and adap-
tations of formal methods [4] to operate on streams. We
believe that our component architecture could contribute
quite a bit to such projects by integrating Things.

14https://rise.cs.berkeley.edu

Brooks et al . : A Component Architecture for the Internet of Things

1540 Proceedings of the IEEE | Vol. 106, No. 9, September 2018

I X . CONCLUSION

IoT services are intrinsically an amalgam of heterogeneous
and distributed components. It is naive to assume that any
single standard will emerge for interaction between Things,
services, and users. The accessors framework described in
this paper provides a number of key properties not found
(at least not all together) in any IoT framework that we
know of today:

• the use of proxies for Things, where proxies execute in
a host-controlled environment, similar to web pages
with scripts;

• embracing heterogeneity by not standardizing the
means by which Things and services communicate
with applications;

• an actor-oriented streaming model of computation for
interactions between components;

• time-stamped messages with deterministic interleav-
ing semantics;

• use of functional programming concepts, particularly
asynchronous atomic callbacks, to hide network
latencies;

• deterministic timed interactions between compo-
nents;

• integration of state-of-the-art security including
encrypted communication, authentication, and
authorization.

A great deal of work remains to be done. Most interesting to
us is the possibility of leveraging the time-stamped interactions
between components to build more deterministic distributed
real-time applications. These could be based on the semantics
of Ptides [13], [48] and Spanner [9], but also will require more
support for dynamically changing component interactions and
for large numbers of components. The mechanisms used in
Orleans [6] look particularly promising, where a distributed
registry of actor instantiations together with multiplexing of
streams through host-to-host communication channels facili-
tates scalability to very large numbers of actors and hosts.

REFERENCES
 [1] G. Agha, ACTORS: A Model of Concurrent

Computation in Distributed Systems (Artificial
Intelligence). Cambridge, MA, USA:
MIT Press, 1986.

 [2] I. Akkaya, “Data-driven cyber-physical
systems via real-time stream analytics and
machine learning,” Dept. EECS, Univ.
California, Berkeley, CA, USA, Tech. Rep.
UCB/EECS-2016-159, Oct. 2016. [Online].
Available: https://chess.eecs.berkeley.edu/
pubs/1185.html

 [3] I. Akkaya, S. Emoto, and E. A. Lee, “PILOT:
An actor-oriented learning and optimization
toolkit for robotic swarm applications,” in
Proc. 2nd Int. Workshop Robot. Sensor Netw.
(RSN), 2015. [Online]. Available: https://
chess.eecs.berkeley.edu/pubs/1078.html

 [4] R. Alur, D. Fisman, and M. Raghothaman,
“Regular programming for quantitative
properties of data streams,” in Proc. Eur.
Symp. Programm. Lang. Syst. (ESOP), 2016,
vol. 9632, pp. 15–40.

 [5] J. Bachrach et al., “Chisel: constructing
hardware in a Scala embedded language,”
in Proc. Design Autom. Conf. (DAC), 2012,
pp. 1216–1225.

 [6] P. A. Bernstein and S. Bykov, “Developing
cloud services using the Orleans virtual actor
model,” IEEE Internet Comput., vol. 20, no. 5,
pp. 71–75, Sep./Oct. 2016.

 [7] C. G. Cassandras, Discrete Event Systems,
Modeling and Performance Analysis. Irwin,
1993.

 [8] A. Cataldo, E. Lee, X. Liu, E. Matsikoudis,
and H. Zheng, “Discrete-event systems:
Generalizing metric spaces and fixed point
semenatics,” Dept. EECS, Univ. California,
Berkeley, CA, USA, Tech. Rep. UCB/ERL
M05/12, Apr. 2005.

 [9] J. C. Corbett et al., “Spanner: Google’s
globally distributed database,” ACM Trans.
Comput. Syst., vol. 31, no. 8, 2013, Art. no. 8.

 [10] A. Davare, “A next-generation design
framework for platform-based design,” in
Proc. Design Verification Conf. (DVCon), 2007,
pp. 239–245.

 [11] J. Dean and S. Ghemawat, “MapReduce:
Simplified data processing on large clusters,”
in Proc. 6th Symp. Oper. Syst. Design
Implement. (OSDI), 2004, pp. 137–150.

 [12] P. Deutsch. Comp.Lang.Visual FAQ. Accessed:
Jun. 27, 2017. [Online]. Available: ftp://rtfm.
mit.edu/pub/usenet/news.answers/visual-
lang/faq

 [13] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia,
and J. Zou, “Distributed real-time software
for cyber–physical systems,” Proc. IEEE,
vol. 100, no. 1, pp. 45–59, Jan. 2012.

 [14] J. Eker et al., “Taming heterogeneity—The
Ptolemy approach,” Proc. IEEE, vol. 91, no. 1,
pp. 127–144, Jan. 2003.

 [15] G. S. Fishman, Discrete-Event Simulation:
Modeling, Programming, and Analysis. New
York, NY, USA: Springer-Verlag, 2001.

 [16] B. Ghena, W. Beyer, A. Hillaker, J. Pevarnek,
and J. A. Halderman, “Green lights forever:
Analyzing the security of traffic
infrastructure,” in Proc. 8th USENIX
Workshop Offensive Technol. (WOOT),
San Diego, CA, USA, Aug. 2014.

 [17] C. Hewitt, “Viewing control structures as
patterns of passing messages,” Artif. Intell.,
vol. 8, no. 3, pp. 323–363, 1977.

 [18] C. Jerad and E. A. Lee, “A JavaScript
extension providing deterministic temporal
semantics for the Internet of Things,” Dept.
EECS, Univ. California, Berkeley, Berkeley,
CA, USA, Tech. Rep. UCB/EECS-2017-136,
Aug. 2017. [Online]. Available: http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2017/
EECS-2017-136.html

 [19] H. Kim and E. A. Lee, “Authentication and
authorization for the Internet of Things,”
IT Professional, vol. 19, no. 5, pp. 27–33,
Sep. 2017.

 [20] H. Kim, E. A. Lee, E. Kang, and D. Broman,
“A toolkit for construction of authorization
service infrastructure for the Internet of
Things,” in Proc. Int. Conf. Internet-Things
Design Implement. (IoTDI), Apr. 2017,
pp. 147–158.

 [21] H. Kim, A. Wasicek, B. Mehne, and
E. A. Lee, “A secure network architecture for

the Internet of Things based on local
authorization entities,” in Proc. 4th IEEE Int.
Conf. Future Internet Things Cloud, Vienna,
Austria, Aug. 2016, pp. 114–122.

 [22] P. Kocher et al. (Jan. 2018). “Spectre attacks:
Exploiting speculative execution.” [Online].
Available: https://arxiv.org/abs/1801.01203

 [23] J. Lanier, Who Owns the Future?. New York,
NY, USA: Simon & Schuster, 2013.

 [24] E. Latronico, E. A. Lee, M. Lohstroh,
C. Shaver, A. Wasicek, and M. Weber,
“A vision of swarmlets,” IEEE Internet
Comput., vol. 19, no. 2, pp. 20–28,
Mar. 2015.

 [25] E. A. Lee, “Modeling concurrent real-time
processes using discrete events,” Ann. Softw.
Eng., vol. 7, nos. 1–4, pp. 25–45, 1999.

 [26] E. A. Lee, “The problem with threads,”
Computer, vol. 39, no. 5, pp. 33–42,
May 2006.

 [27] E. A. Lee and S. A. Seshia, Introduction to
Embedded Systems—A Cyber–Physical Systems
Approach, 2nd ed. Cambridge, MA, USA:
MIT Press, 2017. [Online]. Available:
http://LeeSeshia.org

 [28] P. Levis et al., “The emergence of networking
abstractions and techniques in TinyOS,” in
Proc. 1st USENIX/ACM Symp. Netw. Syst.
Design Implement. (NSDI), 2004, p. 1.

 [29] M. Lipp et al. (Jan. 2018). “Meltdown.”
[Online]. Available: https://arxiv.org/
abs/1801.01207

 [30] M. Lohstroh and E. A. Lee, “An interface
theory for the Internet of Things,” in Proc.
Int. Conf. Softw. Eng. Formal Methods (SEFM),
vol. 9276. 2015, pp. 20–34.

 [31] E. Matsikoudis, C. Stergiou, and E. A. Lee,
“On the schedulability of real-time discrete-
event systems,” in Proc. Int. Conf. Embedded
Softw. (EMSOFT), 2013, Art. no. 12.

 [32] N. Mavrogiannopoulos, N. Kisserli, and
B. Preneel, “A taxonomy of self-modifying
code for obfuscation,” Comput. Secur., vol. 30,
no. 8, pp. 679–691, 2011. [Online].
Available: http://www.sciencedirect.com/
science/article/pii/S0167404811001076

Brooks et al . : A Component Architecture for the Internet of Things

 Vol. 106, No. 9, September 2018 | Proceedings of the IEEE 1541

 [33] F. McKeen et al., “Intel software
guard extensions (Intel SGX) support for
dynamic memory management inside
an enclave,” in Proc. Hardw. Archit.
Support Secur. Privacy (HASP), 2016,
pp. 10:1–10:9.

 [34] E. Meijer, “Your mouse is a database,” ACM
Queue, vol. 10, no. 3, p. 20, 2012.

 [35] R. Milner, “A theory of type polymorphism
in programming,” J. Comput. Syst. Sci., vol. 17,
no. 3, pp. 348–375, 1978.

 [36] B. A. Myers and J. Stylos, “Improving API
usability,” Commun. ACM, vol. 59, no. 6,
pp. 62–69, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2896587

 [37] C. Neuman, T. Yu, S. Hartman, and
K. Raeburn, The Kerberos Network
Authentication Service (V5), document RFC
4120, IETF, Jul. 2005.

 [38] G. Papadopoulos and F. Arbab,
“Coordination models and languages,”
Adv. Comput., vol. 46, pp. 329–400, 1998.

 [39] P. Persson and O. Angelsmark, “Calvin—
Merging cloud and IoT,” in Proc. 6th Int. Conf.
Ambient Syst., Netw. Technol. (ANT), 2015.

 [40] C. Ptolemaeus, System Design, Modeling, and
Simulation using Ptolemy II. Berkeley, CA,
USA: Ptolemy.org, 2012. [Online]. Available:
http://ptolemy.org/books

 [41] A. Sangiovanni-Vincentelli, “Quo vadis,
SLD? Reasoning about the trends and
challenges of system level design,” Proc.
IEEE, vol. 95, no. 3, pp. 467–506, Mar. 2007.

 [42] S. Taheri, A. V. Veidenbaum, A. Nicolau, and
M. R. Haghighat, “OpenCV.js: Computer vision
processing for the Web,” Univ. California,
Irvine, CA, USA, Tech. Rep. CECS TR 17-02,
Jun. 2017. [Online]. Available: http://cecs.uci.
edu/files/2017/07/CECS-TR-17-02.pdf

 [43] T. von Eicken, D. E. Culler, S. C. Goldstein,
and K. E. Schauser, “Active messages:
A mechanism for integrated communication
and computation,” in Proc. 19th Int. Symp.
Comput. Archit., 1992, pp. 256–266.

 [44] P. Wegner, Coordination as Constrained
Interaction (Extended Abstract). Berlin,
Germany: Springer-Verlag, 1996, pp. 28–33.
[Online]. Available: http://dx.doi.
org/10.1007/3-540-61052-9_37

 [45] P. Wegner, “Why interaction is more
powerful than algorithms,” Commun. ACM,
vol. 40, no. 5, pp. 80–91, 1997.

 [46] T. Zachariah, J. Adkins, and P. Dutta,
“Demo: Browsing the Web of Things
with Summon,” in Proc. 13th ACM
Conf. Embedded Netw. Sensor Syst.
(SenSys), 2015, pp. 481–482. [Online].
Available: http://doi.acm.
org/10.1145/2809695.2817864

 [47] B. Zeigler, Theory of Modeling and Simulation.
New York, NY, USA: Wiley, 1976.

 [48] Y. Zhao, E. A. Lee, and J. Liu, “A
programming model for time-synchronized
distributed real-time systems,” in Proc. Real-
Time Embedded Technol. Appl. Symp. (RTAS),
2007, pp. 259–268.

ABOUT THE AUTHORS

Christopher Brooks was born in Syracuse, NY,

USA, on May 20, 1963. He received the Project

Management Professional (PMP) certification in

2009.

From 1990 to 1991, he worked at Franz. Inc.,

Berkeley, CA, USA, performing software quality

assurance and systems administration. Since

1991, he has worked at the Electrical Engineering

and Computer Science Department, University of

California Berkeley, Berkeley, CA, USA, as a systems administrator, soft-

ware engineer, and project manager for a number of projects, including

the Ptolemy project.

Chadlia Jerad was born in Tunis, Tunisia, on

June 11, 1979. She received the Dipl.Ing. in elec-

trical engineering from the Ecole Nationale

d'IngeÂnieurs de Tunis (ENIT), Tunis, Tunisia, in

2002 and the Ph.D. degree in electrical engineer-

ing from the University of Tunis El Manar, Tunis,

Tunisia, in 2008.

Since 2009, she joined ENSI at the University

of Manouba, Tunisia as an Associate Professor.

From 2014 to 2016, she served as a coordinator of the embedded systems

and software specialization. She was the Tunisian partner of several DAAD

funded projects with TU Dresden and HS-Offenburg. From September

2016 until August 2017, she visited the research group of Prof. E. A. Lee at

the University of California Berkeley, Berkeley, CA, USA, as a Fulbright Vis-

iting Scholar. Her research interests include embedded systems, Internet

of Things, and rewriting logic.

Hokeun Kim received the B.S. and M.S. degrees

in computer science and engineering from Seoul

National University, Seoul, South Korea, in 2010

and 2012, respectively, and the Ph.D. degree in

electrical engineering and computer sciences

from the University of California Berkeley, Berke-

ley, CA, USA, in 2017.

After completing his Ph.D. degree, he joined

LinkedIn, Sunnyvale, CA, USA, and started work-

ing on big data analysis for cyber attack detection and development of

a large-scale security infrastructure. Before joining LinkedIn, he was a

researcher in the Ptolemy project at the University of California Berkeley

from 2012 to 2017. His research interests include security and safety of the

Internet of Things (IoT), computer architecture for real-time embedded

systems, and modeling and simulation of cyber�physical systems. Between

2015 and 2016, he was a Research Associate at HP Labs, Palo Alto, CA, USA.

Dr. Kim received the ACM/IEEE International Conference on Internet-

of-Things Design and Implementation Best Paper Award and the IEEE

Micro Top Picks Honorable Mention in 2017.

Edward A. Lee (Fellow, IEEE) received the B.S.

degree with a double major in computer sci-

ence and engineering and applied science from

Yale University, New Haven, CT, USA, in 1979, the

S.M. degree in electrical engineering and com-

puter science from the Massachusetts Institute

of Technology (MIT), Cambridge, MA, USA, in

1981, and the Ph.D. degree in electrical engineer-

ing and computer science from the University of

California Berkeley, Berkeley, CA, USA, in 1986.

From 1979 to 1982, he was a member of technical staff at Bell Labs,

Holmdel, NJ, USA, in the Advanced Data Communications Laboratory. He

is a cofounder of BDTI, Inc., where he is currently a Senior Technical Advi-

sor, and has consulted for a number of other companies. He is a Professor

in the Graduate School and the Robert S. Pepper Distinguished Professor

Emeritus in Electrical Engineering and Computer Sciences (EECS) at the

University of California Berkeley, where he has been on the faculty since

1986. He is the Director of iCyPhy, the Berkeley Industrial Cyber�Physical

Systems Research Center and of the Berkeley Ptolemy project. From

2005 to 2008, he served as Chair of the EE Division and then Chair of the

EECS Department at the University of California Berkeley. He has led the

development of several influential open-source software packages, nota-

bly Ptolemy and its various spinoffs. He is the author of Plato and the
Nerd�The Creative Partnership of Humans and Technology (Cambridge,

MA, USA: MIT Press, 2017), a number of textbooks and research mono-

graphs, and more than 300 papers and technical reports. He has deliv-

ered more than 170 keynote and other invited talks at venues worldwide

and has graduated at least 35 Ph.D. students. His research group studies

cyber�physical systems, which integrate physical dynamics with software

and networks. His focus is on the use of deterministic models as a central

part of the engineering toolkit for such systems.

Dr. Lee was a National Science Foundation (NSF) Presidential Young

Investigator, won the 1997 Frederick Emmons Terman Award for Engi-

neering Education, received the 2016 Outstanding Technical Achievement

and Leadership Award from the IEEE Technical Committee on Real-Time

Systems (TCRTS), and received the 2018 Berkeley Citation.

Brooks et al . : A Component Architecture for the Internet of Things

1542 Proceedings of the IEEE | Vol. 106, No. 9, September 2018

Marten Lohstroh received the B.S. degree in

computer science and the M.S. degree in grid

computing from the University of Amsterdam,

Amsterdam, The Netherlands. He is currently

working toward the Ph.D. degree in computer

science at the University of California Berkeley,

Berkeley, CA, USA, advised by Prof. E. A. Lee. He

studies models of computation, programming

languages, and systems design.

From 2012 to 2014, he was an Associate Specialist at the University of

California Berkeley, mostly dedicated to the development of Ptolemy II,

an open-source software framework that supports experimentation with

actor-oriented design.

Victor Nouvellet finished preparatory classes

in mechanical and industrial engineering at

EÂcole catholique d'arts et meÂtiers (ECAM) Lyon's

Higher School, Lyon, France and received the

M.S. degree in computer science from the Institut

National des Sciences AppliqueÂes de Lyon (INSA

Lyon), Lyon, France, in 2017.

He joined the Ptolemy project at the Univer-

sity of California Berkeley, Berkeley, CA, USA, for

the first semester of 2017 as a Visiting Student Researcher supervised by

Prof. E. A. Lee. His research interest was focused on embedded systems,

iOS, and device discovery. He is currently working as an iOS Developer at

SOUNDS, Paris, France.

Beth Osyk received the B.S. degree in computer

engineering from Case Western Reserve Univer-

sity, Cleveland, OH, USA and the M.S. and Ph.D.

degrees in electrical and computer engineering

from Carnegie Mellon University, Pittsburgh, PA,

USA, focusing on a methodology for assessing

the reliability of safety-critical in-vehicle net-

works.

She is an Engineer at Edge Case Research,

LLC, Pittsburgh, PA, USA, specializing in safety assessment for embedded

systems. She was previously a University of California Berkeley, Berkeley,

CA, USA, research staff member helping to build and test a disciplined,

multihost IoT development and execution environment as part of the Ter-

raSwarm center. Prior to that she was a Senior Engineer at Robert Bosch

LLC, working mainly on analysis of automotive engine controllers.

Matt Weber received the B.S. degree in com-

puter engineering from the University of Virginia,

Charlottesville, VA, USA. Currently, he is working

toward the Ph.D. degree studying design, mod-

eling and analysis at the University of California

Berkeley, Berkeley, CA, USA, where he is advised

by Prof. E. A. Lee.

His research interests include embedded

and cyber�physical systems, localization, and

ubiquitous computing.

