
TagAlong: Free, Wide-Area Data-Muling and Services
Alex Bellon

abellon@ucsd.edu
UC San Diego

Alex Yen
alyen@ucsd.edu
UC San Diego

Pat Pannuto
ppannuto@ucsd.edu

UC San Diego

ABSTRACT
We demonstrate how to leverage Apple’s FindMy protocol, most
well known as the underlying protocol of the AirTag, for arbitrary
data-muling and location services. This provides a new "infrastructure-
free" deployment, where areas with frequent human activity can
take advantage of this zero-cost backhaul network. While there are
severe limitations (e.g. no acknowledgement channel back to the
sending device), FindMy-based networking could still be a reliable
backhaul with sufficient transmission redundancy and knowledge
of deployment context. Towards that end, we develop TagAlong, a
protocol for scalable, efficient data transmission on the FindMy net-
work. We implement a proof-of-concept and demonstrate through-
put up to 12.5 bytes/sec and up to a 97% data reception rate.

CCS CONCEPTS
• Networks→ Mobile and wireless security;Mobile ad hoc net-
works.

KEYWORDS
AirTag, Apple, Bluetooth, tracking tags, data transport
ACM Reference Format:
Alex Bellon, Alex Yen, and Pat Pannuto. 2023. TagAlong: Free, Wide-Area
Data-Muling and Services. In The 24th International Workshop on Mobile
Computing Systems and Applications (HotMobile ’23), February 22–23, 2023,
Newport Beach, CA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/
10.1145/3572864.3580342

1 INTRODUCTION
For widespread wireless sensor networks, data backhaul is consis-
tently one of the most challenging and costly deployment hurdles.
State of the art often boils down to manually deploying gateway
infrastructure for each network—indeed, the Internet of Things
(Still) Has a Gateway Problem [13, 15].

Smartphones have consistently held appeal as a potential so-
lution: they are ubiquitous, are sufficiently resource-capable to
service many leaf devices, and are managed by invested users who
keep them powered and online. Early work using dedicated phone
apps as data mules demonstrated feasibility, but the scope of such
muling infrastructure is inherently limited to individuals who elect
to download the app [10]. If such an app were built-in to the phone,
however, suddenly the coverage is all smartphone users. For a brief
window of time, this happened with Google’s Physical Web service

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0017-0/23/02.
https://doi.org/10.1145/3572864.3580342

Figure 1: TagAlong Overview Deployed sensors encode arbi-
trary data in a series of FindMy-compliant advertisements. Nearby
Apple devices hear these, attach their current GPS location, and up-
load the advertisements to Apple’s servers. Our TagAlong service
queries Apple’s servers and decodes the data. The hardware under
TagAlong’s control are highlighted in pink, while the rest of the
hardware is controlled by Apple.

running on all Android phones, and the Freeloader project showed
how to exfiltrate ~1 bit/sec via Eddystone [1]. With the launch of
AirTags and the widespread deployment of Apple’s FindMy ser-
vice, the window is open again and wider: We show how to use the
FindMy protocol as a general-purpose data and services channel for
Bluetooth-enabled sensor nodes, providing both location services
and a data rate of up to 12.5 bytes/sec.

The intended functionality of AirTags and the FindMy proto-
col is to track items that can be lost (e.g. keys, wallet). AirTags
themselves are Bluetooth Low Energy (BLE) devices that broadcast
BLE advertisement packets, which are in turn picked up by nearby
Apple devices that have the “FindMy” application installed.1 These
nearby Apple devices add their GPS location and forward along
the original advertisement to Apple’s servers for later access. To
protect user privacy, FindMy advertisements encrypt their identity
in such a way that the muling device and Apple’s servers cannot
learn anything about the advertising device. This same privacy-
protection is what enables arbitrary data-transmission. Mules do
not know they are ferrying data. It simply appears that there are a
large number of FindMy-enabled devices in the area.

We are not the first to exploit the FindMy protocol for purposes
and devices beyond its originally intended use. Much of this work

1FindMy is installed and active by default on all contemporary Apple devices.

https://doi.org/10.1145/3572864.3580342
https://doi.org/10.1145/3572864.3580342
https://doi.org/10.1145/3572864.3580342


HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA Alex Bellon, Alex Yen, and Pat Pannuto

stands on the shoulders of the OpenHaystack project [8] and the
team’s prior reverse-engineering efforts on FindMy [2]. Similarly,
Positive Security’s SendMy established the feasibility of data ex-
filtration via FindMy [3]. With TagAlong, we investigate what it
would look like to build an actual deployment atop FindMy. What
throughput, what reliability can this one-way, ALOHA channel
achieve? When should devices send messages to maximize recep-
tion rate? How do we scale to thousands of devices sending ar-
bitrary volumes of data? How does TagAlong compare to more
traditional networking? This paper explores these questions and
aims to establish the viability of FindMy-based networking.

2 BACKGROUND AND RELATEDWORK
We establish the background and context needed to understand
how this work builds off of previous work [3]. We then discuss
prior efforts towards commodity wide-area connectivity.

2.1 Background
AirTags (and other FindMy-enabled devices) are meant to be found
when they are “lost". When not near an ‘owning’ device, they bea-
con BLE advertisements, which are picked up by Apple devices
that relay these “lost" announcements to Apple’s FindMy network.
Once paired with an Apple device, AirTags broadcast P-224 public
keys derived from a key pair established during the pairing process.
When any Apple device picks up a FindMy-compliant advertise-
ment, it encrypts its own GPS location with a key based on the
advertised public key, and sends the encrypted data—a “location
report”—to Apple’s servers. The data is then stored in a hash map
which maps the hashed public key to the encrypted location report.
‘Lost device’ owners then query for data from their AirTag based
on the rolling public keys that could have been generated.

Heinrich et al. questioned the security and authentication of
this system and found that they can use arbitrary BLE devices to
pose as AirTags; this provides the first insight that the FindMy
network is not secure [9]. Positive Security then realized that if any
BLE device can send public keys—under ECC encryption—to the
FindMy network servers, then there is a possibility to send and
receive data through the FindMy network. They show that one can
send and retrieve arbitrary messages through BLE advertisements.
We build off of their initial implementation to send data at a much
higher rate through a new encoding and decoding scheme.

2.2 Related Work
It is a monumental effort to provide wide-area coverage. For in-
stance, cellular providers deploy (and maintain) cell towers to en-
sure reliable coverage throughout most inhabited parts of the world.
In lieu of costly fixed infrastructure, several prior systems perform
data muling for sensors nodes with smartphones [4, 10, 12]—when
users install their app.

Success at scale requires buy-in from the general population...or
the device manufacturers who control the OS and firmware on
phones for the general population. Indeed, when Android elected
to silently fetch the UI of PhysicalWeb devices, Adkins et al. showed
how to use the (now decommissioned) NearbyNotifications to trans-
port arbitrary data via Android phones [1]. Through unintended

use of Nearby Notification’s BLE packets, they showed that they
were able to transmit data at an average data rate of 0.1-2.6 bps.

2.3 “Send My”
Positive Security implemented an expanded AirTag functionality
that allowed arbitrary data transmission through their “Send My”
project [3]. Send My allows ESP32 microcontrollers to act as AirTag-
like devices, using surrounding Apple devices to transmit data
bit-by-bit in FindMy-compliant BLE advertisement packets. The
‘packet’ structure embeds a device ID, data index, and one new
bit of information in each advertisement. The data can then be
downloaded through Positive Security’s “DataFetcher” application,
which is built on top of OpenHaystack [7, 8]. While effective as
a proof-of-concept for the notion of data exfiltration via FindMy,
Send My was only ever intended as exactly that: proof it can be
done. With TagAlong, we ask how to do it well.

TagAlong is designed to scale to realistic sensor deployments
with an arbitrary number of devices deployed for an unbounded
duration without limits on message quantity or frequency from
any one device. It achieves greater bandwidth of data muling using
Apple devices and considers techniques to realize an approximation
of reliable transmission on a unidirectional, broadcast-only channel.

2.4 Advertisement-Based Networking
Recent work has shown that withmodest repetition, advertisements
can be a reliable medium [14]. A network of over one hundred
power meters deployed one home found that even in this dense
context, robust data recovery with advertisement-based network-
ing is feasible [5]. We incorporate these lessons in TagAlong and
include modest repetition to achieve robust transmission. We ex-
plore the repetition factor with unplanned, not-100%-duty-cycle
Apple devices as scanners further in our evaluation.

2.5 Example Walkthrough
We present a walkthrough of the TagAlong protocol using the
example from Figure 2 to further clarify the process.

3 THE TAGALONG PROTOCOL DESIGN
The goal of TagAlong is to use the FindMy network to provide
services ‘for free’ to wireless sensor nodes. In particular, we show
how to provide location and data muling services. As shown in
Figure 1, the TagAlong system encodes arbitrary data in the P-224
public keys contained in standard FindMy BLE advertisements
packets. Nearby Apple devices, believing these advertisements to
be real FindMymessages, will follow the usual process for handling
FindMy packets. They will encrypt their GPS location using the
information in the FindMy advertisement to construct a location
report and will upload this to Apple’s servers. Location reports are
stored in a hash table on Apple’s servers, keyed with the (hash of
the) P-224 public key from the FindMy BLE advertisement packet.
The server provides an API to query for specific P-224 public keys to
retrieve their associated location reports; this API—in conjunction
with our custom TagAlong packet format—can be used as a sort of
oracle to progressively decode the message originally encoded in
the BLE advertisement.



TagAlong: Free, Wide-Area Data-Muling and Services HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA

Figure 2: The TagAlong Protocol. TagAlong uses standard FindMy primitives to uniquely identify each sensor device. Instead of varying
the ephemeral key by time, TagAlong uses new ephemeral keys to signal a new message. Data is the chunked into 𝑛 bits; 𝑛 = 8 in this
example. Each chunk is encoded by XOR-ing the prior key with the new data, and then a tweak value is incremented until the public key
becomes a valid P-224 key. Progressive data chunks ‘slide’ along the key to create a unique path through the keyspace for this payload. In this
figure, each colored rectangle represents one iteration of calculating the public key to advertise, and the bolded key is what is transmitted.

An overview of the TagAlong encoding protocol is shown in
Figure 2, which also compares TagAlong to normal AirTag function-
ality. Succinctly, sensors use the out-of-the-box FindMy protocol
(albeit with modified timing) to uniquely identify themselves and to
indicate a new data transmission by rolling to the next ephemeral
FindMy device key. TagAlong then encodes and later decodes data
by using knowledge of the previously sent public key. We contin-
uously XOR the 28 byte public key between the current and the
previous key with new data. The result of the XOR is fragmented
payload data that is used to create the full message. This technique
reduces the need to query and search for random public keys that
might have been received by the FindMy network servers.

3.1 Link Layer Limitations
FindMy uses non-connectable BLE advertisements. As a conse-
quence, TagAlong is necessarily a uni-directional communication
medium—there is no acknowledgement channel. This is consistent
with the baseline functionality of AirTags and other devices on the
FindMy network, which also have no acknowledgement of received
packets. While additional infrastructure could provide downlink
services, we are interested in understanding what can be done us-
ing the FindMy network as it is deployed today without additional
deployment-specific infrastructure.

3.2 How to Encode Data?
Uncontrolled mules move in unknown ways. Thus, wireless sensor
nodes need to send data quickly. Prior work by Positive Security
encoded a changeable device ID in each advertisement [3]; this
has very high overhead. Instead, we rely on the original FindMy
protocol which uses an Apple device’s private key to generate
ephemeral public keys; each public key serves as a unique ID for
a particular BLE device. Using this ephemeral key as a root, we
then XOR chunks of data using the process illustrated in Figure 2.
This new value is likely not a valid P-224 public key and would
be discarded by Apple data mules. Thus, a “tweak" field is added,
which increments until a valid public key is found. This data chunk
is advertised, and then the process repeats until the whole message
is sent.

3.3 Identifying Devices & Unique Messages
If every recoverable advertisement must be a unique P-224 public
key, how can the sender be identified? Fixing bytes of the key as
‘device ID’ bytes (a la Send My) limits both the space of possible
valid public keys and caps the number of unique devices deployable
globally. Instead of trying to embed IDs, TagAlong recognizes that
this problem is already solved by the original FindMy protocol.
Recall, its whole purpose is to find lost devices.

The rolling public keys normally generated by AirTags can be
used as a unique device identifier. The original FindMy design
updates the key once a day and least significant bytes every fifteen
minutes. TagAlong builds off of FindMy’s design and uses the
daily rolling public keys to indicate device liveness and uses the
least-significant-bytes incrementation to indicate the start of a new
message. The data recovery system begins with a FindMy query
as originally designed to assess whether (1) the device has been
seen at all in the last day and (2) how many messages a device has
sent in a given day. For each message, the data recovery system
will then query for subsequent keys that make up the data for that
message.

3.4 Ferrying the Data
For each chunk of data, sensors broadcast out a FindMy-compliant
BLE advertisement with the encoded data embedded inside the
P-224 public key. Any Apple device that is nearby (and has opted-
in to the FindMy network) is continuously scanning for FindMy
advertisements. Since the TagAlong BLE advertisements conform to
the format of a normal FindMy advertisement packet, nearby Apple
devices will process them as they would any other FindMy packet,
unaware of the data encoded in TagAlong’s packets. Following the
standard FindMy process, the Apple device will create an encrypted
location report—described in detail by Heinrich et al. [9]—and then
upload it to Apple’s FindMy servers, where it is stored in a table
keyed on the P-224 public key. Every Apple device that picks up the
initial FindMy BLE advertisement will create and upload a location
report. So, for a given P-224 public key broadcasted by a FindMy
device, there may be multiple location reports associated with it.



HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA Alex Bellon, Alex Yen, and Pat Pannuto

3.5 How to Discover and Recover Data?
Apple provides an API that allows authenticated Apple accounts
to query the Find My servers for specific P-224 public keys to get
the associated location reports. In standard FindMy, the P-224
public keys included in the AirTag’s FindMy packets are calculated
deterministically. When an owner wants to find their AirTag, they
query this API with a time range to look for location reports as
well as a list of the hashes of P-224 public keys that the client wants
location reports for. Any location reports that exist for a given
public key are then returned. It is up to the client to decrypt and
extract the GPS location to locate their device.

For TagAlong, the key part of this system is that the API only
returns location reports if the queried-for public key exists on the
server. TagAlong uses this property to craft a pseudo-oracle out
of the API: to determine the next chunk of the encoded message,
simply query the API for all possible values for that chunk (i.e. for
the 𝑖th chunk of the message, calculate all 2𝑛 possible public keys
for the chunk size 𝑛). Whichever public key has the most location
reports is the public key encoding the next chunk of data. Since
the API takes in a list of possible public keys as input, there is only
one API query per chunk containing all possible public keys. In our
testing we were never rate-limited with our queries, even when
sending hundreds of queries per minute. If Apple were to institute
rate-limiting on the number of queries, one could simply increase
the chunk size in order to get more data per query and space out the
queries temporally to account for the increased time to calculate
all 2𝑛 possible keys for a larger 𝑛.

A normal AirTag broadcasts a new public key in its BLE adver-
tisements every 15 minutes when in “lost” mode [9], calculated
deterministically from the root keypair it shares with the owning
device. TagAlong instead uses these public keys (public_key_0,
public_key_1, etc. in Figure 2) to denote the start of new messages
from a specific edge device (“modem”). To begin, a TagAlong device
will broadcast public_key_0. Since the public keys are determinis-
tically generated, the desktop client using TagAlong will be able
to calculate public_key_1 and query the FindMy API for it. The
edge device has not yet broadcast any messages, so the FindMy
API will not return any location reports for public_key_1.

When the edge device is ready to send a new message, it broad-
casts public_key_1. It then takes the payload to be encoded and
adds a terminating 0x00 character, converts it to a bitstring, divides
that bitstring into chunks of size 𝑛, and pads the data to the correct
length with zeroes; in this case, 𝑛 = 8 for simplicity. Starting with
the end-most chunk—chunk_0—and working left chunk by chunk,
the current chunk, chunk_i, is XORed with the previous chunk’s
encoded public key. For the chunk_0, this is public_key_1, which
is XORed with 0xef. The “public key” that we have filled with
encoded data might no longer be a valid P-224 public key, so we
increment a counter in the front of the “public key” until it is a
valid P-224 public key. Once valid, it is broadcasted in a properly
formatted FindMy BLE advertisement packet and the process is
repeated for the entire payload.

Meanwhile, the desktop application’s query for public_key_1
will succeed once the BLE advertisement denoting the start of a
new message gets to Apple’s servers. The desktop application will
begin decoding the message by mirroring the process the edge

device follows to encode and send the message. It will search for
the end-most chunk by calculating all 2𝑛 = 28 = 256 possible
values for the first data-bearing public key the edge device could
have sent. Note that this search must both XOR possible data and
increment the tweak value appropriately: 0x00...00, 0x00...01,
up to 0x00...ff. One of these calculated keys will be the correct
public key, 0x0002...ef. While calculating all the possible public
keys, it will also calculate the corresponding chunk value for each
possible public key so it does not have to extract that data from the
location report. The application will then query the FindMy API
for the list of all 256 calculated possible public keys. The response
from the API should be a large number of location reports for the
correct public key, 0x0002...ef, and either zero or a small number
of reports for any other public keys (due to random bit errors/actual
AirTag public keys that happen to collide). The public key with the
most associated location reports represents the encoded chunk of
data, and the work begins on the next chunk. This process ends
once a 0x00 byte is decoded; the bitstring is completely recovered
and can be converted back to the actual payload.

3.6 Corner Cases
TagAlong does not encode indices for the chunks of data. This
results in some corner cases, such as determination of the end of
a message. Our proof-of-concept ends messages with a null byte
(0x00). However, if the data being transmitted were to include 0x00
as meaningful data, this could lead to problems.

To send generic data, the byte pattern to signal the end of a
message could be changed to a value that is not expected to appear
in the data. TinyOS recommends sentinel bytes of 0x7D or 0x7E as
they are the least common values in real-world empirical sensor
data [11]. These bytes can then be used for framing or byte-stuffing
(as done in TinyOS’s Active Messages) with minimal overhead.

Another corner case is the transmission of a chunk of all 0s. In
principle, chunk lengths may range from 1-8 bits. Chunks of all 0s
are more likely to occur the smaller the chunk size is, but this does
not necessarily mean an entire 0x00 byte is transmitted. Since the
data to be transmitted is XOR-ed with the previous advertisement’s
public key to create a new public key, XOR-ing a value of all 0s will
result in the same public key. In this case, TagAlong would send
out the same advertisement two rounds in a row.

Luckily, because of TagAlong’s packet format, this is not an
issue. Since new chunks of data are successively XOR-ed with
the previous advertisement’s public key, one needs to “solve” the
previous advertisement’s value before working on the next one.
Thus decoding only queries for keys for one chunk at a time. With
an all 0 chunk (at position 𝑛), even though the previous chunk’s
public key is the same, TagAlong is only varying one chunk at a
time and will only pay attention to the 𝑛th chunk of the public key.
As it queries for all 2𝑥 possible values of the chunk (where 𝑥 is the
chunk bit length), TagAlong will decode all bytes including 0x00.

4 IMPLEMENTATION
Our complete implementation of both leaf-device firmware and
data recovery engine are available on GitHub at github.com/alex-
bellon/tagalong. We modify both the Send My firmware and the
DataFetcher application to implement the TagAlong protocol.

https://github.com/alex-bellon/tagalong
https://github.com/alex-bellon/tagalong


TagAlong: Free, Wide-Area Data-Muling and Services HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA

Table 1: DRR for 1000Messages Sent to Single Phone.We place
the ESP32 in a Faraday cage with one iPhone, send 1000 unique
packets 1, 2, or 5 times, and then remove the iPhone so it can upload
the packets to FindMy servers. This is performed five times for
each configuration. The table shows how many of the 1000 unique
packets made it to the FindMy servers.

Message Sent 1x Message Sent 2x Message Sent 5x
Trial 1 108 535 490
Trial 2 131 202 512
Trial 3 20 620 236
Trial 4 3 572 123
Trial 5 25 633 747

Data recovery begins with a standard FindMy request for all
the locations a device was seen at during the day. Each location
is the root of a data discovery search, which iteratively searches
the possible 2𝑛 keys to see which ‘device’ (i.e., unique public key)
was seen and reported to Apple servers in order to recover the next
chunk of data. Repeating this process for each successive chunk
allows the DataFetcher program to completely recover the data.

5 EXPERIMENTAL RESULTS
Does this really work? Can anyone simply deploy BLE devices with
carefully crafted advertisements and recover meaningful data? We
find that with modest redundancy in transmission and especially
in higher-traffic areas, ‘free’ backhaul is readily available today.

5.1 Data Reception Rate
We evaluate reliability through data reception ratio (DRR) from
ESP32 devices sending out advertisements to see if the data is re-
ceived on the FindMy network servers. We perform these DRR
experiments by sending 1000 unique advertisements up to 5 times
in different conditions; these include (1) howmany times a packet is
sent and (2) how many Apple devices are around for a total of 30 tri-
als. We summarize our reliability results in Table 1 and Table 2. The
reliability of TagAlong is highly dependent on the number of Apple
devices in the ESP32’s vicinity, but even having a single iPhone in
range can provide a decent communication channel. When only one
iPhone receives BLE advertisements, the DRR ranges from 0.03% to
74.7%, depending on how many times each unique packet was sent.
When the BLE advertisements are broadcasted in a busy room, the
DRR ranges from 53.1% all the way up to 97.2%. Given the preva-
lence of Apple devices in schools, office buildings, urban areas, and
transportation hubs, TagAlong can be a promising communication
channel.

5.2 Throughput
Under the deployment context for TagAlong, throughput is critical.
Muling devices may only be in range briefly as strangers walk by
devices. As such, TagAlong devices should maximize their data-
per-packet. On the broadcasting side (i.e., the ESP32), the largest
factor in throughput is the number of times the tweak value must
be incremented before the P-224 public key encoding that encodes
a part of the message becomes valid; each increment requires a new
call to the cryptography library to verify whether the public key is

Table 2: DRR for 1000 Messages Sent in a Busy Location. We
send 1000 unique packets 1, 2, or 5 times in a room with roughly 20-
30 Apple devices. This is performed 5 times for each configuration.
The table shows how many of the 1000 unique packets made it to
the FindMy servers.

Message Sent 1x Message Sent 2x Message Sent 5x
Trial 1 531 739 972
Trial 2 672 644 959
Trial 3 714 709 913
Trial 4 663 832 920
Trial 5 704 738 971

Table 3: Time required to calculate candidate public keys. For
each payload chunk, the DataFetcher program must calculate all
possible public keys to query the FindMy servers for them. The
amount of time spent on this task varies by chunk length.

𝑛 (bits) 1 2 3 4 5 6 7 8
Time (ms) 4.43 9.33 17.92 34.32 65.89 131.5 287.6 511.6

valid or not. In our experimentation, we observed that the tweak
value was never incremented more than 10 times, with most public
keys only needing to be incremented 2 or 3 times. For transmit time
measured from the ESP32, test messages of 10 bytes of data with a
chunk size of 𝑛 = 8 bits takes 0.8 seconds to transmit on average,
which gives an output rate of 12.5 bytes/second. This only measures
what can be broadcast from the ESP32, not end-to-end throughput,
as many unknown and uncontrolled variables are introduced when
measuring end-to-end throughput: how often nearby Apple devices
are scanning for FindMy packets, how long until nearby Apple
devices regain an internet connection, when they uploaded their
location reports, etc.

The largest bottleneck in TagAlong is on the decoding side. To
decode each successive chunk of data, the DataFetcher must query
FindMy servers for all 2𝑛 possible values for a chunk with bit length
𝑛. To do this, the efforts on the advertising side are mirrored 2𝑛
times by constructing the key and then incrementing the tweak
value to make a valid P-224 key. The time to perform this calcula-
tion for different chunk lengths is in Table 3, measured on a 2019
MacBook Pro that runs a modified version of the TagAlong desktop
application to measure only the public key calculation times. While
a larger chunk size may mean more time calculating possible public
keys, it also means fewer chunks to calculate. Additionally, a larger
chunk size requires fewer advertisements, which is less time the
mule device must be in range. The consequence is that more queries
are needed to decode the entire message.

5.3 Power Consumption
As a prototype, our ESP32 implementation is not energy-optimized.
However, to get a sense for the energy costs of TagAlong, we present
a power profile in Figure 3 for the transmission of a 10-character
message. The baseline current of the idle ESP32 is 32mA, and each
large spike in current (~140-150mA) occurs when a BLE packet is
transmitted. The 47mA sustained, elevated current in between the
spikes is due to the ESP32 calculating the “public key" and verifying



HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA Alex Bellon, Alex Yen, and Pat Pannuto

0 250 500 750 1000
Time (ms)

50

100

150

Cu
rr
en
t(
m
A)

Figure 3: Current draw when broadcasting a 10-character
message with chunk size of 8 (i.e. one BLE advertisement per
character).

that it is indeed a valid P-224 public key. The length of the time
spent calculating the keys is proportional to how many times the
tweak value needs to be incremented. In this specific case, most
of the public keys’ tweak values only need to be incremented 1-2
times, but the 4th public key’s tweak value needs to be incremented
8 times, hence the longer gap before its transmission.

6 DISCUSSION
Using Apple devices as data mules not only provides a way for
commodity BLE devices to transmit data in the real world but also
shows what smartphones could provide for wireless sensor nodes
if they explicitly support data muling. However, while there are
interesting questions and new ideas that surface from this paper,
there are also ample concerns and further considerations for both
Apple and BLE devices to bring this idea further to fruition.

6.1 Ethics and Concerns
TagAlong imposes an increased battery demand on third-party de-
vices due to increased attenztion to a larger proportion of salient
BLE advertisements. Additionally, the large number of ‘lost’ TagAlong
devices will result in higher data usage and possibly higher data-
plan costs for unwitting device owners.

There is also concern over how long this current faculty for
third-party ‘valid tags’ and high-volume querying for ‘lost’ tags
will persist before Apple imposes limitations (more realistically for
the latter). If Apple revises the key generation scheme to include
some form of authentication from trusted Apple silicon, then the
network will no longer be accessible to commodity BLE devices,
which will inhibit data exfiltration with non-Apple devices via
Apple’s FindMy network.

6.2 Incorporating a Scanning Capability
As there is no acknowledgement channel, devices must send ad-
vertisements when there is a FindMy-capable device nearby. Prior
work, such as Freeloader [1] and Positive Security’s Send My [3],
simply beaconed continuously, hoping that eventually a device
would come by. While effective, this is very inefficient and is not
well suited to energy-constrained, wireless sensor nodes.

Fortunately, Apple devices are extremely chatty, which allows
TagAlong to efficiently detect their presence. This is primarily in

support of Apple’s Continuity protocol—the system designed to
enable seamless handoff of interactive user context between Apple
devices. Most advertise roughly three times per second [6]. If an
Apple device is nearby—detected by scanning for manufacturer IDs
in nearby advertisements—TagAlong can then send enough copies
of its advertisements when an Apple scanner will likely hear them.

This allows for a higher probability of payload delivery, increas-
ing with the larger number of Apple devices nearby. The downside
to incorporating scanning within BLE devices is more energy con-
sumption, considering that it is more costly to listen to advertise-
ment packets than to send them. However, we note that this benefit
and drawback depends on the type of environment devices are
in too. A BLE device that advertises in an area densely populated
with Apple devices might not need a scanning capability, whereas a
BLE device deployed in an area with sparser human activity might
benefit from scanning for Apple devices before sending data.

6.3 Location and Time Services
Location and time comes implicitly with the FindMy design. Some-
thing like dedicated GPS is often too expensive in dollars or energy
to justify for most sensors. However, location and time metadata is
usually critical for robustness and maintenance for real-world de-
ployments. While the location retrieved from a nearby Apple device
might not accurately represent the device’s exact location, there is
an opportunity to achieve coarse-grained location, as opposed to
no location data at all. Given BLE requires less energy than GPS,
BLE could be used to obtain a initial coarse-grained estimation of
location before getting more accurate measurements from GPS.

There is also an opportunity to acquire time metadata. Apple
devices timestamp packets to mark when the device was seen. This
could allow devices to retrieve time for wireless sensor nodes that
lack a real time clock. However, this timestamp might only reflect
when the data was sent, not when the sample was collected. As
such, a terminator byte could be used to indicate whether a the
data is fresh (i.e., sent immediately) or stale (i.e., delayed).

7 CONCLUSION
Data-muling through devices is an idea that has existed for over a
decade. It has continuously been stymied by limited user uptake
constraining the availability of real-world mules, however.We show
that today all Apple devices can serve as data mules, which will
transmit data for wireless sensor nodes at a rate of up to 12.5 bytes/sec.
By tapping into the Apple infrastructure to utilize their devices and
network to ferry data, we can begin to think about the potential
to use the existing smartphone infrastructure as a backbone for
wide-area data collection from wireless sensor nodes.

ACKNOWLEDGEMENTS
This material is based upon work supported by the National Sci-
ence Foundation Graduate Research Fellowship Program under
Grant No. DGE-2038238. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation. We thank the reviewers and our shepherd for
their time and thoughtful feedback.



TagAlong: Free, Wide-Area Data-Muling and Services HotMobile ’23, February 22–23, 2023, Newport Beach, CA, USA

REFERENCES
[1] J. Adkins, B. Ghena, and P. Dutta. Freeloader’s guide through the Google galaxy. In

Proceedings of the 20th International Workshop on Mobile Computing Systems and
Applications, HotMobile ’19, page 111–116, New York, NY, USA, 2019. Association
for Computing Machinery.

[2] Apple Platform Security. Using Find My to locate missing Apple devices. https://
support.apple.com/en-gb/guide/security/sece994d0126/web, Feb 2021. Accessed:
Nov 2022.

[3] F. Bräunlein. Send My: Arbitrary data transmission via Apple’s Find My network.
https://positive.security/blog/send-my, May 2021. Accessed: Nov 2022.

[4] A. Faggiani, E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio. Smartphone-based
crowdsourcing for network monitoring: Opportunities, challenges, and a case
study. IEEE Communications Magazine, 52(1):106–113, 2014.

[5] B. R. Ghena. Investigating Low Energy Wireless Networks for the Internet of
Things. PhD thesis, University of California, Berkeley, 12 2020. https://www2.
eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-209.html.

[6] H. Givehchian, N. Bhaskar, E. R. Herrera, H. R. L. Soto, C. Dameff, D. Bharadia,
and A. Schulman. Evaluating Physical-Layer BLE Location Tracking Attacks
on Mobile Devices. In 2022 IEEE Symposium on Security and Privacy (SP), pages
1690–1704, 2022.

[7] A. Heinrich and M. Stute. OpenHaystack. https://github.com/seemoo-
lab/openhaystack, 2021. Accessed: Nov 2022; Commit: b65a6e6.

[8] A. Heinrich, M. Stute, and M. Hollick. OpenHaystack: A Framework for Tracking
Personal Bluetooth Devices via Apple’s Massive Find My Network. In Proceed-
ings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile

Networks, WiSec ’21, page 374–376, New York, NY, USA, 2021. Association for
Computing Machinery.

[9] A. Heinrich, M. Stute, T. Kornhuber, and M. Hollick. Who Can Find My Devices?
Security and Privacy of Apple’s Crowd-Sourced Bluetooth Location Tracking
System. Proceedings on Privacy Enhancing Technologies, 2021(3):227–245, 2021.

[10] U. Park and J. Heidemann. Data muling with mobile phones for sensornets. In
Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems,
SenSys ’11, page 162–175, New York, NY, USA, 2011. Association for Computing
Machinery.

[11] The TinyOS Developers. Serial/HDLC. http://tinyos.stanford.edu/tinyos-wiki/
index.php/Serial/HDLC. Online; accessed 14-October-2022.

[12] X. Wu, K. N. Brown, and C. J. Sreenan. Analysis of smartphone user mobility
traces for opportunistic data collection in wireless sensor networks. Pervasive
and Mobile Computing, 9(6):881–891, Dec. 2013.

[13] T. Zachariah, N. Jackson, and P. Dutta. The Internet of Things Still Has a Gateway
Problem. In Proceedings of the 23rd Annual International Workshop on Mobile
Computing Systems and Applications, HotMobile’22, page 109–115, New York, NY,
USA, March 2022. Association for Computing Machinery.

[14] T. Zachariah, N. Jackson, B. Ghena, and P. Dutta. ReliaBLE: Towards Reliable
Communication via Bluetooth Low Energy Advertisement Networks. In Proceed-
ings of 2022 International Conference on Embedded Wireless Systems and Networks,
EWSN’22, 2022.

[15] T. Zachariah, N. Klugman, B. Campbell, J. Adkins, N. Jackson, and P. Dutta. The
Internet of Things Has a Gateway Problem. In Proceedings of the 16th Workshop
on Mobile Computing Systems and Applications, HotMobile’15, New York, NY,
USA, Feb 2015. ACM.

https://support.apple.com/en-gb/guide/security/sece994d0126/web
https://support.apple.com/en-gb/guide/security/sece994d0126/web
https://positive.security/blog/send-my
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-209.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-209.html
http://tinyos.stanford.edu/tinyos-wiki/index.php/Serial/HDLC
http://tinyos.stanford.edu/tinyos-wiki/index.php/Serial/HDLC

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work
	2.3 ``Send My''
	2.4 Advertisement-Based Networking
	2.5 Example Walkthrough

	3 The TagAlong Protocol Design
	3.1 Link Layer Limitations
	3.2 How to Encode Data?
	3.3 Identifying Devices & Unique Messages
	3.4 Ferrying the Data
	3.5 How to Discover and Recover Data?
	3.6 Corner Cases

	4 Implementation
	5 Experimental Results
	5.1 Data Reception Rate
	5.2 Throughput
	5.3 Power Consumption

	6 Discussion
	6.1 Ethics and Concerns
	6.2 Incorporating a Scanning Capability
	6.3 Location and Time Services

	7 Conclusion
	References

