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ABSTRACT
We present a building block approach to hardware platform
design based on a decade of collective experience in this area,
arriving at an architecture in which general-purpose modules
that require expertise to design and incorporate commonly-
used functionality are integrated with application-specific
carriers that satisfy the unique sensing, power supply, and
mechanical constraints of an application. Of course, modules
are widespread, but our focus is far less on the performance
of any individual module and far more on an overall archi-
tecture that supports the prototype, pilot, and production
stages of design, and preserves the artifacts and learnings
accumulated along the way.

We present heuristics for partitioning functionality be-
tween modules and carriers, and identify guidelines for their
interconnection. Our approach advocates exporting a wide
electrical interface, eliminating the system bus, and support-
ing many physical interconnect options for modules and car-
riers. We evaluate this approach by constructing a family
of general-purpose modules and application-specific carriers
that achieve a high degree of reuse despite very different ap-
plication requirements. We show that this approach short-
ens platform development time-to-result for novice graduate
students, making custom platforms broadly accessible.

Categories and Subject Descriptors
B.0 [Hardware]: General; B.4 [Hardware]: Input/Output
& Data Communication

General Terms
Design, Experimentation, Performance
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Architecture, Mote, Wireless, Sensor Network
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1. INTRODUCTION
Sensornet platforms, like most other embedded systems,

are tightly coupled to their applications. This coupling can
make it difficult for general-purpose platforms to address
application-specific needs, forcing platform designers to ac-
cept either suboptimal solutions or to repeatedly reimple-
ment functionality. We propose a third way that composes
platforms from a two-layer hierarchy consisting of compact,
general-purpose modules which provide the common func-
tionality and application-specific carriers which glue together
these modules and also incorporate the sensors, power sup-
plies, and mechanical constraints unique to the application.

Of course, sensornet platforms and modular approaches
are widespread. In this paper, however, our focus is on an
overall platform architecture for supporting the three phases
of sensornet development – prototype, pilot, and production.
This focus acknowledges the tensions among design trade-
offs in a rapidly changing field. The desire to tackle new,
unexplored problems means that rapid prototyping and “try
it and see” experimentation are very important. The wide
diversity of valuable applications make realistic pilot studies
at modest scale and modest investment essential, and these
have to be well-enough executed to gain unprecedented mea-
surements. And the maturing of the field means bringing
the technology into production state, reducing cost, opti-
mizing performance, improving manufacturability, and ob-
taining high reliability, all while preserving the learnings
and artifacts accumulated along the way in moving rapidly
through these phases of development. Despite the diversity
of prior platform design efforts, it is safe to say that none
of the available options meet all of these goals, as Section 2
articulates.

This paper presents a building block approach to sensor-
net platform design represented by the Epic family which we
believe is the first to support all three phases of sensornet
platform development well enough for rapid forward going
innovation. The key ideas behind this approach include sys-
tematically partitioning functionality, exporting a wide elec-
trical interface for modules, eliminating the system bus, and
supporting multiple ways of physically interconnecting mod-
ules and carriers, from hand-soldering to machine-assembly.
The specifics of this approach are presented in Section 3.

At the heart of the Epic family is a core module that
integrates a state-of-the art microcontroller, IEEE 802.15.4
radio, and flash memory onto a small, inexpensive, single-
sided board with excellent RF characteristics. Following the
architectural principles of exporting a wide electrical inter-
face and minimizing logical interface constraints, the core
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exposes essentially all the pins that might possibly be use-
ful, including internal signals, and does not hide any of these
signals behind a multiplexed system bus. The core can be
snapped into a standard socket for prototyping, easily sol-
dered to routine carrier boards for pilots, or inlined for pro-
duction, according to the principle of supporting many phys-
ical interconnect options. Despite this architectural focus,
we recognize that modules can be only ε-suboptimal if they
are to be enthusiastically adopted. Therefore, module de-
signers must go to some lengths to ensure that the basic
building blocks exhibit competitive performance. Section 4
describes the Epic core module and its internal subsystems,
introducing the key characteristics and revisiting part selec-
tion with these in mind, looks at new alternatives since the
core was designed, discusses manufacturing and mechanical
considerations, provides a quantitative analysis of core mod-
ule performance, and outlines future development directions
for the core.

The case for a core module is clear: effective RF engineer-
ing requires deep expertise to design high-frequency circuits
and specialized equipment to assemble, test, and tune them.
These reasons are not limited to the core module, however.
For example, a solar harvesting circuit can present a range
of design options and subsystem choices that a designer un-
familiar in the art would find difficult to navigate. There
are other reasons to build modules as well. Some functions
are so common that reuse in modular form is inevitable.
Many platforms, for example, require a USB host interface
or battery charger, so this is an obvious module candidate.
Finally, sometimes it is simply more convenient to group a
set of related chips together on a board, like a handful of
different memory technologies to create a memory hierarchy
module. Collectively, these principles provide some guidance
for partitioning functionality between modules and carriers.
Complementing the core module is a supporting cast of spe-
cialized peripheral modules that offer a handful of choices
for complete systems, and a framework for forward going
innovation, as Section 5 describes.

The glue for these modules are breakout and develop-
ment boards or application-specific carriers. For prototyp-
ing, breakout and development boards expose a wide array
of pins and allow modules to be socketed, enabling novice
system builders to compose platforms using simple jumper
wires in a “try it and see” fashion and module developers to
debug otherwise complex systems with complete freedom to
access all exposed and intermediate signals. Section 6 ex-
plains our overall vision and approach for prototyping using
the Epic family and presents some development hardware
designed to support such prototyping efforts.

For pilots, inexpensive two-layer carriers are typically de-
signed to fit a particular enclosure and a set of mechanical
constraints with Epic modules being treated just like chips.
For production, the modules are eliminated by incorporat-
ing their contents directly into the underlying board through
hardware inlining. Section 7 evaluates the architecture by
illustrating how these building blocks are used to build sev-
eral simple, cost-effective, and application-specific carriers
are designed using freely available CAD tools, inexpensively
manufactured, and hand-assembled by novice graduate stu-
dents. Carrier board design is so simple that it can be used
even in an undergraduate classroom setting where students
do application-specific design, fabricate the boards, and as-
semble a final solution in just weeks.

The final sections reflect on how effectively the Epic ap-
proach meets the various contraposing design goals of the
three phases of sensornet platform development. Our ex-
perience shows that the building block approach leads to
greater reuse, more compact designs, increased simplicity,
and lower overall part count. Not only do modules become
true building blocks, but so do other components created
like CAD parts and scripts. An important benefit of view-
ing hardware in this way is that modules capture working
hardware designs. In the future, we envision others will cre-
ate many new modules make them available to the wider
research community.

2. BACKGROUND
In the early stages of wireless sensor network research,

the architecture and the form factor of the platform were
wide open questions. The UCLA WINS project developed
WinCE-based devices about the size of a shoebox [33]; USC
developed PC/104 devices and proposed a tag that would
have a small motherboard with slots for a radio board, a
power board, and sensor boards [34]; the UCB SmartDust
project developed the WeC mote with two microcontrollers,
a radio, and a couple of sensors on a disk the size of a half-
dollar [12]. Numerous other projects developed a variety of
ARM-based systems. The Berkeley René mote [25] began a
sea change by integrating the core elements of the low-power
WeC design into a simple board with an array of common
analog and digital interfaces organized like a conventional
system bus on a 51-pin connector.

The René design reflected a key understanding that the
common elements across sensor network applications are sam-
pling, processing, storage, and communication, while the
parts that are application-specific are the sensor suite, the
power subsystem (which can support the application’s sam-
ple and communication rate), and the mechanical design
which holds the three together, exposes the sensors to the
phenomena they need to sense, and protects the rest. This
51-pin “AT Bus” of the sensornet world carried forward to
the MICA [25], MICA2 [3], MICAz [5], IRIS [2], and many,
many other designs. Numerous sensor boards and power
boards were designed to stack on it. In many ways, it shaped
sensor network research activities for over five years.

Unfortunately, the 51-pin connector proved to be unsound
for long-term deployments in harsh conditions, and it was
expensive relative to the other components in the system.
It began to fail the Goldilocks test – instead of being “just
right” it was often too general for simple applications and too
limited for demanding ones. New microcontrollers, new ra-
dios, and new flash chips led to a variety of new mote designs,
such as the Mica2Dot [4], Telos [32], iMote [6], BTnode [15],
Eyes, TIP [7], TinyNode [18], Sensinode [8], IRIS [2], MI-
CAz Stamp [5], and kMote. Each with different form factor,
connectors, power requirements, and interfaces.

In hindsight, this chaos was a symptom of an underlying
tension among design tradeoffs. The rapidly changing na-
ture of the field and the desire to explore novel applications
meant that prototyping and experimentation were very im-
portant. Meanwhile, realistic pilot studies at modest scale
were essential to gain unprecedented measurements, leading
researchers to either use commercial offerings that were often
not quite right or design their own platforms from scratch at
great opportunity cost. And while the maturing of the field
meant bringing the technology into production state, none
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of the commercial offerings addressed the unique challenges
in moving through the design phases, critical for preserving
the accumulated learnings and artifacts.

Despite the diversity of efforts, earlier approaches remain
inadequate because they rarely address the spectrum of needs
for prototype, pilot, and production usage. We classify these
approaches into three broad categories, bus-based, highly-
integrated, and assembly-optimized, and explore their draw-
backs.

The modular, stackable approach of bus-based architec-
tures like WINS [33], MICA [25], iMote [6], PASTA [34],
Stack [14], MASS [20], and mPlatform [29] make prototyp-
ing mechanically simple but their busses can present barriers
to interfacing peripherals and also result in signal conflicts
if not multiplexed, and their backplanes and board stacks
can be too bulky, expensive, or fragile for realistic pilot or
production use.

The highly-integrated approach, advocated by Telos [32],
bundles a mote core with sensors, antenna, and host inter-
face into a single circuit board, which makes software devel-
opment and desktop experimentation easy. However, with
this approach, realistic prototypes and pilots are strained
because too few I/O lines are exported, production costs are
too high since many unnecessary features are integrated, and
onboard sensors are not useful for many scientific purposes.

To address the various shortcomings of the bus-based and
highly-integrated approaches, vendors began to offer new,
assembly-optimized module versions of their core platforms,
like the MICAz [5], IRIS [2], and Tmote Mini [9]. These
modules, while ideal for high-volume surface-mount assem-
bly, are challenging to integrate into prototype and pilot
projects because their packaging makes hand-assembly and
socketing difficult or expensive, and their relatively narrow
interfaces hide many internal signals useful for research.

3. BUILDING BLOCK APPROACH
This section presents the architecture and principles that

support the prototype, pilot, and production stages of plat-
form design, and preserves the artifacts and learnings accu-
mulated in their implementation. At the heart of our ap-
proach are two architectural elements: the module and the
carrier. Modules are reusable, self-contained subsystems in a
multi-chip module (MCM) package. Modules are composed
of one or more packaged ICs and other electronic compo-
nents typically found on a system board. Carriers are custom
circuit board substrates that glue together general-purpose
modules with application-specific sensors, power supplies,
and mechanical constraints. Heuristics for partitioning func-
tionality between modules and carriers are discussed in Sec-
tions 4 and 5, and their effectiveness in Section 8. A sensor-
net platform constructed using this building block approach
is shown in Figure 1.

Several principles focus on the interface between modules
and carriers. First, we observe that a bus adds cost and
complexity but that effective modularity does not really re-
quire one. Therefore, we eliminate the system bus from a
module’s interface specification. This allows modules to be
flexibly wired together in whatever way a designer sees fit,
rather than being encumbered by the constraints of a generic
system bus since it uses precious circuit board space, requires
costly or bulky or fragile connectors, complicates integration
of peripherals, and reduces generality. Extending this line
of thought, modules should export a wide electrical inter-

Figure 1: A sensornet platform designed according
to the building block-approach. A general-purpose
module (square board) is attached to an application-
specific carrier (rectangular board). The carrier in-
cludes the sensor interface (large 2x3 and 2x5 head-
ers), hosts a solar harvesting circuit (to the right
of the square module), and conforms to a standard
enclosure (footprint and four mounting holes).

face to maximize generality and reuse potential. Finally, to
support prototype, pilot, and production purposes, modules
should support many physical interconnect options ranging
from socketing to hand-soldering to machine-assembly, as
§ 4.3 explores.

4. CORE MODULE
Epic platforms are organized around a general-purpose

core module as well as optional peripheral modules. This
section describes the core module, shown in Figure 2, which
is essentially the guts of a mote without the constraints on
how it can be used. The core module integrates a state-of-
the-art microcontroller, IEEE 802.15.4 radio, flash memory,
a 48-bit unique serial identifier, and a U.FL RF connector,
all attached to a four-layer, 1 mm thick, LCC-68 form factor
circuit board one inch on a side, as Figure 3 shows.

Architecturally, the core is very similar to earlier mote de-
signs like Telos [32] and MICAz, but its design is part of
a larger framework that seeks to better support the proto-
typing, piloting, and production of sensornet platforms. To
be useful for prototyping, the core module must be easy to
use, debug, and profile, and it must provide good perfor-
mance, sufficient storage, and ample I/O lines. To be useful
for pilots, the core module must be easy to design-in at the
CAD level, simple to hand solder at bench scales, and flex-
ible when it comes to antenna choices. The core must also
be easy to program in-circuit and debug in situ, both at the
hardware and software levels. To be viable for production,
the core must provide performance comparable to commer-
cial modules, have an attractive cost profile, satisfy regula-
tory constraints like RoHS and FCC, and be open source to
allow unforeseen innovation and adaptation.

4.1 Component Choices Revisited
When this study was started over a year ago, a handful

of new microcontroller and radio options were available that
did not exist when earlier platforms were designed, and to-
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Figure 2: The Epic Core module: a wireless sensor-
net node (“mote”) core that integrates a microcon-
troller, radio, and flash memory.

day this list has grown even longer. This situation raises
the question of whether earlier component choices still hold
given today’s offerings. The short answer is that when the
core was designed a year ago, the answer was still yes. To-
day, the answer is still (mostly) yes. Moving forward, the
answer is less clear. The rest of this section articulates the
long answer to this question.

The opportunity to revisit the core’s design raises another
architectural question: what changes are needed regardless of
component choice to effectively support prototype, pilot, and
production designs? Addressing this question is a central
contribution of this work.

4.1.1 Microcontroller
The microcontroller market includes many new offerings

that were not available when earlier generation mote plat-
forms were designed, as Table 1 summarizes. Many of the
new offerings, like the TI MSP430F2618 and MSP430F5437
are product line extensions of existing microcontrollers like
the MSP430F1611 that offer more memory, better perfor-
mance, or new features. Other products, like the Jennic
JN5139 or Atmel ATmega1281, were not available for con-
sideration until recently. Given these new choices, it is worth
revisiting why the MSP430F1611 still makes sense. Several
factors influenced the decision to use this microcontroller,
but most of the reasons are the same as the ones articulated
in the Telos mote design [32]. These include low active cur-
rent, wide operating voltage range, a 16-bit sleep timer, fast
wakeup from sleep, a large amount of RAM, and three direct
memory access (DMA) channels that can operate while the
CPU sleeps.

By these metrics, the Atmel ATmega1281 (and larger AT-
mega2561) look more competitive than their predecessor,
the ATmega128L. The active current has remained approxi-
mately constant at 0.9 µA at 1 MHz, only about twice that
of the MSP430F1611. Since the microcontroller does not
dominate the system power budget, this difference is not
likely to have a large impact on lifetime. The operating
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Figure 3: The Epic Core architecture. A
Texas Instruments MSP430F1611 microcontroller
and CC2420 radio sit at the heart of the core mod-
ule. An Atmel AT45DB161D NOR flash provides
16 Mbit of storage. A Maxim DS2411 provides a
globally unique serial identifier. Nearly all MCU pe-
ripherals are exported, including GPIO lines, ADC
inputs, ADC voltage references, DAC outputs, US-
ART lines, and the JTAG module. Many internal
connections between components are exported as
well.

voltage of the ATmega1281 matches the MSP430F1611 on
the low end with a minimum voltage of 1.8 V and exceeds
the MSP430F1611 on the high end at 5.5 V, providing a full
1.9 V wider operating range. This can be beneficial for sys-
tems that are directly connected to a lithium battery, which
supplies between 2.6 V and 4.2 V, depending on its state of
charge. This benefit only accrues if all system components
can be operated over this range, which is usually not the
case today.

The ATmega1281 offers 8 KB of RAM, only 2 KB less than
the MSP430F1611. The memory requirements for many
sensornet applications make the 4 KB available on the AT-
mega128L untenable. Embedded networked devices can use
significant amounts of RAM to store message buffers while
data collection applications can buffer sensor data in RAM
for processing or prior to writing to flash. Therefore, RAM
size is an important consideration for mote-class devices.
With its 10 KB of RAM, the most among microcontrollers in
its size and performance class, the MSP430F1611 remains a
competitive choice. And yet, despite this significant amount
of RAM, it still has among the lowest of sleep currents (with
RAM retention). Today, we see fewer complaints about
RAM since many systems with greater RAM requirements
use members of the Telos family. We do observe that some
applications, like TinyDB [30], require more flash memory
than the MSP430F1611 offers, and since the ATmega1281
offers 128 KB and the ATmega2561 offers 256 KB, they are
better choices for applications requiring a large code foot-
print.

Despite the ATmega1281’s many improvements over the
ATmega128L, there are two important drawbacks that tipped
the scale in the MSP430F1611’s favor. First, the ATmega1281
low-power mode timer is only 8 bits wide, meaning it has
to wakeup every 7.8 ms (using a 32 kHz clock) to service
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Mfg Device Year Arch GCC VCC RAM Flash Active Sleep Wake Timer DMA Area

(y/n) (V) (kB) (kB) (mA) (µA) (µs) (bits) (y/n) (mm2)

Atmel ATmega128L 2002 RISC/8 yes 2.7-5.5 4 128 0.95 5 6 8 no 81
ATmega1281 2005 RISC/8 yes 1.8-5.5 8 128 0.9 1 6 8 no 81
ATmega2561 2005 RISC/8 yes 1.8-5.5 8 256 0.9 1 6 8 no 81

Ember EM250 2006 XAP2b/16 no 2.1-3.6 5 128 8.5 1.5 >1000 16 yes 49
Freescale HC05 1988 8-bit no 3.0-5.5 0.3 0 1 1 >2000 16 no 180

HC08 1993 8-bit no 4.5-5.5 1 32 1 20 4 16 yes 305
HCS08 2003 8-bit no 2.7-5.5 4 60 7.4 1 10 16 yes 144
MC13213 2007 HCS08 no 2.0-3.4 4 60 6.5 35 10 16 yes 81

Jennic JN5121 2005 RISC/32 yes 2.2-3.6 96 128 4.2 5 >2500 16 yes 64
JN5139 2007 RISC/32 yes 2.2-3.6 192 128 3.0 3.3 >2500 32 yes 64

TI MSP430F149 2000 RISC/16 yes 1.8-3.6 2 60 0.42 1.6 6 16 no 81
MSP430F1611 2004 RISC/16 yes 1.8-3.6 10 48 0.5 2.6 6 16 yes 81
MSP430F2618 2007 RISC/16 yes 1.8-3.6 8 116 0.5 1.1 1 16 yes 49
MSP430F5437 2008 RISC/16 yes 1.8-3.6 16 256 0.28 1.7 5 16 yes 196
CC2430 2007 8051 no 2.0-3.6 8 128 5.1 0.5 4 8/16 yes 49

ZiLOG eZ80F91 2004 ez80/16 no 3.0-3.6 8 256 50 50 3200 16 yes 169

Table 1: Comparison of modern microcontrollers potentially suitable for sensornet platforms. The release
year provides a sense of the underlying technology trends. The processor architecture and GCC support
affect the cost and complexity of the toolchain. Key design considerations include RAM and flash memory
size, active current (at 3 V and 1 MHz if possible) and sleep current, wakeup time from sleep, DMA support,
largest width low-power sleep timer, mechanical package, and required circuit board area. For cases in which
a manufacturer offers multiple products that are very similar, this table lists those parts with the largest
RAM and flash. For cases in which a microcontroller comes in many packages, this table lists only the smaller
(or smallest) package.

a timer overflow in sleep mode. Second, the ATmega1281
does not provide DMA support, important for collecting low-
jitter samples [23] and high-throughput peripheral commu-
nications.

Today, there are many other low-power microcontroller
and integrated microcontroller/radio choices available, so we
briefly outline them and identify their strengths and weak-
nesses. The Freescale and ZiLOG microcontrollers are not
supported by the GCC toolchain, making them less attrac-
tive for a research platform. In addition, the rather high
active and sleep currents, long wakeup time, narrow operat-
ing voltage range, large footprint, and lack of GCC support
make the ZiLOG eZ80F91 especially unattractive as a mod-
ern research platform.

Several of the microcontrollers also integrate a radio pe-
ripheral. The Ember EM250 integrates a 16-bit XAP2b mi-
croprocessor core and radio into a single chip package. An
interesting feature of this product is its sleep timer which can
operate from either a 32 kHz crystal or a calibrated 1 kHz
clock, coupled with a prescaler (up to 210 clock divider),
which would let the node sleep for over 18 hours without a
clock overflow. Unfortunately, a smaller RAM, higher active
current, long wakeup, and uncertain GCC support make this
device less appealing as a research platform.

The Jennic JN5121 and JN5139 also integrate a micro-
processor and radio into a single package. Their large RAM
and flash sizes are attractive but they come with a high cost:
a wakeup time of 2.5 ms + 1 ms/kB of program memory
when entering and exiting certain sleep states. The CC2430
provides a highly-integrated microcontroller with excellent
across-the-board numbers, however its major drawback is a
lack of native GCC support due to its 8051-based core.

The MSP430F2618 improves upon the already excellent
MSP430F1611 performance numbers, is nearly pin-compatible,
and addresses the major weakness of the F1611: limited flash
memory. The recently announced MSP430F5437 adds still
more flash and RAM but with a slightly lower active and
higher sleep current than the F2618. Neither the F2618 nor
the F5437 were available when the Epic core was designed
but had they been, we would have chosen one, especially
since their flash memories can be programmed down to 2.2 V.

4.1.2 Radio
Lacking relevant industry standards, early mote designs

used a host of narrowband and wideband radios for their
wireless interface. For example, designs employed radios
that modulate the signal using on-off keying (OOK), ampli-
tude shift keying (ASK), frequency-shift keying (FSK), and
phase-shift keying (PSK). More recently, with widespread
consensus on the IEEE 802.15.4 standard, at least at the
physical layer, and a number of vendors now offering com-
pliant radios, this choice is a natural one. The diversity in
802.15.4 radio choices, shown in Table 2, once again opens
up the design space and warrants a reexamination of the
available options with the benefit of hindsight. Although
our specific design point focuses on standards-based radios,
we do not believe the architectural choices would be different
if a another standard (or none at all) were chosen.

For many systems, radio idle listening dominates the sys-
tem power budget, so receive power is an obviously impor-
tant metric. By this standard, the Atmel RF230 would be
the best radio option since it offers the lowest receive current
and best receive sensitivity. However, for CSMA systems
employing low-power listening [31], the key to reducing the
idle listening cost is to minimize the cost of channel polling
since this time establishes the lower bound on duty cycle.
The channel polling time is the sum of several factors: the
startup time of the radio’s crystal oscillator, the time to
sample the channel for energy, and the time to convey this
information to the microcontroller. Using a low-resistance
crystal, the CC2420 is reported to start in 580 µs and detect
channel energy in 128 µs [32]. Since the CC2420 exports the
clear channel assessment (CCA) signal using a dedicated pin,
this allows the host microcontroller to determine if there is
channel activity without having to poll the radio over the
SPI bus, reducing channel polling time. Since the CC2420
can wake up in about half the time of the RF230 and con-
vey the channel status to the host using hardware lines, the
energy cost of polling the channel should be substantially
lower on the CC2420 than the RF230.

Another temptation with the RF230 comes from its ultra-
low sleep current but this logic is deceiving on two counts.
The reasoning would go, since the node is asleep most of the
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Mfg Device Year Wake VCC RxSens TxPwr Rx Tx Sleep FIFO SCLK SFD CCA AES Area

(ms) (V) (dBm) (dBm) (mA) (mA) (µA) (Rx/Tx) (MHz) (y/n) (y/n) (y/n) (mm2)

Atmel RF230 2006 1.1 1.8-3.6 -101 +3 15.5 16.5 .02 128 8.0 no no no 25
Ember EM260 2006 1 2.1-3.6 -99 +2.5 28 28 1.0 128 5 yes yes yes 36
Freescale MC13192 2004 7-20 2.0-3.4 -92 +4 37 30 1.0 128/256 8.0 yes yes yes 25

MC13202 2007 7-20 2.0-3.4 -92 +4 37 30 1.0 128/256 8.0 yes yes yes 25
MC13212 2005 7-20 2.0-3.4 -92 +3 37 30 1.0 128/256 8.0 yes yes yes 81

Jennic JN5121 2005 >2.5 2.2-3.6 -93 +1 38 28 <5.0 16 16.0 yes yes yes 64
JN5139 2007 >2.5 2.2-3.6 -95.5 +0.5 37 37 2.8 16 16.0 yes yes yes 64

TI CC2420 2003 0.58 2.1-3.6 -95 0 18.8 17.4 1 128/128 10 yes yes yes 49
CC2430 2005 0.65 2.0-3.6 -92 0 17.2 17.4 0.5 128/128 4 yes yes yes 49
CC2520 2008 0.50 1.8-3.8 -98 +5 18.5 25.8 .03 128/128 8.0 yes yes yes 25

Table 2: Comparison of modern IEEE 802.15.4-compatible radios. The release year provides a sense of the
underlying technology trends. The wakeup time (wake) is the time required to transition the radio from
sleep to listen. The receive sensitivity (RxSens) is a measure of the minimum signal strength needed for
successful reception. The transmit power (TxPwr) is the output power of the radio. Rx, Tx, and Sleep are
the receive, transmit, and sleep current draws. The amount of the receive and transmit data path buffering
is available (FIFO). The speed of the data bus (SCLK) limits the rate of data input/output to/from the
radio from the host microcontroller. The start-of-frame-delimiter (SFD) is a hardware handshake signal that
toggles at a well-defined point during packet transmission or reception. The clear-channel-assessment (CCA)
is a hardware handshake signal that indicates whether the channel power exceeds the clear channel threshold.
The advanced encryption system (AES) indicates whether hardware support for encryption is included in the
radio.

time, sleep current matters a great deal. While this may
be true in theory, in practice the constant factors dominate.
First, the sleep cost must consider sleep currents aggregated
over all components, and the lowest microcontroller current
is 25 times larger at 500 nA. Second, for systems that operate
around 1% duty cycle, but use a radio whose active current
to sleep current is 10000:1 or higher like the RF230, energy
consumed in the sleep state pales in comparison to energy
consumed in the active state. Recent research has demon-
strated radio operation at permille (0.1%) duty cycles, mak-
ing sleep currents more important yet still not among the
most important of factors.

The RF230 also offers better receive sensitivity than the
CC2420 (-101 dBm vs -95 dBm) and higher transmit power
(+3 dBm vs 0 dBm), so its link budget is about 9 dB higher
than the CC2420. This translates to either longer-range
or lower-power communications since transmit power is ad-
justable. Finally, a shared send/receive FIFO and the lack
of hardware support for AES means this cryptographic func-
tion must occur in MCU software, rather than in optimized
hardware.

Today, there are many other 802.15.4-compliant radio choices,
so we briefly outline some of them and identify some of their
strengths and weaknesses. The EM260 appears to offer ex-
cellent receive sensitivity and transmit power, at the expense
of higher current draws and a constrained development en-
vironment. The Freescale family of radios offer an order of
magnitude longer wakeup times, in the range of 7-20 ms,
than the CC2420 as well as much higher current draws.
The Jennic JN5121 and JN5139 are attractive because of
their large RAM and 32-bit core, but their 2.5 ms minimum
wakeup latency is long, and still longer if RAM retention is
disabled and the program must be copied to RAM from flash
on each wakeup. The CC2430 appears to be an excellent,
highly-integrated system with ample RAM and flash. The
only downsides are low receive sensitivity and a lack of GCC
toolchain support. Finally, the CC2520 offers nearly all of
the benefits of the CC2420 and RF230. If this radio had
been available when the core was designed in early 2007, we
would have selected it.

For these reasons, the CC2420 still provided the best over-
all power profile at the time of the Epic core design, ce-

menting our decision to use it in the core module. To en-
sure a low radio wakeup similar to Telos, the core’s radio
oscillator circuit is built around a Hong Kong Xtal’s C5M
family 16 MHz crystal. This decision was inspired by obser-
vations that showed the benefits of choosing a crystal with
a low series resistance, namely allowing the radio to start
up quickly [32]. This crystal’s lines are also exported using
short traces to allow oscillator quick start circuits to be ex-
plored using this module [16]. If such a circuit is added, care
must be taken to ensure that capacitive loading of the crys-
tal does not exceed the manufacturer’s recommended toler-
ances. Our evaluation of the Epic core in Section 4.4 shows
that its wakeup performance tracks that of Telos.

The CC2420 also provides a pair of test lines, ATEST1
and ATEST2. These lines can be programmed to output a
range of internal signals at various stages of the signal pro-
cessing pipeline. Although normally intended for production
testing, these signals can provide the low-level access needed
to implement analog network coding [27] or interference can-
cellation [24]. The radio SPI bus, CCA, and SFD lines are
also exported from the module, simplifying external probing
and allowing external hardware to count both the number
of times these signal are asserted as well as the amount of
time they remain asserted. These are important indicators
of channel activity, availability, and interference.

4.1.3 Flash
The core uses an AT45DB161D NOR flash [1] that pro-

vides 16 Mbit of non-volatile storage. Although this chip
has a higher sleep current than the ST M25P80 [11] used
in Telos, the dual RAM buffers simplify driver software and
allow data to be accessed from one buffer over the SPI inter-
face while the other buffer is busy reading from or writing
to non-volatile storage.

There are two core module designs that only differ in the
way the flash memory is connected to the MCU. In one con-
figuration, the radio and flash are on the same bus (SPI0),
preferable for workloads where the node is connected with
another serial device, like a host computer or a sensor with
an RS-232 port. In the other configuration, the flash and
radio are on different buses, SPI0 and SPI1, respectively,
desirable for nodes that do not use their UART, like routers
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in a mesh network, since resource contention will not occur
and SPI bandwidth does not have to be shared.

The flash memory has a write-protect line that is exported
because there is no broadly appropriate default. According
to one school of thought, a “boot sector” should always be
write-protected unless the module is being reprogrammed
through physical connection to a programming board or host
computer; however, there is no simple and fool-proof way
for the module to determine this unambiguously. According
to another school of thought, the default behavior of the
module should be to allow the flash to be reprogrammed
in its entirety. The issue boils down to a policy decision,
so in the interest of end-user flexibility, this line is neither
driven nor pulled high or low – the platform developer has
the option to pull-up this line by populating a resistor on
the core module.

4.2 Implementation Decisions
This section presents several implementation choices that

focus on component interconnections, I/O exports, and sup-
ply circuitry that have architectural motivations like “export
everything” and “minimize constraints.”

4.2.1 Component Interconnections and Exports
The MCU communicates with the radio using an SPI bus

(USART0), receives status information (CCA, FIFO, and
FIFOP) from the radio using three interrupt-capable input
lines and packet transmission/reception timing (SFD) from
the radio using one timer capture register, and controls and
resets the radio using a pair of output lines. The MCU com-
municates with the flash memory using SPI on either US-
ART0 or USART1 and communicates with the serial iden-
tifier chip using a single, interrupt-capable, GPIO line with
pull-up to implement Dallas Semiconductor’s 1-wire proto-
col. The MCU exports a byte-wide port to simplify the in-
terface to devices with a byte-wide bus interface like NAND
flash memory, FIFOs, and high-speed parallel ADCs.

In addition to the communications and control interfaces
shared with the MCU, the radio also exports a wireless in-
terface and some useful test lines. The wireless port passes
through a balun and is routed to both a 50-ohm RF port
on the LCC-68 module as well as a U.FL connector onboard
the module circuit board. A single capacitor selects which
way the RF signal goes – LCC-68 pad or U.FL connector.
This flexibility allows developers to choose either an exter-
nal antenna with a U.FL-terminated pigtail – now common
because of 802.11 b/g radios – or a board-integrated antenna
like a chip antenna or a planar-inverted F-antenna (PIFA).
The first choice eliminates low-level RF engineering while
the second choice allows for a more compact solution.

4.2.2 Power, Ground, and References
The core exports four different power supply lines for the

four major power domains: DVDD supplies the microcon-
troller core and serial identifier, AVDD supplies the ADC
core and reference, RVDD supplies the radio, and FVDD
supplies the external flash memory. These signals may be
tied together externally, connected to different supplies with
slightly different voltages, or individually passed through
current sense resistors to allow current profiling per power
domain. All of the supply lines are internally decoupled us-
ing 0.1 µF capacitors. If long external power traces are used,
larger external capacitors should be used. The core also ex-

ports several references used by the ADC. The VREF+ line
allows the internal ADC reference to be used by external
circuitry (with appropriate buffering). The VeREF+ and
VeREF- lines allow externally-generated high and low refer-
ences to be used by the ADC.

In addition to the four supply lines, the core exports four
different ground lines. Although three of these ground lines
are internally connected, they individually provide the pref-
erential ground return for the microcontroller, radio, and
flash memory. The fourth ground line, AGND, connects to
an isolated ground plane section and provides the return for
the analog section of the microcontroller. The AGND can be
connected to the digital grounds externally, but care must
be taken to reduce digital noise from coupling with AGND.
Finally, the radio ground is divided into a digital section
and an analog section with a separate ground, RFGND. The
radio digital section shares a common ground with the mi-
crocontroller and flash while RFGND provides the return
for the RF path. The point where the RFGND lines are ex-
ported from the module is the only place where the analog
and digital grounds are connected together – the proverbial
“ground mecca”– situated on the ground ring along the mod-
ule perimeter, providing a convenient solder point for an RF
shield.

4.3 Mechanical Design
A question that every module designer must confront at

some point is what form factor and connector interface should
the module use? There are nearly as many different answers
to this question as there are mote platforms. The Epic core
module uses an industry-standard LCC-68 (68-pin leadless
chip carrier) form factor that places all parts on one side
of the module circuit board and exposes nearly every sig-
nal that might possibly be useful along the board edge via
perimeter pads. This packaging wastes no connector space
since the board edge is otherwise unused, allows a seam-
less transition from prototype to production since modules
can socketed, hand-soldered, or machine-assembled, and a
single-sided board makes signal probing easy.

Several considerations played a role in the choice of perime-
ter pads. First, since the package is leadless, no costs are
incurred on connectors. Second, since the package land pat-
tern is essentially JEDEC-compliant (except for pin num-
bering), an off-the-shelf prototype or production socket can
be used to program the device or break out the signal lines
for debugging. Third, since the 68 pads around the mod-
ule perimeter are actually plated-through semi-holes (also
known as castellations or routed vias), they are easy to solder
by hand which greatly simplifies prototyping. Fourth, since
the plated-through semi-holes are concave, an oscilloscope or
voltmeter probe tip rests easily in them, making debugging
just a bit easier. Fifth, since the plated-through semi-holes
are actually vias that connect all layers of the circuit board,
they reduce the number of vias that might otherwise be nec-
essary, potentially reducing cost and providing more circuit
board real estate.

Superficially, the Epic core’s LCC-68 footprint might seem
similar to the the MICAz [5] and IRIS [2] OEM modules or
the Tmote Mini [9], but there are some important differences
that make Epic well-suited to pilot studies: it can be hand-
soldered, it has a wide interface that exports nearly every
internal signal, and it can be socketed. This design consid-
eration raises an important architectural question: should
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Figure 4: Radio reception performance (RSSI and
LQI) of Epic and Tmote Sky over the same channel
as the transmit power is swept from -25 to 0 dBm.

the number of pins a module exports grow linearly with its
area or as the square root? A ball grid array (BGA) al-
lows a linear relationship between area and pin count while
the perimeter pins of a leadless chip carrier (LCC) grows as
the square root of the area. We chose an LCC-68 package
with plated-through semi-holes to allow hand assembly, but
a side-effect of the decision is that modules are more limited
in their I/O width. We also experimented with different
module thicknesses and found that an 0.5 mm board was
too flimsy (without a structural shield) and that the stan-
dard 1/16 in circuit board was unnecessarily thick, so we
settled on a module thickness of 1.0 mm.

Other mote designs, like the MICA family including the
MICA, MICA2, and MICAz often waste circuit board real-
estate unnecessarily making them too large to comfortably
design into enclosures, require expensive and fragile connec-
tors, and do not export many I/O lines useful for research
and experimentation. The highly-integrated Telos suffers
from many of these same problems. The MICA2Dot [4] is
more space-optimized and integrates the core pieces better,
buts its limited I/O lines reduce choice, its connector is diffi-
cult to attach, and its antenna connector is poorly matched.

4.4 Evaluation
Modules will only be adopted if their performance is at

most ε-suboptimal to other alternatives, and we show here
that Epic compares favorably to earlier work. One of the
key metrics for a platform is the radio wakeup time. We
measured the wakeup time of both Epic and Telos by moni-
toring the state of the CC2420’s CCA pin in the same way
that the TinyOS 1.x and 2.x stacks use to determine when
the oscillator has stabilized. In our experiments, Epic wakes
up in 629± 3µs while the Telos wakes up in 619± 3µs (95%
confidence).

Sleep current is another important performance metric
which for Epic is 7 µA at 3 V. In comparison, we measured
the Telos sleep current to be 6 µA at 3 V when running the
TinyOS Null application. Although the Epic sleep current
is comparable to Telos, the constituent currents are differ-
ent: most of the Epic current draw comes from the flash

chip while most of the Telos current draw comes from its
host interface, which Epic removes for reasons of generality.

To evaluate radio reception, a transmitter node (Telos B)
is positioned 3 m from a fixed antenna. In the first experi-
ment, a Sentilla Tmote Sky [10] is connected to the antenna.
In the second experiment, an Epic is connected to the same
antenna. During each experiment, 20 packets are transmit-
ted from the sender to the receiver. The received signal
strength indicator (RSSI) and link quality indicator (LQI)
are logged. This experiment is repeated at eight different
power levels. These results, along with tests over a range of
channels and distances, confirm that the RF performance of
Epic is commensurate with a mature commercial system.

As a cautionary note, we point out that achieving this
performance required months of design, evaluation, tuning,
and redesign. This work was carried out using expensive
test and measurement equipment including high-speed digi-
tal oscilloscopes, spectrum analyzers, and network analyzers.
In the final analysis, ten different RF section layouts, three
different inductor choices, and two different RF ports were
evaluated. All of our designs are open-sourced and available
online.

4.5 Future Directions
In hindsight, the choice of the MSP430F1611 microcon-

troller and CC2420 radio have stood the test of time, and
product line extensions like the MSP430F26x, MSP430F54x,
and CC2520 promise a simple migration pathway forward.
An obvious next-generation core module will be an evolu-
tionary one that integrates these much improved but still
backward-compatible parts. This path will allow the com-
munity to leverage existing investments in software yet allow
new research efforts by moving more functionality into the
radio, and making the processor-radio interface richer and
more flexible. At the same time, new products from other
vendors are quickly closing, or have already closed, the gap
in wakeup latency, RAM size, low-power timer support, di-
rect memory access, and operating voltage range.

5. EXPERT PERIPHERAL MODULES
Complementing the core module are a family of peripheral

modules that provide specific functions, such as power sup-
ply conditioning, high speed host communication interfaces,
bulk storage, or analog signal conditioning. Figure 6 shows
the modules currently in the Epic family.

(a) Core (b) Storage (c) USB

Figure 6: Core, storage, and USB Epic modules.

Since a key aspect of the architectural approach is a sys-
tematic partioning of functionality between modules and
carriers, we identify four cases when modules make sense:
when their design requires deep expertise, when their as-
sembly or tuning requires specialized equipment, when their
function is so common that reuse in modular form is in-
evitable, and when it is simply more convenient to group a
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(a) Development Board (b) Interface Board (c) Breakout Board (d) COTS Parts

Figure 5: The Epic family includes hardware specifically designed for (a) making platform prototyping possible
in a classroom setting by novice designers (b) interfacing with the popular Phidgets analog and digital sensors
(c) empowering module designers to construct, probe, and debug intricate circuits on-the-fly, both only using
(d) off-the-shelf parts such as jumpers, sensors, solar power packs, and surfboards.

set of related components. Collectively, these principles pro-
vide some guidance for partitioning functionality between
modules and carriers and they address the question: where
do modules come from? Following these heuristics, Table 3
traces the genesis of the modules currently in the Epic family,
and the remainder of this section discusses their functions.

Deep Special Modular Simple
Module Expertise Equip. Reuse Convenience

Core yes yes yes no
USB no no yes yes

Storage no yes no yes

Table 3: The genesis of core and peripheral modules
in the current Epic family. Modularizing a compo-
nent is beneficial if it demands deep expertise to de-
sign, requires specialized equipment to assemble or
tune, is general enough that reuse in modular form
is inevitable, or just as a way to group together re-
lated parts into a subsystem as a matter of simple
convenience.

The USB module provides four functions: host interface,
reprogramming, JTAG over USB (requires additional host
software), and battery charging and management. The first
three offer the same functionality as the Telos [32] in that the
host interface and reprogramming functions are multiplexed
using the same I/O lines and JTAG over USB is possible (but
not supported). The battery charging and management can
recharge a Lithium battery whenever the module is plugged
into a USB port and arbitrate between USB power and an
attached Lithium (or alkaline) battery. This module was
built because it was perceived to be quite useful to a number
of platforms in modular form and was a convenient container
for related functionality.

The storage module integrates four different non-volatile
memory chips – a 1 Gbit NAND flash, two 16 Mbit NOR
flashes, and one 512 Kbit FRAM. These memory chips have
very different read, write, and erase characteristics and so
they represent a useful collection of chips integrated on a
single module for simple convenience when researching stor-
age systems. Additionally, some of the included flash chips
are in packages that are either leadless or with extremely
small pitch, making them difficult to hand solder and war-
ranting specialized manufacturing equipment. This module
was built both for experimentation and as a storage subsys-
tem for motes.

6. PROTOTYPING
In our vision for prototyping, platform developers are able

to pick a handful of components like sensors, motes, bat-
tery packs, and solar harvesting modules, and literally wire
them together in whatever way is most appropriate. Writ-
ing the corresponding system software would follow a simi-
lar pattern; most components would have associated drivers
that could simply be declared and wired to the hardware
resources they use, like GPIO lines, ADC channels, or an
SPI bus. We envision the emergence of platform construc-
tion kits that include an assortment of building blocks, their
associated driver software, and the glue to assemble a wide
variety of prototype nodes. In this section, we examine how
Epic supports prototyping approaches for both novice and
advanced system designers.

6.1 Try It And See
Many projects begins with experimentation and rapid pro-

totyping inspired by a “try it and see” attitude. The goal is
to demonstrate a basic implementation that showcases an
important capability, enables some exploratory data to be
collected, or reduces perceived implementation risk through
an existence proof. At this stage of the game, maximum im-
pact demands a narrow focus on the essential elements of the
system, but the other parts must be good enough to evaluate
the prototype. The metric of merit is time-to-result.

Unfortunately, several factors increase time-to-result. Is-
sues like sensor and power supply selection, electrical wiring,
and device driver development dominate engineering efforts
while more novel aspects like application software, perfor-
mance characterization, and end-user data collection are rou-
tinely back burnered during the initial stages. To improve
productivity, we created a Development Board that can be
easily and inexpensively integrated with off-the-shelf sensors,
displays, and solar packs to improve time-to-result.

Figure 5(a) shows the Development Board, which benefits
from the choice of an industry-standard LCC-68 footprint by
including an off-the-shelf socket for easily swapping modules.
Adhering to the principle that all signals should be available
to the platform designer, breakout pins allow access to every
signal, simple shorting shunts allow each signal to be indi-
vidually connected to power or ground, and jumper wires
allow a signal to be easily connected to off-the-shelf parts
like the ones shown in Figure 5(d).

The Development Board also incorporates a USB module
for programming, alkaline and lithium battery connections
for supplying power, and LEDs and buttons for feedback,
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debugging, and control. This flexible platform enables quick
prototyping and exploration of novel development elements
while circumventing the complexities of module and carrier
design. The board has already been used by undergradu-
ate students to develop application-specific platforms and a
second version, shown in Figure 5(b), was used to teach a
summer school on wireless embedded systems.

6.2 Debugging
Debugging is an often frustrating aspect of prototyping.

Effective debugging requires the developer to probe signal
voltages to verify circuit operation and measure currents to
identify unexpected draws and verify expected ones. Unfor-
tunately, many systems can make probing signals and de-
bugging painfully difficult: signals are buried under chips,
routed through to intermediate layers of the printed circuit
board, and never exposed through any header. Measuring
currents can be still more challenging since it requires break-
ing a circuit to take the measurement. In most systems, di-
rectly measuring the individual draws of the microcontroller,
radio, flash, or other peripherals is impossible since the in-
dividual power supply lines are buried in the circuit board
and a single, global power supply line is exposed. The result
is that developers must write test code that isolates differ-
ent functions, rather than being able to directly observe the
system running application code.

To address these challenges of hardware debugging, we
developed a breakout board, shown in Figure 5(c), that
includes an LCC-68 socket, pins for easily accessing and
jumpering each signal, and an Epic programming port. With
access to the full array of signals, hardware developers can
easily probe every point in a design, connecting the circuit,
multimeters, oscilloscopes, and other monitoring equipment
as they see fit.

7. CARRIER BOARD CASE STUDIES
Carriers are circuit boards that act as substrates to glue

together general-purpose modules with application-specific
sensors, power supplies, and mechanical constraints. To eval-
uate the utility of our proposed architecture, we designed
and implemented several different pilot-stage carrier boards.
These case studies illustrate how our decomposition allows
new platforms to be designed quickly by novice graduate
students (usually in a few days), fabricated inexpensively on
typically two-sided circuit boards (for a few hundred dollars),
and easily hand-assembled (in hours, by the same students
who designed the carriers). Table 4 summarizes these carri-
ers and their differences.

Carrier Modules Sensors Power Mechanical

HydroWatch Core T, H, L solar enclosure
ACMeter Core V, C AC enclosure

BenchMark Core, USB T, H, L USB Telos-like
Meraki Core T, H Meraki Meraki

Table 4: Despite their unique application require-
ments, all carriers incorporate the same mote core.
Sensors: temperature (T), humidity (H), light (L),
voltage (V), and current (C).

7.1 External Sensor and Solar
The literature on sensornet applications shows many plat-

forms built for monitoring animals and the environment, a

subset of which employ a solar power subsystem for sus-
tainable operation including ZebraNet [26, 39] for tracking
the location of zebras in African savanna and jungle, Solar
Dust [35] for measuring the penetration of light under shrub
thickets in former grasslands, and Fleck [36] for measuring
soil moisture and tracking livestock behavior on farms.

Building on this line of research, we have developed a
new platform to study to the hydrological cycle in forested
environments. Each microweather sensing node, shown in
Figure 7(a), consists of a small waterproof box containing
a carrier board, batteries, and carefully exposed tempera-
ture, relative humidity, and light sensors [37]. Addition-
ally, RF requirements in the moist, dense forest require a
high-gain antenna; thus, we export the U.FL connector pro-
vided by the Epic core module to an SMA connector and use
an externally-attached 7-dBi omnidirectional antenna. The
carrier board, shown in Figure 1, incorporates an Epic core
module, a solar energy harvesting circuit with voltage and
current monitoring, the iCount [19] system for measuring
system energy consumption, and connections for the sen-
sors. This 2-layer PCB was created using the freeware Eagle
CAD Tool in less than two days and fabricated at a unit cost
of $10.83 for a 60 piece build with a five day leadtime. The
board took under two hours to populate by hand.

Previous incarnations of the HydroWatch node were built
around a Telos family mote, resulting in a larger form fac-
tor (twice the enclosure size), insufficient exposed GIO and
ADC pins (some desired measurements could not be taken),
and a significantly higher cost (the Telos cost three times
as much as the Epic). The new HydroWatch node design
remedies these issues while achieving similar RF and en-
ergy performance. In terms of board fabrication cost, the
previous 2-layer HydroWatch PCB took about a week to
design, took two revisions to become operational, and cost
$11.59 per board for a 54 piece build with a five day lead-
time. Indeed, the Epic platform design flow has improved
design flexibility while reducing time-to-result with compa-
rable fabrication cost to previous methods.

7.2 AC Power Monitoring
Monitoring building energy consumption is an important

opportunity for savings in an increasingly energy-conscious
era; in fact, many AC power metering and control devices
already exist and some are even network-enabled [28, 13].
However, since these are either commercially unavailable or
cost prohibitive, we developed a platform for AC power me-
tering, seen in Figure 7(b), to support research in energy-
aware decision-making in datacenter and home environments
both inexpensively and at scale. This platform includes a
TRIAC for switching the AC load on and off, and an Epic
core module for wireless communications.

The primary sensor of this platform is an industry stan-
dard IC that measures real, apparent, and reactive power by
using a manganin current sensing resistor. Though the AC
electricity presents a convenient source of power, the high
mains voltage must be reduced, rectified, and regulated, for
the DC circuitry including the Epic core module and related
components. A standard approach is to use a transformer
and a bridge rectifier, but this can be bulky. Recognizing
the minimal DC current requirements of our design, a more
cost-effective and space-saving way is to simply use capaci-
tor dividers and a pair of diodes to shave off a small amount
of AC current. This specialized design effort will not need

276



(a) HydroWatch Board (b) ACMeter Board (c) BenchMark Board (d) Meraki Daughterboard

Figure 7: Platforms for different applications have been built to evaluate the Epic architecture: (a) an
environmental monitoring node incorporating solar energy harvesting and application energy metering, (b)
an AC electricity meter for measuring building energy use, (c) a platform for sensornet testbeds with a USB
interface, application energy metering, and a FIFO buffer for collecting and streaming high-frequency data,
and (d) a Meraki Mini daughterboard that connects 802.3 and 802.11-based IP networks to 6lowpan-based
sensor networks. Each platform was designed in less than a week using the same generalized core module
while satisfying the specific requirements of the application.

to be repeated; the circuit can be replicated in future AC-
powered platforms. One drawback to this approach is the
floating ground, which may not be ideal for an experimental
device, suggesting an isolation transformer may be a better
choice for future revisions.

For the enclosure, rather than formulating a custom de-
sign, often both costly and time consuming, we selected the
enclosure of an off-the-shelf AC power meter and designed
our PCB within its restrictions. Thus, the board needed to
accommodate not only a standard NEMA 5-15 AC plug and
receptacle, but also a number of holes and contact points im-
posed by the clip design of the off-the-shelf enclosure. Since
the Epic core module is a thin single-sided board, we were
able to incorporate it easily within our volume constraints
without facing the difficulty of connecting and accommodat-
ing a separate, larger mote inside the enclosure.

Additionally, we included an optically-coupled TRIAC to
enable remote control of the current flowing to appliances
connected to this AC meter. The TRIAC can also be used as
a dimmer when combined with a zero-crossing output from
the AC measurement chip. To save space and cut cost, we
used a Planar Inverted-F Antenna (PIFA). Switching from
the default U.FL antenna connector on the Epic core mod-
ule involves switching a single capacitor. More challenging,
however, is the RF engineering needed to match the Epic
core, microstrip, and PIFA antenna. The antenna and its
feedline are available as a script, allowing a simple way to
change important parameters.

The design process for this board took one week using Ea-
gle and fabrication of the 2-layer board cost $26.40 each for a
quantity of 5 pieces and five day leadtime, while population
of the prototype took roughly three hours. The results of
this design cycle represent a cost and time commitment that
are well within the constraints of most research budgets.

7.3 Testbed Replacement
The bulk of sensornet research over the last decade has

largely been conducted on office or laboratory testbeds, fixed
and reusable infrastructures of nodes with the network size
and extent to enable researchers to investigate link, rout-
ing, and transport protocol dynamics without the overhead
of constructing a deployment. Existing sensornet testbed ar-
chitectures vary from flat networks of hundreds of mote-class
devices [38, 17] to hierarchical networks interspersing mote-
class devices with PC-class devices [22, 21] with backchan-

nels that are USB, Ethernet, or even 802.15.4. However,
data collection on current testbeds is generally constrained
by limited memory and UART port baud rates on the on the
MSP430F1611 and ATmega128L based mote families. The
limitation prevents the collection of very high-frequency data
such as noise floor information, application program state,
scheduler context switches, or other debugging data. We de-
veloped the BenchMark mote with these limitations in mind.

The key elements of the BenchMark platform are an Epic
core module, an Epic USB module for programming and
interfacing, system-wide energy metering using the iCount
system [19] with six decades of resistors for calibration over
the entire operating range, and a 128 KB synchronous FIFO
memory chip. This memory is meant as a high-speed queue
for data generated by the application with a read/write time
on the order of a few microcontroller instruction cycles. Be-
yond these components, this platform also incorporates a
temperature/humidity sensor.

This platform was developed chiefly for conducting net-
working research and closing energy-measurement gap on a
general-purpose testbed; given this requirement, the primary
“sensors” are the iCount energy meter and the radio itself.
Further, this platform is intended as a “drop-in” replacement
for Telos family devices that already comprise a number of
existing testbeds. This goal drove the selection of USB for
the interface and power source and an internal PIFA (lever-
aged from the AC Meter carrier described in Section 7.2) for
the antenna. The form factor is nearly identical to Telos.

Design of this platform was among the most recent of the
carriers described in this section (only the Meraki Daughter-
board was designed more recently). The design of the 4-layer
board took roughly three days and fabrication cost $141.30
each for a quantity of 10 boards and a turnaround time of five
days. Population of the prototype board took three hours.
This time-to-result compares quite favorably with previous
motes, which took months to develop and prototype.

8. DISCUSSION
Component reuse is a basic aspect of the building block

approach to platform construction and carriers are no ex-
ception. The motivation for reuse comes from a desire to
preserve the accumulated learnings and artifacts in mov-
ing through the phases of development, but this section also
traces our experience with unplanned, organic reuse at the
level of CAD parts and schematics.
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Component Type Library Breakout DevBoard HydroWatch ACMeter BenchMark Interface Meraki

Core module Epic  # # # # # #
USB module Epic  # # #
Storage module Epic  
ProgPort part Epic  # # #
Header17 part Epic  # G#
LED0603 part Epic  # # # # #
Socket68 part Epic  # #
Headers part HydroWatch  # G# #
MAX1724 part HydroWatch  # #
Switch part HydroWatch  # # # #
Schottky part HydroWatch  
Zener part HydroWatch  
ZXCT1010 part HydroWatch  
ADE7753 part ACMeter  
DualPlug part ACMeter  
R-AXIAL part ACMeter  
R2010 part ACMeter  
R0603 part ACMeter  
MCP1700 part ACMeter  
RSENSE part ACMeter  
AC PLUG part ACMeter  
PIFA Ant script ACMeter  G#
74HC138 part Epic  
74V293 part Epic  
74LVC1G00 part Epic  
Trimpot part Epic  
Phidgets Conn part Epic  

Parts Reuse 0% 83% 33% 30% 61% 70% 100%

Table 5: Tracking component reuse over time. The listed components were created specifically for the carrier
in question. Components from the Eagle CAD library or other third-party libraries are neither listed above
nor included in the reuse statistics.  identifies the carrier for which a component was originally made and
in which it was first used. # identifies a carrier that uses a particular component. G# indicates a carrier for
which a pre-existing component was modified and then used.

We demonstrated the viability of this approach by building
a handful of application-specific carrier boards from a collec-
tion of modules but, in the process, we discovered two curi-
ous things. First, reuse occurs at the CAD parts, schematic,
and parts inventory level as well as at the module level. De-
signers use parts and circuits created by their colleagues or
stocked in the lab rather than create new CAD parts them-
selves or choose parts that must be ordered from distribu-
tors. This suggests that we should encourage greater reuse
by sharing our niche part libraries more broadly and cre-
ating platform development kits that bundle many of these
common pieces. Table 5 illustrates the benefits of doing so.

A second observation is that there is little overlap in elec-
tronic parts between modules and carriers. Even discrete
parts like 10 kΩ pull-up resistors or 0.1 µF decoupling ca-
pacitors are different. The module designs, driven by space
constraints and anticipating machine assembly (of the mod-
ules themselves but not necessarily the carriers), use smaller
surface mount parts (e.g. 0402). The carrier board designs,
constrained far less by space and anticipating hand assembly
(at least for pilot runs) use larger surface mount parts (e.g.
0603 or 0805). This limited overlap in part usage provides
some evidence that our modularity hits a design sweet spot;
modules and carriers appear well-optimized for their partic-
ular purpose. Indeed, the first article of every carrier board
presented in this paper was hand-assembled while almost
exactly the opposite is true for the modules.

The development of many systems proceeds through the
familiar phases of prototype, pilot, and production and while
the engineering activities undertaken in each phase are very
different, accruing the experiences and intellectual property
through the phases is important. The modular architecture

proposed in this paper supports such a fluid development
model and we believe this approach to sensornet platform
design is the first to support all three phases of sensornet
development well enough for rapid progress.

9. CONCLUSION
This paper argues for a building block approach to hard-

ware platform design that partitions functionality between
general-purpose modules and application-specific carriers. A
key principle of this approach is for modules to export as
wide an electrical interface as possible rather than a narrowly-
defined system bus. Lowering the hardware abstraction level
“below the bus” facilitates greater module reuse, more com-
pact designs, increased integration simplicity, and lower over-
all part count. And, by supporting many physical intercon-
nect options for modules including socketing, soldering, and
hardware inlining, this approach supports prototype, pilot,
and production system development well enough for rapid
progress. An important benefit of decomposing platforms
in this way is that modules capture working hardware de-
signs, making hardware libraries a natural extension. In the
future, we envision others will create many new modules –
like solar harvesting, signal conditioning, or high-precision
clocks – and share them broadly to support rapid forward
going innovation.
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