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ABSTRACT

Programming distributed applications in the IoT-edge environment
is a cumbersome challenge. Developers are expected to seamlessly
handle issues in dynamic reconfiguration, routing, state manage-
ment, fault tolerance, and heterogeneous device capabilities. We
introduce DDFlow, a macroprogramming abstraction and accom-
panying runtime that provides an efficient means to program high-
quality distributed applications that span a diverse and dynamic IoT
network. We describe the programming model and primitives used
to isolate application semantics from arbitrary deployment environ-
ments. Using DDFlow leads to portable, visualizable, and intuitive
applications. The accompanying system runtime enables dynamic
scaling and adaptation, leading to improved end-to-end latency
while preserving application behavior despite device failures.
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1 INTRODUCTION

The booming expansion of the Internet-of-Things has led to a world
where advanced sensors, actuators, and specialized hardware can
interact with the environment in unprecedented ways, enabling
emerging applications ranging from agriculture to city planning
and military surveillance [1, 19, 24]. A challenge arises in how
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to effectively specify and manage coordinated activity across a
wide variety of heterogeneous hardware. Enterprise frameworks,
such as Samsung SmartThings [25] and Apple HomeKit [10], offer
simplistic frameworks that are hardware dependent. For complex
solutions derived from open-source tooling, developers are expected
to build their own distributed systems. This often leads to a lack of
portability, programmability, and efficient system management.

In recent years, new capabilities have further exacerbated the
problem of system management in the IoT-space. First, new enter-
prise and research devices have created even more heterogeneity
and hardware isolation [6, 11]. Second, new accelerators and custom
hardware for applications such as machine learning create a broad
variation in device efficiency [5, 17]. Finally, new IoT devices intro-
duce a more dynamic range of actuation, including actions such
as opening/closing valves in industrial systems, camera PTZ, 2D
movement of ground robots, and 3D movement of drones [7]. Cap-
turing these new capabilities havemade the challenge of application
development and management in the IoT world a burdensome task.

This paper introduces DDFlow, a macroprogramming abstrac-
tion and accompanying runtime that provides an efficient means
to program high-quality distributed applications that span a di-
verse and dynamic IoT network. Application specification is ac-
complished through a declarative user interface implemented as an
extension of the Node-RED IoT system [3]. Developers visually spec-
ify what the application should accomplish without explicit regards
to the how. This allows for effective visualization, programmability
and reusability.

The accompanying DDFlow system runtime dynamically de-
ploys applications to the available network. The distributed coordi-
nator maintains the current state of the network and intelligently
maps services to available devices while minimizing end-to-end
latency. In the case of significant network changes, or device fail-
ure, DDFlow will reconfigure to preserve application semantics by
re-mapping the computation onto the network and/or switching to
alternative networking protocols.
Contributions. Our contributions are summarized as follows:

(1) DDFlow: a visual and declarative programming abstraction
for heterogeneous IoT networks.

(2) A system runtime that supports DDFlow programs by dy-
namically scaling and adapting application deployments.

(3) A preliminary evaluation of the system in adapting to node
failures and an unstable network.

2 BACKGROUND & RELATEDWORK

Macroprogramming refers to a field of research that aims to pro-
vide centralized specification for applications spanning distributed
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sensor networks. The goal is to enable complex coordinated activ-
ity without forcing developers to configure individual devices or
account for a particular network. The typical approach is to define
a language (often with an accompanying runtime framework) that
enables efficient description and execution of global application
behavior. We briefly touch upon a few notable systems.

DFuse [13] is a macroprogramming framework focused on aggre-
gating sensor data into higher level evaluations. Applications are
defined as dataflow graphs, and the runtime determines where to
place data fusion points in a heterogeneous network. While effec-
tively capturing data fusion applications, DFuse lacks support for
external actuation, mobility, and scalability; tasks such as sensing
should often be subdivided across a set of available devices.

Kairos [8] is a programming language to define global behavior
of distributed computation by expressing pairwise interactions
between neighboring nodes. This places a constraint on application
portability and expressivity, and can potentially lead to unexpected
behavior in the mobile IoT environment.

Regiment [18] offers a functional macroprogramming language
that groups data streams into regions based on spatial locality, al-
lowing an expressive language that captures many sense-compute
applications in sensor networks. Due to the high-level of the lan-
guage abstraction, it is generally ineffective at expressing heteroge-
neous network capabilities. With no language support for actuation,
it falls short in control applications.

Mobile Fog [9] presents a programming model for IoT applica-
tions spanning the fog network hierarchy. Applications are con-
structed using event-driven message-passing callbacks. With sup-
port for dynamic scaling, complex event processing, and distributed
key-value storage [15], Mobile Fog offers a flexible programming
interface that enables centralized specification. However, for com-
plex applications spanning heterogeneous edge devices, grouping
all devices’ application logic into a unified callback function can
become unwieldy and difficult to understand.

The most directly analogous to DDFlow is the D-NR system
described in [4]. Their work provided an initial implementation of
a distributed extension to Node-RED. Developers define a master
flow composed of sub-flows which deploy to different devices in the
network. Heterogeneity is accomplished by explicitly categorizing
devices into edge, IO, and compute, with inter-device communica-
tion via MQTT brokers. Ultimately, D-NR provides an interesting
prototype for visual programming. However, with a lack of declar-
ative specification, fault tolerance, and dynamic adaptation, it falls
short in delivering a robust system framework for IoT applications
extending outside a controlled home environment.

3 DDFLOW ABSTRACTION

Our goal is to provide a flexible programming framework at the
appropriate level of abstraction in order to formulate complex ap-
plications without forcing a developer to concern themselves with
low-level network, hardware, and coordination details. The chal-
lenge lies in how to efficiently and succinctly express application
semantics in a manner that allows for dynamic deployment across
diverse environments. We move away from binding a computa-
tion to a device, or defining an explicit scale to a computation.
Instead, we focus on expressing collective behavior by relying on

Figure 1:DDFlowmotivating application. Cameras identify

an active school shooter, and drones are deployed to follow

the shooter and provide a live video feed.

a high-level declarative interface for application formulation and
specification, thereby allowing an underlying runtime to dynami-
cally scale and map to available resources.

3.1 Motivating Application

In order to ground the discussion, we will focus on an example that
reflects a latency-constrained application on an edge network. The
motivating scenario is as follows: a school shooter is actively roam-
ing a college campus. With a sensor network that spans campus
cameras, drones, a speaker and cloudlet servers, the objective is to
achieve the following:

(1) Recruit cameras in the region of interest to identify a target
or object-of-interest.

(2) Classify captured image frames to detect the target.
(3) Upon detection, a speaker at a command center plays a sound

to notify those nearby that the target has been identified.
(4) Available drones pursue the target and stream a live feed.
This application, illustrated in Figure 1, showcases many pain

points involved in creating applications for heterogeneous IoT net-
works. First, different devices have vastly different mobility and
computational abilities. Taking advantage of this heterogeneity is a
non-trivial task. Second, coordinating the efforts of these devices in
an ad-hoc network presents optimization challenges. Finally, recon-
figuring the application to a new campus or environment requires
significant adaptation, placing a substantial burden on a developer.

To ease this burden, DDFlow takes a declarative approach. In-
stead of specifying low-level implementation details, a developer
states the high-level objectives, effectively translating an applica-
tion description into an application specification. The system runtime
translates this declarative specification into an explicit computation
graph that dynamically deploys across devices in the network.

3.2 Declarative Dataflow

The motivating application’s dataflow graph, depicted in Figure 2,
represents a full DDFlow specification by containing the informa-
tion necessary to describe the application. It begins by generating
image frames in the area of interest. These frames pass through an
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Figure 2: Motivating application inDDFlow: camera frames

in a region of interest are classified in search of a target ob-

ject, upon which a speaker plays an alert and drones are de-

ployed to follow the target.

image classifier, which is filtered to focus solely on identification
of the target. Once identified, a speaker is notified to play a sound,
and drones are deployed to the last observed location of the target,
initiating a follow sequence.

Dataflow is a natural choice for both visualizing and describing
applications spanning IoT networks. It is a programming model
that has been previously validated by the community (e.g., [13]),
and is a logical choice for an event-driven abstraction that begins
with sensing and ends with actuation, capturing the perception
⇒ cognition ⇒ actuation paradigm that is pervasive across IoT
applications [16]. Applications developed in this manner are highly
visual and intuitively understood, providing an interface that allows
developers, project managers, and future engineers to fully grasp
an application at a glance. Furthermore, and most importantly,
dataflow enables a decoupling of application specification from the
deployment network, enabling both portability between networks,
and an opportunity for a system runtime to provide optimization.
To this end, there are a set of abstraction primitives provided by
DDFlow extending dataflow to support a declarative application
programming interface.

3.3 Model Primitives

While dataflow allow for the decoupling of application semantics
from the deployment environment, it lacks the sufficient descriptors
necessary to enable effective runtime scaling. In deploying an appli-
cation to diverse environments with varying regions, devices, and
capabilities, the precise scale of an application is often not known
a priori. DDFlow aims to allow an application to be implicitly and
dynamically scaled depending on the resources available at runtime
and the constraints of an application. Existing work generally lacks
this notion; not only should multiple tasks be assignable to the same
device, but an individual task may be collectively accomplished
by replicating across a dynamic set of devices. DDFlow achieves
runtime scaling via the Node and Wire fundamental primitives.

3.3.1 Node. DDFlow applications are defined as a sequence of
actions, or Nodes in a dataflow graph. A Node is a computational
abstraction representing a stateful function that maps inputs to
outputs, either of which are optional. Each Node corresponds to at
least one instantiation of a task that must be deployed onto a device
in the network (e.g., generating camera frames, classifying images,
playing a sound). Inputs and outputs are key-value dictionaries (i.e.,
JSON messages) that contain application data as well as metadata
including timestamp and sender.

Nodes are constrained via a set of parameters relevant to a
particular task (e.g., Filter contains a key-value to filter incoming
messages). Due to the spatiotemporal nature of IoT applications,
two fundamental parameters underlying all Nodes are Region and
Device, optional parameters restricting the deployment of a task
to a particular spatial region or set of devices. In Figure 2, the
Node generating camera frames is associated with a circular re-
gion (lat , lon, r ). Only devices capable of generating camera frames
within the specified region of interest are potential candidates dur-
ing runtime scaling. Regions can be described as a bounding box,
with other structured location information, or as a list. Dynamic
and moving regions can be specified via the input keyword, which
monitors a given Node’s inputs for a region value to update the
existing deployment region. The Device parameter supercedes the
Region parameter and allows for precise Node placement.

To deploy the motivating application in Figure 2 to a new envi-
ronment, a developer needs only to change the Region parameter
for generating camera image frames and the Device parameter
for playing a sound. During deployment, the system runtime will
dynamically scale the application to the available devices in the
regions of interest that are capable of accomplishing the specified
Node tasks.

3.3.2 Wire. In defining a sequence of actions,Nodes are connected
via Wires, representing a connection in a dataflow graph. Each
Wire carries a key-value dictionary from the output of one Node to
the input of the downstream Node. Due to the elastic runtime scal-
ing of Nodes,Wire definitions follow one of three forms: Stream
(one-to-one), Broadcast (one-to-many), and Unite (many-to-one).

In the motivating application, all devices that are performing
the Follow task should receive updates to target location regard-
less of which camera generated the detected frame. As such, the
connection between Filter and Follow is a Broadcast Wire. On the
other hand, only one device is responsible for playing a sound upon
target identification; as such the connection from Filter to Play
Sound is a UniteWire. Finally, in order to take advantage of motion
detection capabilities, each camera generates a stream of frames
to an independent Classify instance; as such, Generate Frame and
Classify are connected via a Stream Wire.

3.4 Extending DDFlow Capabilities

Given a suite of Nodes, developers can express a wide variety of
IoT applications. However, certain applications will require custom
logic and capabilities not already defined within DDFlow.

The DDFlow UDF Node allows developers to encode custom
logic within their programs. Developers define a simple callback
function to be executed upon receiving a message, additionally
allowing for basic state to be preserved across callback executions.

For more complex applications, Nodes may be required that are
not yet defined within the DDFlow framework. Any developer
can enhance the suite of available Nodes by defining new, custom
Nodes. To support this, the DDFlow system runtime provides a
means for a developer to define a class following the DDFlow
interface, insert the class into the system, and thereby make new
Nodes available for writing applications. Heterogeneous hardware
can have differing underlying class implementations while exposing
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Figure 3: DDFlow architecture. The Device Manager pro-

vides intra-device coordination. The Coordinator orches-

trates applications and provides inter-device coordination.

the same interface, thus allowing DDFlow to seamlessly integrate
different devices with the same high-level semantic capabilities.

4 SYSTEM RUNTIME

To support the DDFlow abstraction, we have developed a system
runtime based on Node-RED [3], an open source framework that
provides a graphical user interface for programming IoT devices.
While Node-RED provides a single-device programming environ-
ment, we have built a distributed system atop the basic graphical
interface, provided support for declarative DDFlow applications,
and created system tooling for dynamic deployment and reconfigu-
ration of applications spanning heterogeneous IoT networks.

The DDFlow system follows a service-oriented architecture, a
proven architecture for dataflow and IoT systems [12, 20], depicted
in Figure 3. Each device, whether a powerful cloud server or a
lightweight edge device, offers a distinct set of Services. Services
represent a particular implementation for a Node in the DDFlow
abstraction (e.g., image classification, playing a sound). In a hetero-
geneous environment, different physical devices may have different
underlying implementations, but offer the same Service to DDFlow
via the same high-level interface.

Intra-device coordination is accomplished through a Device Man-
ager, a lightweight web server that runs on every device in the net-
work. It is responsible for activating/deactivating service instances
and exposing device details (e.g., available services, current state).
Resource constrained devices that cannot deploy a Device Manager
expose their capabilities through a proxy device.

Inter-device coordination is accomplished through a Coordinator,
a web server that accepts and manages DDFlow applications as
they are issued onto the available network. Figure 4 is a screenshot
of the web interface presenting the DDFlow specification of the
motivating application. The Coordinator is composed of three main
components: an end-user facing web interface that acceptsDDFlow
applications, a deployment manager that interfaces with the De-
vice Managers running on each device, and a placement solver that
maps an application task graph to available devices. The Coordina-
tor monitors deployed applications to detect significant network

Figure 4: Screenshot of the DDFlow user interface present-

ing the motivating application described in Section 3.1. The

Pulse Node triggers a periodic message to initiate sensing.

The Sink Node forwards Follow outputs to the client.

changes, such as a disconnected or failing node, and adjusts a de-
ployment mapping as needed. For resilience and fault tolerance,
the Coordinator can be replicated onto many devices; placement of
the Coordinator is recommended on devices with high availability.

4.1 Dynamic Deployment

When an application is deployed, the Coordinator contacts allDevice
Managers to obtain updated state information and decide which
devices to map an application task graph. In doing so, it may map
many services to the same device, such as a powerful server with
accelerators, and it may map the same service to many devices,
such as a fleet of drones or sensors performing a group task.

Each Device Manager provides the Coordinator with information
including location, utilization, estimated service and network la-
tencies, and devices within wireless range. From this information,
the Coordinator constructs a network topology graph and a task
graph. The topology is modeled with wired devices connected to a
backbone network and wireless devices connected to other devices
within range. The task graph is generated from the DDFlow ap-
plication graph by scaling Nodes based on the region, availability,
and capability constraints.

Given a network topology, task graph, and device capabilities, the
Coordinator formulates computation mapping as a linear program-
ming problem with the objective to minimize the longest path’s
end-to-end latency in the task graph. While admittedly a simplified
metric, latency serves as baseline by which a system can begin to
compare relative network speeds and model network characteris-
tics. The solver will find the best solution to the objective function
given the following constraints: (1) Neighbors in the task graph
must also be accessible from each other in the network graph. (2)
Devices must possess the necessary Node implementations for
all assigned tasks. (3) Devices must have available the necessary
resources required to execute the assigned task. The Coordinator
solves this linear programming problem and issues task requests

175



DDFlow: Visualized Declarative Programming for Heterogeneous IoT Networks IoTDI ’19, April 15–18, 2019, Montreal, QC, Canada

to all the relevant Device Managers. This placement algorithm, de-
scribed in detail in [26], is only one such algorithm for assigning
tasks to devices. It is trivial to swap for another placement solver.

4.2 Dynamic Adaptation

To enable dynamic adaptation and recovery, the Coordinator probes
devices in the network at an application-defined periodicity to
monitor for environmental changes (e.g., disconnected node, over-
loaded device). Upon detection of a significant deviation of system
characteristics (i.e., compute or network latency), the Coordina-
tor computes a new placement mapping of an application. This
new mapping is evaluated with respect to the objective function
(e.g., end-to-end latency). In the case of projected improvement
greater than a threshold, a remapping is triggered. Any failed or
disconnected device will additionally trigger a remapping.

The Library system service provides a key-value data storage
API for services to preserve local state. Thus, when the Coordinator
issues the pertinent task activation/deactivation requests, all task-
relevant key-values are forwarded from the terminating service to
the device launching the new task instance.

Communication adapts at a finer granularity. The Router system
service hides network-specific details by providing transparent
messaging to devices. For a given device-service destination, a
forwarding table identifies the optimal next-hop, either pushing the
packet via TCP/IP infrastructure mode or via peer-to-peer Wi-Fi ad
hoc mode. Techniques such as [27] are in consideration for further
abstracting network communication.

5 EVALUATION

The key enabling feature for real-time adaptation is an application
specification that does not rely on a particular network instantia-
tion. By providing a declarative macroprogramming abstraction,
DDFlow recovers from failures gracefully by transferring failing
computation or networking to alternative devices capable of sim-
ilar semantic functionality. Systems such as [4] rely on a static
computation assignment and standard TCP over IP for network-
ing. This leads to a lack of portability and resiliency. In mission
critical applications, such as those providing aid to first responders
and law enforcement, failure is crippling. These high stress envi-
ronments require an underlying runtime that does not rely on a
human-in-the-loop for recovery.

To showcase the benefits of a declarative programming interface
with an adaptive runtime, we developed a simulation testbed. De-
vices are inserted into the Airsim [22] environment simulator and
connected via the Mininet [2] network emulator. The main system
components simulated in this evaluation, to represent a simplified
version of the motivating application, are the following:

(1) A camera used to identify the target
(2) Three servers that are capable of providing image classifi-

cation: a server with a GPU, a server without a GPU, and a
camera-local accelerator

(3) A client device with accompanying speaker used to alert
upon target identification

(4) A drone that follows the target after identification
(5) Three wireless access points that provide the drone with

communication to the backbone network.
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Figure 5: Adaptation during device overload. DDFlow will

switch to an alternate device that is capable of providing the

same service to minimize impact on end-to-end latency.

Single-hop wired network links are modeled with a 2ms link
latency, to account for processing, queuing, transmission, and prop-
agation delays [14]. Due to the inherent variability, wireless links
are modeled as varying from 30-50ms [23].

Three devices are capable of providing classification. The first
is a server using an NVIDIA Titan X GPU and the YOLOv3 model
(~20ms per frame) [21]. The second is a server relying on its Intel
Xeon CPU E5-2620 v3 @ 2.4GHz with the YOLOv3-tiny model
(~880ms per frame). Finally, a Google Vision Kit camera comes
equipped with an Intel Movidius VPU [6]. It contains support for
constrained TensorFlow Litemodels, with its default image classifier
requiring ~3.2s per frame.

In the following scenarios, either device or network degradation
causes a static deployment to slow and ultimately fail, whereas
DDFlow is able to recover from failures and preserve application
semantics.

5.1 Device Overload and Failure

The first application scenario is the following: the camera is stream-
ing image frames to an available classifier. Upon successful target
classification, the speaker is notified to play a sound.

A static deployment streams frames to the fastest classifier, the
GPU server. If that server becomes overloaded, performance de-
grades. DDFlow is able to switch to another available device to
minimize impact on end-to-end latency and preserve application
semantics. This is shown in Figure 5.

As the GPU server becomes overloaded, both static mapping and
DDFlow see end-to-end latency increase. After a certain threshold
it becomes advantageous to switch to the CPU server, and as such
DDFlow is able to maintain minimal impact to end-to-end latency.
Eventually, the GPU server fails, crashing the statically deployed
application, but the DDFlow application continues.

5.2 Access Point Failure

The second application scenario illustrates adaptation during net-
work over-utilization and access point failure. The objective is to
stream live video from the drone to the client. As the drone moves
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Figure 6: Adaptation during access point failure. DDFlow

will switch to an alternate networking mode to maintain de-

vice connectivity during access point failure.

in physical space, it switches wireless access points. When a back-
bone access point fails, the static deployment becomes unable to
establish a routing path from drone to client. In DDFlow, upon
wireless access point failure the networking system service dy-
namically switches to a Wi-Fi ad-hoc peer-to-peer communication
protocol. With only a single peer-to-peer hop, we can re-establish a
routing path to the client and preserve the application. The results
are shown in Figure 6.

6 CONCLUSION

We introduce DDFlow, an IoT macroprogramming abstraction
that provides a visual tool and unified model for programming
distributed applications in a declarative manner. To enable this
abstraction, the DDFlow runtime deploys applications in an ad
hoc fashion to a heterogeneous network, dynamically adapting to
minimize end-to-end latency. Computation is remapped to other
devices when a critical node fails or becomes disconnected from
the system. Adaptive networking is employed to resiliently adjust
to a varying network. Using DDFlow leads to intuitive applications
that are easy to understand, yet powerful and robust in deployment.

DDFlow is a system under active development. In future work,
we plan to expand DDFlow capabilities with system features in-
cluding enhanced placement mappings, distributed adaptation, dis-
tributed data storage, robust fault tolerance, and safety guarantees.
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