
Virtual Battery: An Energy Reserve Abstraction for Embedded Sensor Networks

Qing Cao, Debessay Fesehaye, Nam Pham, Yusuf Sarwar, and Tarek Abdelzaher
Department of Computer Science

University of Illinois at Urbana-Champaign
{qcao2, dkassa2, nampham2, mduddin2, zaher}@uiuc.edu

Abstract

This paper introduces the abstraction of energy reserves
for sensor networks that virtualizes energy sources. It gives
each of several applications sharing a platform the illusion
of having its own private energy source. Energy virtualiza-
tion is the next logical step in embedded systems after virtu-
alizing communication links and CPU capacity. Energy vir-
tualization has not been addressed in past sensor network
literature because most current wireless sensor networks
feature single-user applications. To amortize deployment
costs, future sensor networks, deployed in remote or hard-
to-access areas, will likely be leveraged by scientists from
different disciplines, each having their independent appli-
cation for their individual research purposes. Platforms,
planned for such deployment, will be fitted with the union of
sensors needed, but independent applications will share the
remaining resources such as in-field storage and communi-
cation bandwidth, calling for quotas and isolation mecha-
nisms. The most expensive resource shared in sensor net-
works is energy. This paper provides an energy isolation
mechanism, called the virtual battery, that logically divides
energy among applications to provide each its private en-
ergy reserve. An application can manage its private energy
independently as if it were running alone on the platform.
The application is terminated when its reserve is depleted.
We implement and evaluate this abstraction on MicaZ motes
running LiteOS. Our results show that the virtual battery
mechanism succeeds at exporting the private reserve ab-
straction accurately and at a low overhead.

1 Introduction

Energy is generally recognized as a key bottleneck for
embedded sensor nodes. This bottleneck is exacerbated by
the disparity between the rapidly growing processing speed
and the slowly improving battery capacity of computing
systems. Energy virtualization is therefore of increasing im-
portance to partition the bottleneck resources appropriately,
when multiple independent applications share a single plat-
form.

Prior research that addressed the energy bottleneck fo-
cused on energy conservation approaches in wireless sensor
networks that minimize energy consumption. This prob-
lem formulation inherently assumed cooperative applica-
tions, motivating a global optimization approach.

In contrast, in this paper, we consider sensor networks
that serve as common platforms for scientific research,
where the concern is with implementing isolation as op-
posed to cooperative sharing. The immediate motivation of
our work comes from an outdoors sensor network testbed,
currently being deployed at the University of Illinois as a
general platform for research in environmental science. The
network will serve as a common resource for multiple re-
search teams to use subsets of available sensors for their
individual research purposes. It will provide the necessary
infrastructure including batteries, solar energy, Internet ac-
cess, in-field processing capacity, and in-field storage. This
“public” usage model is likely to proliferate, motivated by
scenarios where the infrastructure cost needs to be amor-
tized. For example, a sensor network for monitoring polar
ice caps might be used by independent research teams to
address different scientific observation-based questions en-
abled by the available access and sensing modalities. For
another example, a network deployed in a tropical rainfor-
est might be shared by projects that study changes in species
populations using acoustic traces and ones that monitor cli-
mate change effects using environmental sensors. Not un-
like high-power telescopes and other unique scientific in-
strumentation, sensor networks deployed in remote areas
may be “rented” by different research teams to accomplish
their tasks. A more cost-efficient usage is achieved when
more than one team can leverage the network at a time,
deploying their own application-specific in-situ data filter-
ing and (pre)processing code as opposed to shipping all raw
data to base by default.

When multiple applications are deployed concurrently,
they should be properly isolated from each other, so that
the execution of one does not affect resources “rented” to
another. Resource virtualization and performance isolation
become key concerns. Most prior work on virtualization ad-

1

2008 Real-Time Systems Symposium

1052-8725/08 $25.00 © 2008 IEEE

DOI 10.1109/RTSS.2008.41

123

2008 Real-Time Systems Symposium

1052-8725/08 $25.00 © 2008 IEEE

DOI 10.1109/RTSS.2008.41

123

dressed partitioning of communication resources (e.g., us-
ing weighted fair queueing or TDMA [19, 21]) and parti-
tioning of CPU resources (e.g., using processor capacity re-
serves [4, 15, 17]). In contrast, motivated by the energy-
constrained nature of sensor networks, we focus on virtu-
alization and partitioning of battery capacity. The new ab-
straction is thus different from previous energy management
research in the same sense that CPU capacity reserves offer
a view different from priority scheduling.

The abstraction of energy reserves gives each applica-
tion the illusion of having its own private energy as if it
were executing alone on the platform. The application is al-
lowed to manage its energy at will, after it is allocated with
a share of the physical battery based on factors such as how
much the application developers are willing to pay or the
priority of the deployed tasks. For example, the application
may turn off the radio or duty-cycle the CPU to conserve
its energy. Since, in fact, the application is not alone, such
resource management operations are also virtualized. The
energy virtualization engine manages the physical resources
accessed by multiple applications, giving each application
the illusion that their resource management calls succeeded
and hence charging their reserves only for those (virtual)
resources that consume energy at the time. We show that
this illusion is implementable even on resource-constrained
sensor nodes and, in fact, results in energy savings in that
true energy expended is generally less than the sum total
charged to applications per the above abstraction. For ex-
ample, when two applications keep their CPU idling when
not in use, both reserves are liable to be charged for the
idle energy (which they would have consumed if they were
alone), yet this energy is physically expended only once.

Our paper makes the following main contributions. First,
it provides the first abstraction designed exclusively to sup-
port energy isolation and related resource virtualization in
wireless sensor networks. Our implementation is efficient,
based on modifying low level operating system code, and
hence introduces limited overhead.

Second, we demonstrate by an actual implementation
that the virtual battery abstraction is feasible even on ex-
tremely resource-constrained platforms, such as MicaZ
nodes with only 4K bytes of RAM. Energy reserves will be
released as a standard feature in a future version of LiteOS.
Having said so, we do not intend this abstraction to be plat-
form or operating system dependent. Instead, due its low
overhead, we believe that it can be easily integrated into
other representative platforms and operating systems.

Third, we perform a systematic evaluation of our im-
plementation, demonstrating that it is sufficient to provide
the isolation needed to support sensor networks as com-
mon research platforms shared by multiple groups of users.
Allowing different types of applications to run concur-
rently without energy interference is a crucial step towards

the widespread commercialization and adoption of wireless
sensor network systems.

Finally, a note is due on what our abstraction is not. Our
goal is to virtualize energy. Any pitfalls or energy drains
that tax an application’s battery when running (physically)
alone are allowed to tax it when running on a private virtual
battery. For example, energy drained due to overhearing of
extraneous traffic, when the application keeps its radio on,
will also be drained from an application’s reserve, unless
the application turns off its (virtualized) radio. Hence, the
semantics of running on a virtual battery are the same as
those of running on a real one; no better and no worse.

The rest of this paper is organized as follows. Section 2
describes the related work. Section 3 describes the design
choices of virtual battery. Section 4 describes the imple-
mentation details of virtual battery on the LiteOS operating
system. Section 5 provides evaluation results. Section 6
concludes this paper.

2 Related Work
In the realm of wireless sensor networks, energy conser-

vation has been the focus of a lot of contemporary research
work. Motivated by the disparity between CPU capacity
and battery lifetime, research on minimizing energy con-
sumption has proposed techniques including putting nodes
or radio into sleep mode, also known as duty scheduling [5,
23, 25], low-power communication protocols [18, 20], and
system level support [11, 13]. These solutions have gen-
erally assumed cooperative, single-user applications for the
proposed energy conservation optimizations.

This paper considers the type of sensor networks that
serves as a common platform for scientific research, where
implementing isolation between applications is crucial for
multiple users. This application model is different from pre-
vious scientific deployments, such as the Great Duck Island
deployment [7], the volcano monitoring project [24], and
the redwood tree deployment [22]. These deployments fea-
ture single purpose applications based on the TinyOS oper-
ation system [14], where energy isolation for multiple ap-
plications is not considered because only one thread is sup-
ported.

Similar to our approach is the CPU reserve abstrac-
tion [4, 15, 17] and communication link sharing and
scheduling [12, 19, 21]. The CPU reserve abstraction pro-
vides predictability for applications by isolating them from
each other in timing, similar to the way a memory protection
mechanism isolates their memory accesses. Based on the
reserve abstraction, one task can reserve a portion of CPU
capacity, and is guaranteed its availability if such a request
succeeds. Communication link sharing, on the other hand,
studies the resource scheduling problem for communica-
tion links, aiming to provide applications certain quality-
of-service (QoS) guarantees, such as guaranteeing reserved
communication bandwidth.

2
124124

3 Design
Core to the energy reserve abstraction is an interface

called battery capacity reserve. This interface allows ap-
plications to reserve a portion of the battery. If reserved
successfully, this energy portion can be managed by the ap-
plication at will. The application terminates once its energy
reserve is depleted. The design details of this interface are
described in the following sections.

3.1 Design Requirements
To support a pure virtual battery interface, the design

should allow an application to specify only how much en-
ergy it reserves in total. This energy reserve becomes its
virtual battery. No other limitations or parameters are im-
posed. However, to aide the application with energy man-
agement, our energy reserve abstraction exports a few more
parameters that are useful for energy-constrained systems,
but are not typically implemented in regular physical batter-
ies.

First, physical batteries (to a first degree of approxima-
tion) make all their stored energy available for use at one
time. This is analogous to receiving one lump payment into
a bank account. The user is free to spend as much or as
little of it as they wish. In practice, some may prefer an
annuity over the lump sum payment. Hence, a virtual bat-
tery could help the application “pace itself” by making its
allotted energy available in smaller installments over time
(into a logical energy account). The unspent account bal-
ance will accumulate if not used. Hence, an application may
define a desired lifetime and a payment interval. The total
energy due over the lifetime is then divided by the number
of payments and deposited into the application’s reserve at
the period indicated. Note that, the above does not mean
that the application must spend equal amounts of energy
over time. The application may choose to save its energy
for some time, then spend the savings at a faster rate.

Continuing with the financial analogy, another related is-
sue is account overdraft. What happens if the application
spends more energy than is currently available in their ac-
count? Some applications may prefer overdraft protection
(i.e., no overdraft). Others may prefer a credit line that al-
lows them to borrow from future payments. Hence, our vir-
tual battery abstraction allows a configurable credit line to
be established. An application may spend its energy until
the balance of their account becomes negative by an amount
equal to the credit line.

Finally, an application may have some idea about their
peak energy consumption. If peak consumption is ex-
ceeded, it would be useful to have a protection mechanism
that enforces the maximum burn rate and alerts the appli-
cation. The virtual battery provides a mechanism for such
enforcement.

The design also calls for systematic support for virtual-
izing activities that involve energy management, to provide

the illusion that each task is executed exactly the same as
if it were alone. We call this illusion, energy isolation. For
example, if tasks manage their energy by turning off the
radio or duty-cycling the CPU, such activities should still
succeed. Since the task is, in fact, not alone, a virtualization
engine should manage the physical resources accessed by
multiple applications, and virtualize them to support con-
current, potentially conflicting, requests. The energy iso-
lation abstraction is defined has the following two require-
ments:

• Portability: First, an application that performs en-
ergy management (when running alone on a real bat-
tery) should not have to change its code when ported
over to run on a shared platform with virtual batter-
ies. Hence, calls such as those that put the processor
to sleep must not have to change when running on the
shared platform (although their behavior may need to
change since, on a shared platform, other applications
also need the resource).

• Energy compatibility: Second, the virtualized energy
management calls on the shared platform must result
in at most the same energy consumption that the appli-
cation would have incurred if it were executing them
on a dedicated platform alone. This ensures that virtu-
alization does not degrade energy savings.

Below, we describe virtual batteries in more detail and
present mechanisms that maintain energy reserves and en-
force energy isolation.
3.2 The Energy Reserve Abstraction

To address the above design requirements, the energy re-
serve interface comprises of a five-component tuple. For a
task Ti, its tuple is denoted by (Wi, Ni, Li, Ci, Bi), where:

• Wi is the percentage of total (physical) battery energy
reserved by this task.

• Ni is the number of energy installments (annuity pay-
ments) requested.

• Li is the expected task lifetime.

• Ci is the credit line rate, which defines the maximum
amount of energy the task can borrow from future in-
stallments, as a fraction of the total amount of remain-
ing installments due.

• Bi is the maximum energy burn rate.

Given a total physical battery capacity, E, application i
is thus allotted a total amount of energy WiE (allocated in
lump sum or in regular annuity installments). The expected
lifetime Li divided by the number of installments requested,
Ni, gives the period of installment payments, which we call

3
125125

epoches, Pi = Li/Ni. The first installment occurs at sys-
tem start time. If Ni = 1, a lump sum allocation is re-
quested.

When Ni > 1, the credit line, Ci, decides the maximum
amount of energy a task can overdraft its account by. Note
that, unlike the case with banking transactions, a task cannot
return energy to the battery. Hence, it can only borrow from
its own future energy installments. The parameter Ci is
therefore defined as the fraction of remaining energy due to
that task that the task can overdraft its account by. If the task
received ni payments out of Ni, its remaining payments add
up to WiE(1 − ni/Ni) and the maximum allowable nega-
tive balance of its account becomes CiWiE(1 − ni/Ni).
If the balance drops below that point, the task will be sus-
pended. If Ci is 0, no negative balance is allowed. If Ci is
1, all remaining energy can be used at any time. The over-
draft is evaluated at epoch boundaries. A task suspended in
one epoch might become eligible to resume when the next
energy installment arrives at the next epoch.

The last parameter of the tuple, Bi, is the maximum burn
rate, which limits the maximum rate at which a task can
consume energy. For an epoch of length Pi, it translates into
a maximum amount of energy, equal to BiPi, that the task
can spend. Once that amount is reached within an epoch,
the task is suspended until the end of the epoch, and a flag
is set to indicate that the maximum burn rate was exceeded.
The task may inspect this flag when it is allowed to resume.

Our energy management software maintains the energy
balances for all tasks. For each task, Ti, an energy account
balance, Energyi, is maintained, and the number of install-
ments, ni, that the task already received is counted. The
maximum allowable overdraft, Maxoveri, is also main-
tained for each task. At the beginning of an epoch for task
Ti, these variables are updated as follows. Here, ni is al-
ways limited by Ni:

ni ← ni + 1; (1)

Energyi ← Energyi + Wi ∗ E/Ni (2)

Maxoveri = CiWiE(1 − ni/Ni) (3)

Let δi be a running counter of the amount of energy task
Ti spends in its current epoch. A task is suspended if:

δi ≥ BiPi, or (4)

Energyi − δi ≤ −Maxoveri (5)

The virtual battery abstraction supports flexible energy
management policies chosen by applications. Figure 1
shows several examples. In this figure, task A chooses
lump sum energy allocation. Therefore, this task receives
all its reserved energy at the beginning of its lifetime (and,
in this example, quickly consumes it). Tasks B, C, and

D all choose multiple installments. Additionally, task B re-
quests a non-zero credit line, while task C sets its credit rate
to 0. Task B always uses the maximum amount of credit,
while in contrast, task C spends energy more evenly. Fi-
nally, task D accumulates its received energy for the first
several epoches, and later consumes it in a relatively short
period of time. The figure is strictly for conceptual illustra-
tion, while measurement based data are shown in Section 5.

E
ne

rg
y

C
on

su
m

pt
io

n

(0,0) Epoch for B, C, and D

 (using maximum
 available credit)

(receives all energy
at the beginning)

Task A

Task B

Task D
(accumulating

reserved energy)

Time

Task C
(credit rate = 0)

Credit line Replenishment line

Li
fe

tim
e

Total Reserved
Energy

Figure 1. Examples of Energy Tuple Settings

3.3 Addressing Design Requirements
To support energy reserves, our design consists of two

subsystems: (i) the energy reserve manager for performing
accounting and enforcement per the energy reserve abstrac-
tion described above, and (ii) the virtualization engine for
enforcing energy isolation. Their relationship is illustrated
in Figure 2.

Task Energy Reserve
Manager

Virtualized Hardware
Environment Virtualization

 Engine

Accounting and
Enforcement

Figure 2. Design Architecture for Supporting
Energy Reserve Abstraction

The energy reserve manager enforces the battery capac-
ity reserve interface by accounting, replenishing, and if
needed, suspending application tasks. Based on modifica-
tions to critical points in the task execution, such as con-
text switches and device driver invocations, the manager
enforces that tasks do not consume more energy than re-
served. The manager associates energy reserves with logi-
cal tasks instead of threads, even though in most operating
systems, threads are the basic units of scheduling. Here, a
logical task (henceforth, simply a “task”) refers to the tra-
ditional notion of operating system processes. Associating

4
126126

reserves with tasks instead of threads has two advantages.
First, a task may consist of multiple threads that collec-
tively serve one application purpose. Therefore, tasks are
more meaningful units to be associated with energy quotas.
Second, sometimes one thread is executed on behalf of dif-
ferent tasks. For example, a routing protocol thread may
be used by multiple applications to deliver packets at differ-
ent times. Binding such threads with its own energy quota,
therefore, is meaningless.

The second subsystem, the virtualization engine, pro-
vides a virtualized hardware environment to applications.
It converts original device driver operations, such as duty-
cycling CPU or turning off the radio, into functions that may
or may not change the state of the physical hardware. For
example, one task should not turn off the radio as long as
the radio is still being used by another task.

Conceptually, virtualization occurs as follows. Consider
a device, such as the CPU or the radio, that has multiple en-
ergy modes (e.g., on and off). Calls that control the energy
mode of such a device are re-implemented by the virtualiza-
tion engine. A default mode is adopted for each device. If
the application has not made an explicit call to set the mode,
it is said to have requested the default mode. When applica-
tions request conflicting modes for a device (e.g., one appli-
cation keeps the radio on by default, while another requests
to turn it off), the mode with the largest energy consumption
is adopted and the application that requested it is charged.
An implicit assumption we make is that performance im-
proves with energy consumption. Hence, the mode with the
largest energy consumption gives the best performance of
all those actually requested. In other words, it errs on the
safe side performance-wise. The same principle also ap-
plies for devices with more than two power modes.

For example, in an implementation that supports only
two energy modes, i.e., if a device is either on or off, the de-
vice is physically turned off only when everyone requested
that it be turned off. Otherwise, it is kept on and those ap-
plications that requested it to be on share the cost. If an ap-
plication turns the device off, it is not allowed to use this de-
vice regardless of whether the device has in fact been turned
off. This preserves the semantics of device calls causing
application behavior to be similar to that when running on
a dedicated platform. Hence, in our implementation, we
also virtualize device calls so that these device calls will fail
when the device is logically off when in fact it is physically
on.

One key observation on our virtualization scheme is that
it satisfies the two requirements of energy isolation de-
scribed in Section 3.1. First, by construction of the API,
our virtualization engine satisfies portability. In its imple-
mentation based on LiteOS, applications can run either on
a dedicated (single user) version of LiteOS or on a shared
(multi-user) version. The energy mode management calls

in both are the same, hence, user applications don’t need to
be modified. But the calls in the multi-user version do not
actually set the requested modes. Rather, they behave as
discussed above.

Second, energy compatibility is achieved because when
multiple applications request conflicting energy modes, one
of the conflicting requests is always granted and the applica-
tion is charged for that mode. Since the energy of that mode
is, in fact, incurred only once, the other applications need
not be charged at all. Hence, from any one application’s
perspective, it is either charged correctly or not charged at
all. Therefore, the energy consumption from its reserve is
no more than if it has in fact been running alone.

Observe that it is not the intent of energy isolation to vir-
tualize the resources completely. For example, we do not
address the fact that when more tasks share the same re-
source, such as the CPU, the performance degrades. This is-
sue has been addressed in previous publications on resource
virtualization and is not the concern of this paper [4, 15, 17].
Another example is the situation when two tasks, for exam-
ple, try to configure the radio to operate on two different
frequencies. These calls are not allowed on our multi-user
platform as they interfere with application performance. For
example, if one application sets the radio to a new channel,
another might not be able to receive messages. Direct calls
to set radio frequency are thus not allowed. Virtualizing
these calls is not the concern of energy isolation.

Finally, we do not address issues of malicious applica-
tions in this paper. After all, the applications can still di-
rectly access hardware using low-level APIs and by-pass
our abstractions. When different parties submit source code
to execute on the shared platform, a central compile-time
check can be performed to ascertain that the new applica-
tion is not malicious (i.e., meets certain safety properties).
If the compiler cannot determine with certainty that the code
meets such properties (i.e., is not accessing restricted inter-
faces), it is returned for possible non-compliance. Verifi-
cation of safety properties [1] has been an active area of
research and, as such, is not the focus of this paper.

4 Implementation

We have implemented the virtual battery system on
LiteOS [6], a thread-based operating system that pro-
vides Unix-like abstractions for operating and programming
resource-constrained sensor nodes. It supports multiple ap-
plications to be concurrently executed as threads, which are
bridged with the kernel through a suite of system calls.

Our implementation consists of two parts, the energy re-
serve manager, and the virtualization engine. For the for-
mer, we describe how we implement accounting and energy
reserves. For the latter, we describe its virtualization of de-
vice driver operations.

5
127127

4.1 Implementing the Energy Reserve
Manager

4.1.1 Energy Control Blocks

The key data structure we implement to support energy
reserves is energy control blocks (ECBs), illustrated in
Figure 3. Associated to application tasks, ECBs encom-
pass all energy consumed by their activities. Such activ-
ities may involve reading sensors, data processing, writ-
ing to files, etc. In addition to the five component tuple
(Wi, Ni, Li, Ci, Bi), ECBs also keep up-to-date informa-
tion on the energy consumption of tasks, such as remaining
energy and the elapsed time, as part of the current state of
tasks. Observe that one ECB block may be associated with
multiple threads through runtime bindings, allowing us to
control their aggregate energy consumption.

Task identifier

Control tuple
(Wi, Pi, Li, Ci, Bi)

Current state

Data Structures of Energy
Control Blocks (ECB)

Thread
bindings

Figure 3. ECB Block Structure

4.1.2 The LiteOS Execution Model

The way that the energy reserve manager accounts for en-
ergy consumption of tasks is closely related to the execution
model of LiteOS, as shown in Figure 4. In this model, the
kernel is a priority based scheduler that loops over a queue
of posted LiteOS jobs. When no new job is available, the
kernel is put into sleep mode. Otherwise, it processes exist-
ing jobs following the default scheduling policy.

Interrupt event

Schedule the
next LiteOS job

Sleep

J1 J3 J4 J5 J6

User
Thread

Processing

System calls

Kernel
services

Interrupt
Handler

Context Switch Context Switch

Interrupts

Kernel
processingJ2

Figure 4. LiteOS Execution Model

To execute a thread, a job named threadtask is
posted, which invokes the switch to thread function.

Kernel Task List
Name of the Operation Parameters need for

accounting
Context
switch

Led operations None No
Create a file File Name Yes
Read a file Length of the file Yes
Write a file Length of the file Yes
ADC sensor sampling Sensor types No
Radio send operation Message length Yes
Radio receive operation Message length Yes
Serial port send operation Message length Yes
Serial port receive operation Message length Yes
Read data from EERPOM Length of data No
Write data to EERPOM Length of data No

Table 1. Kernel Services provided through
System Calls

This function saves the current execution context, switches
to the user thread, and yields the CPU. During the execu-
tion of a thread, it may access kernel services, such as de-
vice driver operations, via system calls. Some device driver
operations require the thread to temporarily yield CPU back
to the kernel, so that the kernel can perform actions on be-
half of itself. The following code example shows such an
operation, where a thread reads data from an external file.

1 void mfread(MYFILE *fp, void *buffer, int nBytes)
2 {
3 current thread = getCurrentThread(); /* get thread handle */
4 currentthreadindex = getCurrentThreadIndex();
5 mfile = getFileMutexAddress();
6 Mutex lock(mfile);
7 /* Next set up the control parameters */
8 (*current thread)->filedata.filestate.fileptr = (uint8 t*)fp;
9 (*current thread)->filedata.filestate.bufferptr = (uint8 t*)buffer;
10 (*current thread)->filedata.filestate.bytes = nBytes;
11 readFileSysCall();
12 Barrier block(7, 3); /* wait for the kernel to perform file read */
13 Mutex unlock(mfile); /* the kernel returns CPU to the thread */
14 return;
15 }

As the kernel may perform activities on behalf of appli-
cation threads, accurate accounting of thread energy con-
sumption should extend to the kernel. The file reading op-
eration is not the only one that requires kernel service in
LiteOS. Table 1 shows a list of representative activities per-
formed through system calls, and whether this activity ex-
tends to the kernel through context switches.

4.1.3 Energy Accounting

The reserve manager implements energy accounting in soft-
ware, where it instruments critical functions in the kernel to
gather energy related information. It then converts such in-
formation into energy consumption in joules. Table 2 shows
the different types of energy accounting, the instrumented
functions, the collected information, and the energy conver-
sion details.
Accounting for Consumed CPU Cycles To estimate en-
ergy consumption for CPU cycles, the reserve manager
counts how many CPU cycles are consumed and for what

6
128128

Type of activities Instrumented functions Collected information Energy cost (Measurement details in
Section 5.1)

CPU cycles for application processing Critical kernel functions, e.g. switch to thread(),
yield thread(), thread task()

Number of CPU cycles
through timestamps

3.26µJ per 1000 cycles

Sensor samplings Included in CPU cycle accounting - -
EEPROM operations Included in CPU cycle accounting - -
Serial port operations Included in CPU cycle accounting - -
CPU cycles for kernel processing Critical kernel functions and interrupt handlers Number of CPU cycles

through timestamps
3.26 µJ per 1000 cycles

Energy cost for file operations LiteOS API functions, e.g., mfopen(),mfclose(),
mfread(), mfwrite()

Number of read/write bytes ∼0µJ per byte read, and 11.81µJ
per byte written

Energy cost for radio operations LiteOS API functions, e.g., radioSend(),
radioReceive()

Number of send/receive bytes 1.67µJ per byte sent, and 1.8 µJ per
byte received

Hardware energy cost Provided by the virtualization engine, accounted by asso-
ciating soft state to tasks and timestamping device driver
operations for calculating the energy cost

Device driver invocations Depending on device

Table 2. Energy Accounting Instrumentation for the Kernel on the MicaZ node

purposes, then converts them into energy cost. There are
two generic purposes of consumed CPU cycles: those for
kernel processing of jobs and context switches, and those
for executing threads, where each thread belongs to an ac-
countable entity that is charged for energy consumption.
Depending on type, interrupts also fall into one of these two
purposes. To account for consumed cycles, the manager
instruments the kernel at critical execution points, such as
the start and the end of context switches, and keeps times-
tamps when these points are reached. The intervals between
consecutive critical points are associated with accountable
entities, which are in turn charged by converting CPU cy-
cles into joules. This method of using timestamps has been
proved useful and accurate for energy accounting in the lit-
erature [10].

We first describe how the manager maintains times-
tamps. The default timer provided by LiteOS is 8-bit with
a maximum clock frequency of 32.768KHz, insufficient to
provide the high resolution accounting needed for count-
ing CPU cycles. We implemented a separate high resolu-
tion timer that provides a 48-bit cycle-accurate global timer
through three 16-bit counters. Technically, the microcon-
troller hardware (Atmega128) provides two 16-bit timers
(Timer 1 and Timer 3), but one of them (Timer 1) is already
used by the CC2420 radio of MicaZ. Our implementation
is based on the remaining one, Timer 3. One implement-
ing challenge of this timing service is to accurately read out
counter values, as the Atmega128 controller does not sup-
port atomic reads of 16-bit registers. In fact, every read op-
eration of the counter consumes multiple CPU cycles, dur-
ing which the counter is still counting. Our implementation
therefore consists of a software-based adjustment module
that ensures the accuracy of the timing service.

Note that the estimate on consumed CPU cycles already
takes into account certain device driver invocations that do
not require context switches, including reading ADC sen-
sors, EEPROM operations, and serial port operations. Such
device operations are not addressed separately.

Accounting for Device Driver Operations The second
source of energy consumption is device driver operations
that require context switches, such as sending and receiving
packets through the radio. Such operations consume addi-
tional energy by drawing more energy with the use of exter-
nal circuits, whose cost not only depends on the parameters
of the operations, such as the length of data packets, but
also on device configurations, such as the level of transmit-
ting power for radio activities.

Our key insight to simplify energy accounting for device
driver invocations is that their operations usually consist of
a series of atomic actions, each with constant energy con-
sumption. For example, a file write operation comprises of
a series of identical, byte level serial flash writes. By pre-
measuring the energy consumption of writing one byte, the
reserve manager can estimate accurately the energy cost by
simply counting how many bytes are passed as the parame-
ter.

Following this approach, we instrumented the LiteOS
library APIs for such device driver invocations, as shown
earlier in Table 1, to estimate energy consumption based
on their parameters. Note that such instrumentation should
only modify sufficiently low level APIs that can be de-
composed into actions with constant energy cost. As a
counterexample, the sending function provided by a MAC
layer protocol should not be used because packets may be
sent multiple times by the MAC layer, consuming variable
amount of energy.

Accounting for Hardware Usage The third source of en-
ergy consumption that we account for is energy consumed
by hardware. Such accounting is performed jointly with the
virtualization engine, based on the usage profile of hardware
devices by tasks. For example, if only one task requires the
radio to be turned on, it will be the only task whose reserve
will be charged for energy consumption.

7
129129

4.2 Implementing the Virtualization En-
gine

As the virtual battery abstraction allows tasks to manage
their own energy reserve to conserve energy, another sub-
system we implement is the virtualization engine that pro-
vides an illusion that the energy saving protocols used by
applications continue to be effective. Such protocols have
been extensively studied in sensor networks, but most of
them are based on the assumption that an application is exe-
cuted alone on the platform. For multiple applications shar-
ing the same platform, their energy management protocols
may be in conflict with each other, calling for isolation and
virtualization of their resource management calls.

In our current implementation on LiteOS, we address
two types of energy management calls: duty-cycling the
CPU and duty-cycling the radio. The union of these calls
are sufficient to express most energy conservation protocols
designed for sensor networks.

4.2.1 CPU Duty Scheduling Virtualization

The duty scheduling management provided by LiteOS al-
lows the microcontroller to enter power-save mode for a
flexible period of time. When the watchdog timer is dis-
abled, this mode consumes 8μA of energy, or 0.1% of the
8mA consumed in active mode, revealing a great potential
for energy management protocols to increase system life-
time.

Because duty scheduling calls only assume one of two
states, their virtualization is simple. The virtualization en-
gine instruments the duty scheduling calls from multiple ap-
plications by keeping the device in the mode with the largest
energy consumption, in this case, keeping the device in the
on state as long as at least one task requests so. The device
is turned off when it is no longer requested by any active
task.

Besides virtualizing duty scheduling, the engine also
provides accounting information to the reserve manager,
based on requests made by tasks. If one task has logi-
cally put the CPU into the power-save mode, it is no longer
charged for the CPU energy even if, physically, the CPU is
still active, whose energy cost is charged against only those
tasks that require it to stay active.

4.2.2 Radio Duty-cycling Virtualization

Another primary source of energy consumption is radio op-
erations. The CC2420 radio installed on MicaZ supports
multiple modes of operation with different current draws,
such as voltage-off mode (0.02μA), power-down mode
(20μA), idle mode (426μA), transmit mode (8.5−17.4mA),
and receive mode (18.8mA). It is therefore advisable for
tasks to turn the radio into power down or voltage off mode
to save energy when the radio is not being used.

Virtualized radio duty-cycling is implemented by keep-
ing the radio in the mode that consumes maximum amount

of energy when multiple requests are received. When one
task invokes the RadioVerfOff() function to turn off
the radio voltage regulator, the physical radio is not turned
off until every task has invoked the same function. On the
other hand, one task is no longer charged of energy cost
after it invokes RadioVerfOff(), effectively putting its
virtualized radio into off state. All packets sent by this task
following a RadioVerfOff() request are ignored by the
engine to provide an illusion that the semantics of the task
remain the same.

5 Evaluation
In this section, we systematically evaluate the virtual bat-

tery abstraction in two parts. First, we empirically choose
the parameters we use for energy accounting, such as the en-
ergy cost of CPU cycles, radio operations, and file system
operations. Then, we show that the virtual battery mecha-
nism succeeds at exporting the private reserve abstraction
accurately for both CPU-bound tasks and I/O-bound tasks.

5.1 Measuring energy consumption for
system operations

For accurate accounting energy for tasks, we need the en-
ergy consumption of various system operations. In addition
to consulting data sheets of MicaZ [9], Atmega128 [2] and
CC2420 radio chip [8], we also carry out extensive exper-
iments with a power meter and an oscilloscope to measure
(and to verify) their energy consumption. The results have
been summarized earlier in Table 2, and we describe our
main procedure as follows. To measure the energy cost of
certain operation (e.g., writing to flash), we run the same
operation (for example, writing to the flash by a low level
system call atmelflashread()) repeatedly with a very
short period (say, 50ms), and observe the power consump-
tion by the mote for this operation. We connect the mote
with a 3 volt DC battery, in series with a tiny resistor (6.1Ω).
Since the operation is periodic, the mote almost consumes
a constant current, although there are some flicks when it
consumes additional power by writing to flash. To get a sta-
ble reading, we attach a big capacitor (3.5F) in parallel with
the resistor. Figure 5 shows the setup of this experiment.

3.5 Farad

_

++

_

6.1 ohm

Oscilloscope

MicaZ moteDC battery
3.0 volt

Figure 5. Experiment setup for measuring en-
ergy costs.

8
130130

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140 160

R
em

ai
ni

ng
 E

ne
rg

y
(m

J)

Time (s)

Task 1
Task 2
Task 3

(a) Remaining energy vs time, three tasks, energy
reserve ratio = 1:1:1, credit line ratio = 2.5%

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120 140 160

A
cc

um
ul

at
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Time (s)

Task 1
Task 2
Task 3

(b) Accumulated energy consumption vs time,
same settings as part (a)

30%

32%

34%

36%

38%

40%

 0 20 40 60 80 100 120 140 160

E
ne

rg
y

C
on

su
m

pt
io

n
P

er
ce

nt
ag

e

Time (s)

Task 1
Task 2
Task 3

(c) Accumulated energy consumption percentage
vs time, same settings as part (a)

-40

-20

 0

 20

 40

 60

 80

 0 20 40 60 80 100 120 140

R
em

ai
ni

ng
 E

ne
rg

y
(m

J)

Time (s)

Task 1
Task 2
Task 3

(d) Remaining energy vs time, three tasks, energy
reserve ratio = 1:2:3, credit line ratio = 2.5%

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140

A
cc

um
ul

at
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Time (s)

Task 1
Task 2
Task 3

(e) Accumulated energy consumption vs time,
same settings as part (d)

0%

10%

20%

30%

40%

50%

60%

 0 20 40 60 80 100 120 140

E
ne

rg
y

C
on

su
m

pt
io

n
P

er
ce

nt
ag

e

Time (s)

Task 1
Task 2
Task 3

(f) Accumulated energy consumption percentage
vs time, same settings as part (d)

-40

-20

 0

 20

 40

 60

 80

 0 20 40 60 80 100 120 140 160

R
em

ai
ni

ng
 E

ne
rg

y
(m

J)

Time (s)

Task 1
Task 2

(g) Remaining energy vs time, two tasks, energy
reserve ratio = 1:1, credit line ratio = 2.5%

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140 160

A
cc

um
ul

at
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Time (s)

Task 1
Task 2

(h) Accumulated energy consumption vs time,
same settings as part (g)

30%

35%

40%

45%

50%

55%

60%

65%

70%

 0 20 40 60 80 100 120 140 160

E
ne

rg
y

C
on

su
m

pt
io

n
P

er
ce

nt
ag

e

Time (s)

Task 1
Task 2

(i) Accumulated energy consumption percentage
vs time, same settings as part (g)

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

R
em

ai
ni

ng
 E

ne
rg

y
(m

J)

Time (s)

Task 1
Task 2

(j) Remaining energy vs time, two tasks, energy
reserve ratio = 3:7, credit line ratio = 2.5%

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160

A
cc

um
ul

at
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

Time (s)

Task 1
Task 2

(k) Accumulated energy consumption vs time,
same settings as part (j)

20%

30%

40%

50%

60%

70%

80%

 0 20 40 60 80 100 120 140 160

E
ne

rg
y

C
on

su
m

pt
io

n
P

er
ce

nt
ag

e

Time (s)

Task 1
Task 2

(l) Accumulated energy consumption percentage
vs time, same settings as part (j)

Figure 6. Evaluations of Energy Reserves for both CPU-bound and I/O-bound Applications

9
131131

CPU
According to MicaZ data sheet, when in idle mode and

the radio off, the mote’s CPU draws 8mA current, mean-
ing it consumes 8 × 3 = 24mW power. In turn, for 1000
cycles, it consumes 8×3×1000

7.3728×106 = 3.26μJ. In experiment we
measured its current to be 8.85mA, which is pretty close. In
turn, for 1000 cycles, it consumes 3.43μJ in experiments.
Radio operation

For radio energy consumption, we deduce most values
from CC2420 data sheet and we tried to verify the values
by the real lab experiments. For measuring sending cost, we
repeated send packets of size 50 bytes for every 50ms, and
we measured the current going into the mote. Experiments
show that the mote draws 21.31mA current. Hence the radio
consumption is 21.31 − 8.85 = 12.46mA (CPU consump-
tion is deducted). But the data sheet says while sending,
radio chip draws 17.4mA at 0dBm. Hence, our result does
not exactly match with the data sheet. In receiving mode
(idle listening), the mote takes 19.7mA according to the
data sheet, and experiments find 27.86− 8.85 = 19.01mA,
which is very close. It’s interesting that CC2420 consumes
more energy for receiving than sending.

Assuming 12.46mA consumption for sending bytes, we
can compute the per byte energy cost for sending pack-
ets. The chip CC2420 sends at rate 250kbps, for every
byte it consumes 12.46×3×8

250×103 = 1.20μJ, whereas according
to data sheet it is 1.67μJ. Similarly, for receiving, we get
1.82μJ/byte from the experiment and 1.80μJ/byte from data
sheet. In our following experiments, because our results are
not sensitive to the particular chosen metrics, we still decide
to use the values from the data sheet.
Flash read/write

To measure energy cost of read/write operation to flash,
we turn the radio off. While reading from the flash, we re-
peatedly read consecutive flash pages (each page is of 264
bytes) with a 50ms interval. We do not read the same page
again and again, because in that case the page will be served
from a cache in the serial flash hardware instead of flash it-
self. In our experiment, we see no extra current drawing
other than CPU for this read operation. Whatever amount
and rate we read from the flash, we always see the con-
stant CPU current 8.85mA. In the literature, [16] reported
the measurement results as 0.26μJ per byte, supposedly us-
ing a different approach. In the data sheets [3], the energy
consumption for read operation with 3V voltage is not pro-
vided.

For writing to the flash, we did the same experiment –
write bytes to consecutive flash pages with 100ms inter-
vals. When we write 1 page (264bytes) in every 100ms
and we see the current 19.67mA. Therefore, the mote con-
sumes 19.67 × 3 = 59.01mJ in every second. This en-
ergy includes both CPU and flash write. Because in one
second, we write 10 pages, i.e., 2640bytes, and CPU takes

8.85 × 3 = 26.55μJ, we can calculate the energy per
byte as 59.01−26.55

2640 = 12.29μJ. In another experiment,
we write 2 pages in every 100ms, and obtain a result of
11.27μJ/byte (current 28.69mA). In the third experiment,
we write 3 pages, and get 11.86μJ/byte (current 40.16mA).
Therefore, on the average, the energy cost for writing to
flash is 11.81μJ/byte.
Other activities

There are three types of operations whose cost is already
included in CPU cycles. These activities are sensor read-
ings, serial port communication, and EEPROM operations.
Their cost is not accounted separately. Note that if the vir-
tual battery mechanism is extended to other platforms, the
sensing board may draw additional energy, calling for sep-
arate accounting.

5.2 Evaluating the efficacy of the virtual
battery abstraction

We instrumented the LiteOS kernel with the energy re-
serve manager and the virtualization engine. The kernel
without instrumentation compiles to 83196 bytes of code
and 2311 bytes of RAM. After instrumentation (including
code for our experiments), the kernel compiles to 94326
bytes of code and 2648 bytes of RAM. We consider the
increase in memory footprint to be moderate, given that
we have modified the kernel extensively to provide energy
isolation and virtualization. All experiments are based on
LiteOS 0.3.3 running on MicaZ node.

We run multiple concurrent applications through the
LiteOS shell with different energy reserves, and observe
their energy consumption over time. To check the state
of energy consumption, we periodically send the ECB con-
tents of tasks over the serial port to the computer, and an-
alyze the data to profile the task behavior. The difference
between readings on remaining energy reflects energy con-
sumption of tasks over time.

In the first experiment, we run three CPU-bound applica-
tions that perform intensive computing. We set the epoches
to be the same for these applications. For these three tasks,
we use two different settings. In the first, the energy re-
serves of tasks are equal, that is, with ratio of (1:1:1). Each
task reserve 33.3% of the total energy. In the second, the
reserves are set with a ratio of (1:2:3), where tasks reserve
16.7%, 33.3%, and 50% of the total energy, respectively.
We set the credit line rate as 2.5% for tasks. We intention-
ally use a relatively small number of epoches to illustrate
the change of available credit with time. In real systems,
application lifetime will be much larger and the change of
credit line in a short period of time may not be observable.

More specifically, the energy reserve tuples for the three
CPU-bound tasks are (W = 33.3%, N = 20, L =
400s, C = 2.5%, B = 100mJ/s). The total energy E
is 3000mJ. While this is much smaller than typical battery
can provide, it is sufficient for our evaluation purposes. A

10
132132

small E also helps us better observe the trend of the credit
line. The maximum energy burn rate B is chosen to be
sufficiently large in the experiments. The results for this
evaluation are shown in parts a–f of Figure 6. First, ob-
serve the energy reserves are enforced well, especially after
the applications enter steady state. Also, the credit line de-
creases with time, because it is defined as proportional to
the total remaining energy. Finally, the figures show that in
the steady state, the energy consumption fraction of task Ti

converges to Wi.
In the second experiment, we run two I/O-bound ap-

plications. The first application repeatedly sends packets
containing a “hello, world” message through the radio for
every 20ms. The second application repeatedly sends a
constant length string over the serial port for every 20ms.
We experiment with two energy reserve ratios, (1:1) and
(3:7), respectively. The total energy E is 3200mJ. In the
first setting, the energy reserve tuples for both tasks are
(W = 50%, N = 20, L = 350s, C = 2.5%, B =
100mJ/s). In the second setting, the energy reserve tu-
ples are (W = 30%(task1)/70%(task2), N = 20, L =
350s, C = 2.5%, B = 100mJ/s). The results are shown
in parts g–l of Figure 6. Observe that again, the energy
reserves for both tasks are well enforced, the credit line de-
creases, and the energy consumption fractions of tasks con-
verge to W .

6 Conclusions
In this paper, we presented the energy reserve abstraction

for embedded sensor networks. To our knowledge, it is the
first energy isolation and virtualization mechanism that pro-
vides energy reserve abstraction for resource-constrained
sensor networks. It allows applications to reserve energy
for their private use, and guarantees the availability of en-
ergy for successful reservations. By virtualizing the physi-
cal battery, it provides similar abstractions to CPU capacity
reserves. We implemented a prototype of this abstraction
on the LiteOS operation system running on MicaZ nodes.
Our implementation and evaluation results demonstrate that
it succeeds at exporting the private reserve abstraction ac-
curately and at an acceptable system overhead.

Acknowledgements
This work is funded in part by NSF grants, NSF 05-

54759, and NSF 06-26342.

References

[1] R. Alur, T. A. Henzinger, and P. hsin Ho. Automatic symbolic verifi-
cation of embedded systems. IEEE Transactions on Software Engi-
neering, 22:181–201, 1996.

[2] Atmel Corporation. Atmega128 data sheet, 2007. Available at
http://www.atmel.com.

[3] Atmel Corporation. Serial flash data sheet model AT45DB041D,
2007. Available at http://www.atmel.com.

[4] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A new
facility for resource management in server systems. In OSDI, pages
45–58, 1999.

[5] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic. Towards Optimal
Sleep Scheduling in Sensor Networks for Rare Event Detection . In
Proceedings of IPSN, 2005.

[6] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He. The LiteOS Oper-
ating system: Towards Unix-like Abstractions for Wireless Sensor
Networks. In Proceedings IPSN, 2008.

[7] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao.
Habitat Monitoring: Application Driver for Wireless Communica-
tions Technology. In Proc. of the 2001 ACM SIGCOMM Workshop
on Data Communications in Latin America and the Caribbean, April
2001.

[8] Chipcon. CC2420 Data Sheet. http://www.chipcon.com/.
[9] CrossBow. MicaZ data sheet, 2007. Available at

http://www.xbow.com.
[10] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He. Software-based on-

line energy estimation for sensor nodes. In EmNets ’07: Proceedings
of the 4th workshop on Embedded networked sensors, pages 28–32,
New York, NY, USA, 2007. ACM.

[11] A. Eswaran, A. Rowe, and R. Rajkumar. Nano-RK: An energy-aware
resource-centric rtos for sensor networks. In RTSS, 2005.

[12] T. Facchinetti, L. Almeida, G. C. Buttazzo, and C. Marchini. Real-
time resource reservation protocol for wireless mobile ad hoc net-
works. In RTSS, pages 382–391, 2004.

[13] T. He, S. Krishnamurthy, L. Luo, T. Yan, R. Stoleru, G. Zhou, Q. Cao,
P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh.
VigilNet: An Integrated Sensor Network System for Energy-Efficient
Surveillance. ACM Transaction on Sensor Networks, 2007.

[14] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister.
System architecture directions for network sensors. In Proceedings
of ASPLOS-IX, 2000.

[15] M. B. Jones, D. Rosu, and M.-C. Rosu. Cpu reservations and time
constraints: Efficient, predictable scheduling of independent activi-
ties. In SOSP, pages 198–211, 1997.

[16] G. Mathur, P. Desnoyers, D. Ganesan, and P. J. Shenoy. Ultra-low
power data storage for sensor networks. In IPSN, pages 374–381,
2006.

[17] C. W. Mercer, S. Savage, and H. Tokuda. Processor capacity re-
serves: Operating system support for multimedia applications. In
ICMCS, pages 90–99, 1994.

[18] J. Polastre and D. Culler. Versatile Low Power Media Access for
Wireless Sensor Networks. In Second ACM Conference on Embed-
ded Networked Sensor Systems (SenSys 2004), November 2004.

[19] S. Prabh and T. F. Abdelzaher. On scheduling and real-time capacity
of hexagonal wireless sensor networks. In ECRTS, 2007.

[20] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari. Energy
efficient forwarding strategies for geographic routing in lossy wire-
less sensor networks. In The Second ACM Conference on Embedded
Networked Sensor Systems, 2004.

[21] D. Stiliadis and A. Varma. Rate-proportional servers a design
methodology for fair queueing algorithms. IEEE/ACM Trans. Netw.,
6(2):164–174, 1998.

[22] G. Tolle, J. Polastre, R. Szewczyk, N. Turner, K. Tu, S. Burgess,
D. Gay, P. Buonadonna, W. Hong, T. Dawson, and D. Culler. A
macroscope in the redwoods. In The 3rd ACM Conference on Em-
bedded Networked Sensor Systems. ACM Press, 2005.

[23] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated
Coverage and Connectivity Configuration in Wireless Sensor Net-
works. In First ACM Conference on Embedded Networked Sensor
Systems (SenSys 2003), November 2003.

[24] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh.
Fidelity and yield in a volcano monitoring sensor network. In OSDI,
pages 381–396, 2006.

[25] T. Yan, T. He, and J. A. Stankovic. Differentiated surveillance for
sensor networks. In First ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2003.

11
133133

