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Abstract—
Smart and connected devices offer enormous potential to

enable context-aware, localized, and multi-device orchestrations
that could substantially increase the reach and utility of com-
puting. The growth of these applications has been hampered,
however, as devices, their data, and their control have been
largely sequestered to their own vendor-specific APIs, clouds,
and applications—a largely stove-piped state of affairs. Where
barriers between devices have been pierced, the connections
often occur between vendor clouds, affecting the latency, privacy,
and reliability of the original application, while simultaneously
increasing complexity. Locally executing applications have not
materialized as devices with incompatible communication pro-
tocols, inconsistent APIs, and incongruent data models rarely
communicate. We claim that what is needed to unlock the
application potential is an architecture tailored to facilitating
applications composed of networked devices.

Our proposed architecture addresses this by providing a port-
based abstraction for devices using a small wrapper layer. This
device abstraction provides a consistent view of devices, and em-
beddable runtimes provide existing applications straightforward
access to devices. The architecture also supports device discovery,
shared interfaces between devices, and an application specifica-
tion interface that promotes creating device-agnostic applications
capable of operating even when devices change. We demonstrate
the efficacy of our architecture with two application case studies
that highlight the abstraction layers between applications and
devices and employ the embeddability of our system to add new
functionality to existing systems.

To the extent possible under law, the authors have waived all copyright and related or neighboring rights to this work. This work is published from the United States.

I. INTRODUCTION

Low power sensing systems, wearables, smart devices, and
other connected devices—both from the research community
and from the commercial realm—have traditionally formed
homogeneous networks of identical devices or devices from
the same origin [13], [14], [29], [32]. This homogeneity does
not prevent these devices from achieving their intended goals,
but typically they use applications that are single purpose or
directed by the original vendor, often using a vendor-specific
mobile application, vendor-supplied cloudlet, or cloud service.
While this has been a successful model, as devices become more
prevalent, implementation techniques become better understood,
and standards become widely implemented, a shift is beginning
to emerge: from building devices to building applications.

The motivation behind the shift is clear: opening lines of
communication across vendor boundaries will enable richer
experiences and applications than are currently possible. The

beginnings of this trend are materializing as a range of devices,
such as smart deadbolts, washing machines, and lighting,
advertise compatibility with Nest [3] to immediately increase
their functionality and appeal to customers who already own
the thermostat [9]. Other possible applications motivate this as
well and are infeasible without cross-vendor device interaction.
One can envision applications such as automatic machinery
lockout based on localization of employees, end-to-end asset
environmental metrics and management, or even a mixed-reality
view of assembly lines that overlays health and status.

While conceiving these applications can be straightforward,
reasoning about how to build them is less so and raises many
challenges and requirements. 1) There must exist a common
methodology for interacting with devices. Conceptually, devices
often provide simple functionality (“how many steps have I
taken”), but programmatically expressing this is more difficult.
2) Device communication protocols vary, and some interface
logic will be required. It should be minimized, however, and
not require a custom adapter between each pair of devices. 3)
The applications must execute inside of some context. Browser-
based web applications, for instance, execute mainly in the
cloud, but it is less clear where low power device-to-device
applications should execute. 4) While this genre of applications
is inherently local, the cloud may still be useful, though it raises
questions concerning reliability and privacy.

Current approaches designed to work with today’s devices
suffer from many of these issues. Application support from
manufacturers is often tied to vendor gateways or clouds,
meaning that device data for applications must be routed
through them. This leads to applications which are cumbersome
to scale, often exhibit high execution latency due to round
trips to the cloud, reduce privacy by routing all data through
the cloud, and are exposed to failure due to network outages.
So-called vendor-agnostic systems such as IFTTT [1] and
Zapier [10] connect vendor clouds together, still relying on
each vendor’s vertical device-to-cloud silo, and expose device
information to yet another cloud service. Newer device-level
or locally executing approaches, such as AllJoyn [11] and
the Thing System [7], require complete participation from
devices or are monolithic approaches that support limited
execution scenarios. In the enterprise context, this absence
of interoperability manifests as limitations on real options for
IT investment and has slowed adoption [25].



We advocate for a new architecture for structuring, organizing,
and implementing applications of connected devices. This
architecture attempts to address the shortfalls of current
approaches by providing a core “kernel” abstraction around
devices and focusing on facilitating interactions between
devices. Each device provides and extends common interfaces
for device classes, so, for instance, all thermostats can be
accessed with the same base API. We carefully design the
abstraction layers to encourage flexibility when devices change,
execution environments change, or applications change.

The architecture is structured in three main layers: device
representation, device communication abstraction, and applica-
tion interface. We simplify devices and encourage consistency
by modeling devices as a collection of ports and a bundle
of internal state. Device control and feedback occurs through
the ports, and the cache of device state simplifies application
design. This model is implemented for devices with small
snippets of code that abstract the low-level specifics of a device.
Abstraction code is designed to be transparently embedded
inside applications. A system library handles finding, fetching,
loading, and executing the snippets, and allow the snippets
to execute in a variety of contexts: on a user’s device, in a
cloudlet, in the cloud, or directly on a device. Applications can
be described independent of the mechanism they execute on
top of. Additionally, applications can be created independently
of specific devices, by relying on shared and well-specified
device interfaces for classes of common devices.

The balance between structure and flexibility of the architec-
ture makes it well suited for building applications of connected
devices. The known interfaces, format and content of the code
snippets, and system library interface provide structure that
expands application functionality while eliminating duplicated
code, encouraging rapid development of device-specific code
snippets, and simplifying application development. Other as-
pects of the system, including the ability to write arbitrary
code to interact with device-specific APIs and protocols, and
to execute the snippets on multiple platforms, provide the
adaptation layer to handle the realities of this application space.
Expecting all devices to natively conform to the same protocols
and APIs, relying on a common gateway to communicate with
all devices, or restricting application logic to the cloud are
all approaches that are unlikely to be successful. We argue a
successful architecture must be able to adapt to present and
future variability while providing a consistent framework to
build applications against.

To test and explore our architecture we provide a prototype
implementation of each of the layers. As every device requires
a code wrapper, we make an extensive effort to minimize the
burden of authoring these snippets. Further, our implementa-
tion includes supporting infrastructure for hosting, grouping,
displaying, and debugging device specific code snippets. We
provide the system library that implements several execution
environments for running the snippets. We close with two
case studies, examining two applications that leverage different
aspects of our infrastructure to provide concrete examples
of the advantages provided by our architecture. The first
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Fig. 1: Layered application architecture. An application
specification describes a means of achieving a desired be-
havior. Specifications are runnable, instantiatable constructs
and achieve the end goal of realizing devices interacting and
operating in an intelligent manner. The adapter layer provides
a means of abstracting the functional behavior of devices from
details of their exact interfaces and implementations. Teasing
out application creation from specification decouples the means
of achieving desired behavior from an abstract concept of what
should happen. We advocate for these abstractions as the right
balance of modularity and expressivity for creating meaningful
applications with connected devices.

creates localized responsive lighting using power meter sensors.
The application is specified once and implemented twice
to demonstrate flexibility as devices change. The second
shows how the infrastructure can be integrated into existing
applications and how device discovery and generic device ports
ease the burden of writing portable applications.

II. OVERVIEW

Today, low power and locally networked devices employ
a range of interaction paradigms to enable user control,
cloud-based control, and device-to-device communication. The
breadth of patterns is an artifact of enabling a wide range of
applications that leverage different aspects of local gateways,
user devices, cloud services, and end devices. A common theme
throughout the patterns is the presence of an adapter, or some
gateway or software library that implements the communication
protocol supported by a given device. These adapters are often
built into smartphone apps, cloud services, and gateways in a
device and application specific fashion.

Our architecture supports the range of application-enabling
interaction patterns but focuses on defining abstractions be-
tween the relevant components that allow for reusable adapters.
We claim that a well-specified abstraction layer for devices
will enable modular and reusable adapters that are critical for
building meaningful applications with connected devices. These
adapters can then run in a range of contexts depending on what
best suits the environment and application: on a smartphone,
on a laptop, in a local cloudlet, in a remote cloud, or even
directly on a device itself.

The architecture’s main purpose is to support and enable
applications. Our system is a collection of support structures
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Fig. 2: Heterogeneous interactions require adaptations.
Applications involving communication between heterogeneous
devices require either global standardization or an adaptation
layer, on the source device, the destination device, a local
gateway (cloudlet), or in the cloud. Our architecture simplifies
these interaction patterns by providing standardization for these
adaptations, allowing the adaptation of seamlessly move to
an appropriate execution context based on device or network
capability and application requirements.

that both aid creating portable applications and provide a
framework for new devices to easily integrate into applications.
The abstractions provided by the architecture, shown in Figure 1,
allow application descriptions to be decoupled from application
implementations, creating a clean separation between the
myriad possible methods for constructing applications: visual
block editors, natural language processors, or online learning
algorithms, for example, and the abundance of possible imple-
mentation strategies: directly linking devices, coordinating with
a cloudlet, or distributing computation on available resources,
for example. The ultimate system goal is to facilitate authoring
applications the are constrained to a specific behavior but not
to currently available resources or a specific set of devices.

III. BACKGROUND & RELATED WORK

Our system builds on the foundation laid out by Latronico et
al. who first introduced accessors, an actor-model representation
of networked devices [24]. We adopt the principle of their acces-
sor building block, although we modify the implementation to
allow addressing some of the open questions from the original
accessor work, including search and discovery of accessors,
versioning, static analysis, and automatic resource management.

A. Device Abstractions

For heterogeneous devices to interoperate, either all net-
worked devices must adhere to a global (future-aware!) appli-
cation layer standard or more realistically somewhere some
adaptation code must execute. Figure 2 shows the typical
placement of these adaptations, at one or both of the end
devices, on a supporting gateway or cloudlet, or in the cloud.
There are several competing device abstraction strategies that
impose different expectations on where these adaptations are
implemented and as a consequence what types of device-to-
device interactions are possible. We ultimately select and extend
accessors as they afford the most flexibility for the instantiation
of adaptations and device interaction patterns.

The Thing System provides a web server that presents a
common GUI for interacting with a range of devices [7]. To inte-
grate devices, a dedicated Thing System server runs JavaScript
libraries for each device, on a local cloudlet. Alternatively,
devices can implement the Thing Sensor Reporting Protocol [8]
or the Simple Thing Protocol [6] to directly connect to the
central server, or Steward. In all cases, however, the goal is to
integrate the device into the Steward. The Steward federates
all communication and is responsible for all device discovery.

AllJoyn pushes towards a more distributed approach [11].
Conceptually, AllJoyn takes the established DBus protocol
for inter-process communication and extends it to inter-device
communication. As a message bus, AllJoyn does enable direct
device-to-device discovery and communication, however, the
system requires buy-in from all devices on the bus, and only
devices on the same logical bus can communicate. While nodes
can proxy, scaling AllJoyn in practice remains an open question.

MTConnect is an open standard specially designed to meet
the requirements of the manufacturing industry [2]. It can
enhance the data acquisition capabilities from equipment in
manufacturing facilities. It can also expand the use of data
driven decision making in manufacturing operations and aims
to shift software applications atop manufacturing equipment
towards a plug-and-play environment, reducing the integration
cost of software systems. However, one major limitation for
MTConnect is the read-only method allowing monitoring of
the asset [12], which provides the manufacture no capability
for control of the asset. Another limitation to MTConnect is
the non-adoption of PMC data and tooling in the specification.
The analysis of PMC and tooling data is highly critical to
various visualization and optimization processes. Ultimately,
MTConnect’s structure limits its scope for use in practice.

OPC Unified Architecture (OPC-UA) is a platform indepen-
dent service-oriented architecture that provides machine to ma-
chine communication for industrial automation [5]. It focuses on
communicating with industrial equipment and systems for data
collection and control. The architecture supports multi-platform
implementations, scalability, multi-threaded operation, security,
timing controls, and chunking of big datagrams. However, the
major drawback of the architecture is the resulting complexity
that makes it difficult to develop reusable client applications,
those that are independent of the specific implementation of
each server. This suggests that OPC-UA may not achieve its
complete interopability promise in practice. This can be seen
in factories and infrastructures where each project integrates
independently using various PLC technologies delivered with
differing and limited implementations of OPC-UA.

From the research community, the BOSS building control
system [18] leverages sMAP [17] as its principle abstraction
mechanism. In this design, the burden for adhering to the
system abstraction interface is pushed onto the participating
devices or dedicated, pre-deployed proxy servers translating on
behalf of inflexible devices. HomeOS [21] takes the opposite
approach, with a centralized “Device Functionality Layer” that
coalesces devices onto a single “PC” abstraction similar to the
Steward from the Thing System.



B. The Accessor Abstraction

In contrast to these designs, the accessor abstraction shim
acts as a standalone kernel. This makes the decision of where
and how to integrate much more flexible. Applications can
instantiate adapters in their native runtime to communicate
directly with devices that have no knowledge of our ecosystem.
Local cloudlets or intelligent gateways can run shims to act
as proxies for devices. This differentiation is key to the
flexibility facilitated by our design. Pushing abstractions to the
device like AllJoyn and sMAP requires the ability to either
change code on devices or instantiate proxies on their behalf.
Placing abstractions in the cloud like the Thing System or
IFTTT necessarily centralizes device control and information.
Enforcing standards like MTConnect or OPC-UA requires buy-
in and limits opportunities for revision or enhancement. By
creating a shim layer that exposes a clean interface not tied to
any application framework, our model supports significantly
greater flexibility than previous device connectivity frameworks.

To provide a consistent view of a wide range of devices,
accessors model all device interactions as a write or subscription
to well-defined ports or (newly) a read to a device attribute.
Device ports are defined by their direction characteristics
relative to the device itself, either “input” or “observe”, or
both. Ports that support the input direction allow for control
of the device, and observe ports allow the device to generate
events. Attributes allow for the state of the device to be queried.

This model allows for a clean representation of a range
of devices. The ports are designed for push operation, where
computation and control can occur spontaneously in reaction
to events. This facilitates real-time applications and interac-
tions. Human interface devices, environmental monitors, event
detection sensors, and other event-generating devices can all
publish data on their output ports at appropriate times. These
events can then feed to other devices on their inputs, and cause
applications to execute when there is useful computation and
communication to be done. Attributes are designed for a pull
model and allow for queries on devices. Asking for the current
temperature, if the light is on, or what the current power draw
of a house is are all operations that map to reading attributes.

Attributes are an extension not included in the original
accessor design. Broadening the model beyond just ports
by adding attributes makes it better suited for characterizing
the breadth of devices. Implementing queries with ports is
cumbersome for accessor authors, as it requires an input port to
ask the query, and an output port for the response. Decoupling
this is counterintuitive, and the environment the device model
is executing in must determine how to send the output to
the requester, which is often difficult to implement. Instead,
allowing device models to expose attributes which can simply
be read greatly simplifies interacting with devices in practice.

IV. DESIGN

We describe the design of our application architecture, Fig-
ure 3, starting from conceptual abstractions for devices, adding
the components required to enable applications, and building
to our comprehensive system for multi-device applications.

D

Application

Runtime

Device 
Wrapper

Modeled 
device

{ IR }

App 
Logic

{ IR }

Interfaces

Ports

Fig. 3: Architecture overview. Devices are modeled abstractly
using a port and attribute representation, and these are logically
grouped into interfaces. An application leverages the device’s
model by fetching the intermediate representation of a device-
specific wrapper. The wrapper executes inside of a runtime
which is embedded inside of the application. This architecture
allows applications to be structured around a conceptual view of
devices and to push the complexities and specifics of interacting
with devices into the wrapper layer.

A. Device Interfaces and Interface Ontology

Accessors allow ports and attributes to be specified individ-
ually on a device-by-device basis, however, this provides little
standardization between devices. To allow for better grouping
of devices, ports and attributes are grouped into interfaces,
and devices can provide interfaces instead of individual ports.
This difference allows applications that are using this system to
choose and program against devices based on the interfaces they
provide rather than the specific device. Applications or their
runtimes can then fanout commands to all matching devices
instead of needing to enumerate all devices explicitly.

Defining a standard set of interfaces requires defining
an ontology for interfaces and their ports. The design of
this ontology is critical for the utility and usability of our
proposed design as these interfaces are the principle mechanism
that application authors will interact with. Additionally, the
interfaces are only useful if they are capable of encapsulating
the functionality of multiple devices. If every device has a
custom interface, then the system has essentially been reduced
to writing applications for specific devices again.

To balance these design goals, we principally define our
interface tree as a wide, shallow structure. While simple single-
purpose devices may fall neatly in one interface, many devices
will cover multiple interfaces. The shallow tree maximizes the
flexibility of interfaces by maximizing the number of devices
that will fit into a given top-level category. Depth in the tree
allows for specifying more advances features, e.g. all smart
lights can turn on or off but only some can change color.

To simplify the burden of mapping devices to all available
interfaces, we design interfaces to be inheritable to allow for
sharing ports between interfaces. Sharing ports allows for more
advanced device grouping without creating excess ports. As an
example, consider two likely interfaces, /onoff for devices
that can be turned on and off, and /lighting/light for
devices which are lights. To allow lights to be both grouped
in the lighting group and in the group of all devices that
can be power toggled, the /lighting/light interface



Well-known methods that authors implement
init Called when the wrapper is loaded
cleanup Called when the wrapper is unloaded
<Port>.input Called when an input port is written to
<Port>.output Called when an attribute is read
<Port>.subscribe Called to register a callback to subscribe to this port

Framework init API
provide_interface Implement a standard interface
create_port Create device-specific port
create_attribute Create device-specific attribute

Framework Runtime API
get_parameter Get a configuration parameter
load_library Third-party library support
load_dependency Load a sub-wrapper

Built-in libraries
{a}rt.{log,time,color,encode,http,coap,socket,amqp,mqtt,...}

TABLE I: System framework. To minimize learning overhead
and maximize code reuse, we carefully target a minimum frame-
work API. Authors need only declare ports and attributes and
support their actions. Our implementation provides an extensive
runtime (rt) library and a load_library mechanism for
third-party extensions.

inherits from the the /onoff interface. Each light that
provides the /lighting/light implicitly provides the
/onoff interface. This eliminates the need to author both
a /onoff/Power port and a /lighting/light/Power
port, while permitting applications to transparently use either.
The inheritance mechanism supports multiple inheritance as
interfaces can extend multiple other interfaces.

Beyond the standard interfaces, devices may also choose
to add additional ports. These device-specific ports provide
a mechanism for device or vendor specific extensions. With
sufficient popularity, these custom ports provide a pathway for
the introduction of new standard interfaces.

B. Device Wrappers

A device wrapper is our realization of the accessor design
paradigm. Device wrappers are designed to be easy to author,
and our system enables this with a simple framework for
these wrappers. In contrast to the original accessor design,
which requires authors to synthesize both the specification
and device-specific code, we design wrappers to automatically
infer device specifications from the code that implements
the wrapper. Wrappers are authored in JavaScript, chosen
because it has been shown to be both quickly accessible
to novice programmers [26], [31] and viable for advanced
applications [27]. The architecture itself does not require that
the wrappers be in JavaScript, however, and other languages
could be used in the future.

Each device wrapper includes function implementations for
initialization, each port, and each attribute. The init method
is called first to specify the interfaces and device-specific ports
and attributes the device provides, as well as to run any device-
specific setup or connection logic. For each port and attribute,
the wrapper includes functions for when they are read from
or written to. In contrast to more managed systems such as
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Fig. 4: Device wrapper for a synthetic “Home Theater”
device. By including the wrappers for an audio device
and a television with some additional logic, a home theater
interface can be created without reimplementing the logic
for communicating with the contained devices. This example
demonstrates how a synthetic device can be created to provide
a useful interface.

AllJoyn or the Thing System that require authors to integrate
devices into the framework, these function implementations
are the only author responsibilities. Table I summarizes the
complete framework presented to authors.

1) Specialization: A wrapper is designed to encompass a
specific device or product, but often it is desirable to have
specialization for individual instances of a given device, such
as the bridge address of a smart bulb. We introduce the concept
of parameters for accessors, where device-specific parameters
are coupled with the generic wrapper to create a device instance,
which is a unique adapter for a specific device. Decoupling
parameters from ports disentangles writes intended to modify
the underlying devices from writes intended to modify the
device adapter. This permits devices to advertise a generic
interface for control with lightweight parameters, as opposed to
requiring either a centralized database of all device instances
or requiring adapter instantiators to ascertain device-specific
parameters via an unknown third-party mechanism.

2) Synthetic Devices: Wrappers are not limited to a one-
to-one ratio with devices. Often, higher level interfaces may
be more useful than interfaces directly on top of devices. For
instance, consider a “Home Theater” wrapper, as shown in
Figure 4, which abstracts multiple audio-visual devices into
a single device. This wrapper is created by adding a layer of
control logic above the audio device and television wrappers
and correctly mapping ports. Instead of reimplementing the
audio and TV wrappers, they can be included directly in the
home theater wrapper. This method allows the architecture to
support synthetic devices in cases where higher-level interfaces
are more suitable than device-level interfaces.

C. Wrapper Intermediate Representation

While we emphasize minimizing overhead for device wrapper
creators, parsing source code to ascertain device capabilities
burdens developers who wish to use the wrappers in an appli-
cation. To mitigate this issue, our design adds an intermediate
representation that creates a machine (and human) parsable
document that both includes the wrapper code and details the
ports, attributes, interfaces, and other properties of the device.



Furthermore, this intermediate representation is generated by a
compiler that is able to validate the correctness of device wrap-
pers and detect and explain common errors to wrapper creators.
This compilation step additionally simplifies the design of
downstream users of the device wrapper as they can omit many
correctness checks. This intermediate representation allows
application environments to easily understand commonalities
between devices, properties of each port, and meta information
about devices that may be useful to an application.

D. Runtimes

Once a wrapper exists that describes how to interact with
a device, it must actually execute in some context. Runtimes
provide execution environments that run the code snippets and
provide a context-specific interface to the associated device.
The abstraction layer from the intermediate representation
allows for many runtimes across many programming languages
and execution environments. The objective of each runtime is
to present the device wrapper in a native way for the given
environment that a developer would find natural.

Runtimes also provide the device wrapper a standard library
to use when communicating with devices. This provides
support for HTTP, CoAP, UDP, BLE, and other communication
protocols. The intermediate representation includes a list of all
libraries used, allowing the runtime to ensure that all required
resources are available in advance.

E. Device Discovery

For devices to be included in applications they must be
enumerated. Manual device registration may be effective for
small numbers of devices or for accurately grouping devices
by location or user, but in other contexts manually listing
devices may be infeasible. Dynamic applications, for instance,
that intend to operate with a class of devices present in any
space where the application is run may wish to discover
devices dynamically. Also, devices themselves may wish to
discover other nearby devices that provide a particular service
the original device cannot provide.

Device discovery and the corresponding wrapper discovery
are complimentary problems. Existing discovery technologies,
such as Zeroconf (mDNS+DNS-SD) and UPnP [15], [16],
[34], announce the presence of a device and possibly some
services exposed by the device. Advertising the wrapper instead
announces both the presence of a device and its services based
on the interfaces it provides. Critically, it also announces how
to interact with the device. Our architecture leverages existing
device discovery protocols for advertising devices supported
by this architecture to take advantage of existing tools.

F. Applications

Once devices can be modeled, grouped, described, discovered,
and accessed, they can be connected, in an abstract sense, to
create interesting applications. The main property of applica-
tions within the architecture is that application specification
is independent of application implementation, as illustrated in
Figure 5. That is, applications can be described in a generic
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Fig. 5: Application creation structure. The abstraction layers
in the architecture allow applications to be considered at three
levels. The first level specifies the conceptual representation of
an application, and this example uses a logic statement. The
next level is a standard representation of the application that can
be instantiated. The final level are possible implementations.

way and that application description in conjunction with locally
available devices and computational resources can later be
executed. This well-defined abstraction layer between what
an application should do and how it executes is critical for
developing a successful ecosystem around this architecture.
Above the abstraction layer, there may be many methods for
describing applications, such as block diagrams, converting
speech to commands, writing pseudo-code, and interpreting
existing actions to automatically create applications. Allowing
these methods to be explored without including the burden
of application execution aids application creation. Below the
abstraction layer, how an application executes may change as
devices are added, updated, or removed, connectivity options
change, or local computational resources change. Decoupling
the application specification from immediately available re-
sources allows the system to adapt over time and to run the
application in the most reliable and efficient manner.

At a high level, applications in our architecture are described
by connecting the ports of devices to each other. For instance, a
simple conceptual application may be “when I enter my office
turn the air conditioner on” and a very simple version of this
application might be described as connecting the “Door opened”
output of a door sensor to the “Enable” input port of the air
conditioner. In practice, applications will be more intricate than
this simple example and will require additional logic between
devices, data processing at various points, external data inputs,
and other features beyond just devices. Despite this, we argue,
applications are fundamentally composed of interconnected
device ports with some possible intermediate logic.

G. Standardization Vision

Device wrappers and their runtimes are necessary to create
standard interfaces and reusable applications out of widely vary-
ing devices. However, a standard for device communication may
emerge and become prevalent, particularly if interoperability
becomes commercially desirable or advantageous. Based on
our architecture, we advocate for a a REST style interface
based on CoAP [33]. This meshes with our architecture for
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Fig. 6: Implementation overview. A device wrapper is a JavaScript file that imperatively describes the interfaces and ports of
a device and provides code for using them. Users author these device wrappers and commit them to a single, global repository.
They are then compiled into an intermediate representation that validates correctness and extracts rich metadata for automated
tools to leverage. A Host Server is a generic server that hosts compiled wrappers and can be queried for available wrappers.
Device instances—the combination of a generic wrapper and parameters for a specific instance of a device—integrate with
Zeroconf (mDNS + DNS-SD) for automated discovery or are served from static, pre-configured device registries. Applications
load instances into a runtime, a compatibility library layer between the native application execution environment (e.g. Python)
and the framework that wrappers are programmed against.

two reasons. First, URIs map well to devices, interfaces, and
ports. As an example, a controllable light might have the
URI “http://192.168.1.2/lighting/light/Power” which is the URI
for turning the light on and off inside of the “lighting/light”
interface. Second, the CoAP REST commands map to port types
well. GET corresponds to an attribute, POST to an input port,
and GET with the observe option corresponds to subscribing to
a port. Finally, CoAP is designed to be sufficiently lightweight
to be viable for resource-constrained devices, which represent a
growing proportion of intelligent, networked devices. While our
architecture is explicitly designed so as not to require devices
to support any eventual standard, it is also aims to encourage
devices themselves to buy in, and drive towards a system with
minimal to no need for device wrappers.

If this standard, or a different similar one based on ports, did
emerge, our architecture is designed to gracefully support the
change without requiring changes to applications. The runtime
layer simply drops the device wrapper and maps application
interactions directly on to the standard interface.

V. IMPLEMENTATION

As a teaser to motivate our ecosystem, we present here in
full a Python applet that turns off the lights when everyone
leaves the room:
1 # /usr/bin/env python
2 import device_runtime as rt
3 room = rt.get_nearby(’/occupancy’, limit=1)
4 lights = rt.get_by_location(room[’_location’], ’/lighting’)
5 room.Empty.subscribe(lambda : lights.Power = False)

In line 3 a synthetic device made up of all nearby devices
that implement the /occupancy interface is created auto-
matically by the runtime. The get_nearby constructor adds
_location metadata, which is used in line 4 to ask the
runtime to create another synthetic device that collects all of
the nearby devices that implement the /lighting interface.

Finally, line 5 attaches a function to the Empty output port
of the room, which writes to the Power port of the lights
whenever a new event arrives.

The remainder of this section presents our implementation
from bottom-up, beginning with how the device wrappers
are developed and compiled. We next consider discovery and
distribution, the infrastructure that powers the get_nearby
and get_by_location methods. Finally, we explore the
mechanics of implementing a runtime and differing mechanisms
for bridging runtimes and native execution environments.
Figure 6 gives an overview of how all the components of
the system fit together.

A. A Wrapper and IR

Recall that a wrapper is simply JavaScript code that is then
compiled into an intermediate representation (IR), which is
a JSON document containing the wrapper code and parsed
metadata. This compilation also ensures adherence to declared
interfaces and performs parameter validation and other static
checks for correctness. Figure 7 shows an example of a
complete wrapper and part of its compiled IR.

B. Host Server

This host server provides a repository of available device
wrappers that other pieces of the infrastructure use to find and
download the device wrappers. Currently, we implement this
as a public GitHub repository and a webserver that keeps an
up-to-date copy of each device IR available. The webserver also
presents a browsable view of the available device wrappers, as
well as any compilation errors that could prevent wrappers from
working correctly, as shown in Figure 8. A suitable management
and distribution policy for the repository is left to future work,
but we are inspired by systems such as Homebrew [23] that
succeed with a similar model.



1 // name: ACME Power Meter
2 // author: Wiley E. Coyote
3
4 // ACME Power Meter
5 // ================
6 //
7 // ACME is a power meter with a relay for load shedding.
8 // LimitDailyPower powers off if limit is exceeded.
9
10 var ip;
11
12 function init () {
13 provide_interface(’/onoff’);
14 provide_interface(’/sensor/power’);
15 create_port(’input’, ’LimitDailyPower’,

{type: ’integer’, min: 100, units: ’watthour’});
16 ip = get_parameter(’ip_addr’);
17 }
18
19 // The asynchronous runtime (art) returns promises
20 onoff.Power.input = async function (state) {
21 await art.coap.post(’coap://[’+ip+’]/Power/’+state);
22 }
23
24 onoff.Power.read = async function () {
25 return await art.coap.get(’coap://[’+ip+’]/Power/’);
26 }
27
28 sensor.power.Power.subscribe = async function (cb) {
29 await art.coap.observe(’coap://[’+ip+’]/Watts’, cb);
30 }
31
32 // Create a virtual port required by the interface
33 sensor.power.PowerChange.subscribe = async function (cb) {
34 var threshold = get_parameter(’power_threshold’, 10);
35 await sensor.power.Power.subscribe(function (watts) {
36 var power = onoff.Power.read();
37 if ((watts < threshold) && power) {
38 cb(false);
39 } else if ((watts > threshold) && !power) {
40 cb(true);
41 } });
42 }
43
44 LimitDailyPower.input = async function (l) {
45 await art.coap.post(’coap://[’+ip+’]/DailyLimit’+l);
46 }

(a) ACME Wrapper: acme.js
{

"code": "var ip;function init () \{ <snipped>",
"dependencies": [],
"parameters": [ {

"name": "ip_addr"
"required": true, (line 17: no default value)

}, {
"name": "power_threshold",
"required": false, (line 34: provides default value)
"default": "10",

} ],
"runtime_imports": [ "coap" ], (lines 21,25,29: use art.coap)
"ports": [ {

"name": "/onoff/Power" (/onoff interface definition)
"type": "bool",
"display_name": "Power",
"direction": "input",

}, <snipped>
],
"implements": [

{ (line 13: provides /onoff)
"interface": "/onoff",
"provides": [ [ "/onoff.Power", "PowerControl" ] ],
"ports": [ "onoff.Power" ]

}, <snipped>
],
<snipped>

}

(b) ACME Wrapper IR: acme.json

Fig. 7: Wrapper example. The ACME Power Meter is
an AC meter and load-controlling switch. Additionally, it
adds a novel vendor feature, a daily power cutoff. It does
not natively report when the attached load switches on or
off, so the wrapper emulates the required PowerChange
port. The compiled wrapper embeds the original code as an
element. It resolves interfaces to list all ports and identifies
all aliased interfaces. The IR also extracts all parameters and
external dependencies. This verbose, compiled form enables
powerful queries across wrappers, permits runtimes to ensure
all parameters are specified and dependencies satisfied, and
facilitates the creation of on-demand user interfaces.

(a) Library of devices.

(b) Wrapper compilation error.

Fig. 8: Host Server. The host server creates a web interface
for exploring the wrappers in the repository. Users can find
wrappers by device name, interfaces provided, or other metadata.
For wrappers with compilation errors, the host server provides
a clear explanation of the error. Additionally, the Notti smart
light [35] gives an example of a device with a custom port in
addition to the standard interface, as this light adds a custom
“fade out” feature.

HOST          SERVICE                          PORT
acme.local    _wrapper_sensor_power._udp       5683
   TXT: wrapper_path=/sensor/meter/ACME

hue.local     _wrapper_lighting_hue._tcp       4999
   TXT: wrapper_path=/lighting/hue/huesingle
        username=MyHueUser

Fig. 9: DNS Service Discovery records for devices with
wrappers. Interfaces are advertised as services with the service
type marked by “ wrapper”. The DNS infrastructure handles
naming the device and port, and the TXT field is used for the
wrapper path and parameters.

C. Device Discovery

We extend the Multicast DNS (mDNS) [16] and DNS Service
Discovery (DNS-SD) [15] discovery services with a protocol
to enable clients to find devices that have available wrappers.
With DNS-SD, services that a device provides are encoded as
dot separated strings, such as “ ipp. tcp” for a printer.

Devices that have a corresponding wrapper can advertise their
interfaces as services. To comply with the DNS-SD protocol,
the service is prepended with “ wrapper” to denote that there
is a corresponding wrapper. For example, a Hue light may
advertise the “ wrapper lighting Hue” service. Inside of the
TXT record in the service advertisement, the light includes the
key “wrapper path” which allows the application to fetch the
correct wrapper. Any other parameters the device requires are
also included in the TXT section. Figure 9 shows the records
devices in our architecture may advertise.
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Fig. 10: Runtime overhead. To estimate runtime overhead,
we run a loop of HTTP requests to localhost using
wrappers from various runtimes compared against an equivalent
native Node.js app. Running wrapper JavaScript code in non-
JavaScript-based runtimes requires an embedded a JavaScript
engine (Java) or communicating with an external JavaScript
engine (Python). For embedded runtimes (Java), loading the
JavaScript engine adds a one-time warmup penalty. For the non-
embedded (Python) case, inter-process communication adds
significant overhead to the continued execution. In steady-state,
requests from the Java-based runtime actually run slightly faster
than the native Node.js app.

D. Runtimes

The responsibility of the runtime is to provide an execution
environment for device wrappers, while making each device
available as a native object in the host application language.

1) Hosted Runtimes: We implement three runtimes, en-
abling native application development in Node.js, Java, and
Python. The Node.js runtime has native support for executing
JavaScript [4]. The Java runtime uses the Nashorn scripting
engine to execute JavaScript [28]. Nashorn executes JavaScript
directly on the Java virtual machine, facilitating high perfor-
mance and easing the passing of data between the Java and
JavaScript environments. Unfortunately, Nashorn does not yet
fully support ECMAScript 6. Traceur is a tool that “transpiles”
ECMAScript 6 code to valid ECMAScript 5 code, at the cost
of about 30% performance overhead [22]. The Host Server will
transpile a wrapper on-demand if an ECMAScript 5 version is
requested. Python has no means to directly execute JavaScript,
so we use python-bond, a library that bridges Python and an
instance of Node.js via RPC calls [20].

The majority of the runtime code is shared across implemen-
tations, executing in the JavaScript context. The IR enables
runtimes to pre-load parameters, libraries, and dependencies
before executing the device wrapper. Only the top box of
functions from Table I need to be shimmed at runtime.

To provide some understanding of the tradeoffs between the
different runtimes and execution environments, we benchmark
I/O performance across the three runtimes. Figure 10 compares
the overhead of the native (Node.js), embedded and transpiled
(Java + Nashorn), and remote (Python + python-bond + Node.js)
runtimes. We run a small app that makes continuous HTTP
requests to localhost. We also include a native JavaScript applet
that directly issues the same HTTP requests as a baseline.

Fig. 11: Auto-generated GUI for a Phillips Hue. The web
runtime automatically generates device GUIs from devices.
Advanced UI elements are inferred from port types. The Color
port renders as a color picker because the port is of type color.
The Brightness port renders as a slider because it is an
integer type port with a min and max. This entire UI
element is auto-generated using only the wrapper IR.

Loading the JavaScript engine imposes a heavy startup cost on
the non-native runtimes. For our I/O-heavy workload, however,
the runtime overhead of Traceur is unsurprisingly not a large
penalty. Indeed, the Java runtime slightly outperforms Node.js
for this microbenchmark. The RPC calls in the Python runtime
impose a heavier runtime burden. Upon further examination,
this effect is amplified by the relatively naı̈ve and inefficient
RPC mechanism employed by the python-bond library.

2) Proxy Runtime: We initially attempted a browser-based
runtime, but rejected the effort as browsers are too sand-
boxed of an environment to support many of the commu-
nication protocols used by devices. Browsers support only
websockets, requiring a support server to proxy other pro-
tocols such as UDP or TCP. The browser-enforced same-
origin policy prevents support for devices that neglect the
Access-Control-Allow-Origin header—which only
one of the dozen commercial devices we tested set—, requiring
a proxy for HTTP requests as well.

Instead, we build an RPC webserver with a HTTP REST
API. This maps a PUT to input, a GET to read, and uses
websockets for subscribing to ports. The webserver uses the
metadata from the IR to build a GUI on-demand, like the Hue
GUI in Figure 11. Complex UI elements such as color pickers,
sliders, and drop-down lists are inferred from port types.

More generally, this RPC server can act as a proxy runtime
for any device. This is a powerful step towards a standardization
vision, especially with the advent of local cloudlets and
intelligent gateways. One could imagine gateways automatically
running a proxy runtime for all connected devices. In this way,
even if no device ever implemented our standard API, every
networked device would transparently adhere to the API.



(a) Application Specification (b) Direct Device-to-Device

(c) Cloudlet Based

Fig. 12: Describing an application using a block editor. An
application, shown in (a) and conceptually described as “when
devices in a space are drawing power, turn on the lights”, is
implemented in two ways using a block-connecting approach.
In (b), the chosen power meter and lights have ports that match
the description, allowing a direct connection to satisfy the
specification. In (c), a different power meter (“Monjolo”) is
used that sends pulses proportional to the metered load. The
pulse stream must be filtered and fed into a type conversion
block (“Constant”) to generate an “On” signal. A “Delay” block
is used to automatically turn off the lights. As the dashed area
generates “PowerChangeEvent”s, the application requirements
are now satisfied. Because this application performs additional
processing, it is run in a cloudlet. Implementing the same
application description in multiple ways demonstrates how the
architecture is able to adapt to changing devices.

VI. CASE STUDIES

To demonstrate how our architecture and system imple-
mentation help create applications, we implement two device-
centric applications. As performance and correctness metrics
are difficult to define for this architecture, we do not evaluate in
the traditional sense but attempt to explain how the architecture
aids creating these applications and others in the future.

A. Responsive Lighting Application

Commercially available “smart lights” surpass conventional
lighting by allowing remote control and programmatic access,
but often still rely on manual intervention for determining when
to illuminate or switch states. Our first application attempts to
add automatic control to smart lighting by integrating inputs
from other sensors, such as power meters. Conceptually, the
application can be specified as:

When devices in a localized area are drawing power,
turn the lights in that area on, and when then devices
are not, turn the lights off.

This results in an intuitive and responsive application where
lights respond to activity and not direct control.

To create this application we use a browser-based visual block
editing interface written on top of jsPlumb [30] to describe how
components interact. Figure 12a shows the block representation
of the high-level application description. It encompasses two
devices, a power meter and the lights. The functionality requires

a “PowerChangeEvent” port to be connected to the “Power”
port of the lighting. This describes a power meter that, when
the attached load turns on or off, will send a message to another
device, in this case lighting, to turn it on and off. This depiction
is what we consider to be the application description layer, as
described in Section IV-F, and relies on the port abstraction to
model how the devices should interact.

Given the application description, the system is able to
implement the application in two ways. First, as shown in
Figure 12b, two devices matched the required ports and were
eligible to directly communicate to execute the application. At
the system configuration level, the power meter is considered
to be able to run the lighting device’s wrapper to control its
state. In practice, the power meter can be configured to send an
event to a particular destination when the load changes state.

The second implementation, shown in Figure 12c, uses
nested applications to implement the same functionality, and
demonstrates how the system can adapt to device diversity.
Instead of the same true power meter, sensing is performed
by a rudimentary power meter known as a Monjolo sensor
which uses energy-harvesting principles to pulse packets at a
rate roughly proportional to the load being metered [19]. This
provides sufficient power metering for the application, but due
to its energy-harvesting operating principles, cannot determine
when the load has turned off. Therefore, the sensor is wrapped
with additional logic, shown inside of the dashed box, to add
a delay to turn the light back off when the pulses cease, and
to do type conversion. This causes the dashed box portion to
become its own application with the correct ports to satisfy the
power metering requirement of the original application goal.
The block editing environment understands that the additional
logic requires runtime computation and therefore runs this
implementation in a local cloudlet.

The responsive lighting application is enabled by many
aspects of the architecture. The application itself is specified
in a wholly device-independent manner, facilitating diverse
implementations. Devices are modeled with ports, and possible
implementation strategies can be easily validated by the block
editing tool (or any other system) based on matching ports.
The two implementations further highlight the flexibility of the
architecture. For the severely resource-limited energy harvesting
power meter, a local cloudlet runs a device wrapper to interface
with the Monjolo device’s Pulse output and then presents an
interface that satisfies the remainder of the application. The
other case eschews wrappers entirely and demonstrates how a
standard for device communication can enable direct device-
to-device communication. In this way no additional servers are
required to support applications and no third parties ever learn of
events in the system. Empirically, occupants in our preliminary
deployment quickly adapted to rely on the responsive lighting
environment provided by both implementations.

B. Security and Safety on the Factory Floor

A critical issue for manufacturers is to ensure the security and
safety of their factories. An application using smart devices
may be desirable for this issue, but in industrial settings a
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Fig. 13: Factory security and safety application. This app
leverages the system infrastructure to dynamically discover
peripheral sensors, download the correct wrappers, and execute
the application logic on a nearby gateway. As wrappers can be
discovered and downloaded dynamically, the application works
in other zones or environments without modifications.

key challenge for multi-device applications is interoperability
across devices from different vendors. To demonstrate this and
to propose a solution enabled by our architecture, we examine
a particular example: ensuring worker safety by defining a
restricted zone around dangerous equipment. The application
can be specified as:

When the potentially dangerous equipment is not
drawing power and sensors detect a worker nearby,
turn on the light.
When the equipment is on and sensors in the warning
zone detects motion, turn on a warning light.
If sensors in the restricted zone detect a worker, shut
down the machine.

This requires defining a restricted zones near the equipment,
reliably detecting if the equipment is running, and leveraging
multiple sensor types to to ensure reliable worker detection

This application has two key challenges: it must minimize
the possibility of false positives, and it must be capable of
working with different types of sensors from different vendors.
The solution provided by our architecture is shown in Figure 13.
A power meter monitors the power supply of the machine to
determine if the machine is on based on whether it is drawing
power. Laser trip sensors monitor the restricted zone, while
ultrasonic and PIR sensors monitor the warning zone. Devices
that have device wrappers advertise the interfaces they support
as services. To find nearby sensors, the application queries for
all devices that support the desired services. The application
then iterates through those responses and downloads the correct
wrappers from the host server. It can then use the intermediate
representation to select the right port from the interface and
the wrapper to query its value and generate different responses
based on the inputs.

The application emphasizes several aspects of the architec-
ture. In this case we make no assumption of the vendors or their
interfaces for the hetergeneous array of sensors, breaking the
traditional communication boundaries. Coordinating between
different types of sensors minimizes the false positive problem
that often occurs on single sensors improving the reliability of
the system. Moreover, by providing the application the ability
to fetch the wrapper on-demand based on the immediately
available sensors – in contrast to a statically defined application
and sensor configuration –, the same application can execute
in multiple zones with different types of sensors without
any modification. This makes it easier to divide buildings
into zones based on logical divisions rather than specific
sensor installations. Furthermore, this security and safety
application can be applied to different companies with same
needs without requiring customization. For existing buildings
with old platforms, this application is isolated and does not
intervene with extant systems, thus it will not have any adverse
affect on any of the current systems running in the building.

These case studies illustrate two points on the spectrum
of device-centric applications, and help demonstrate how our
architecture and implementation can directly simplify creat-
ing applications in two very different realms. While these
examples do not capture the breadth of possible applications,
they provide intuition and motivation for the possibilities an
application architecture can promote. While previous systems
have realized various capabilities presented by this design—
device abstraction, cloud-to-cloud interaction, device-to-device
interaction, and device discovery—it is the union of these
capabilities that marks the key novelty of this new architecture.
With support for current devices and the ability to adapt to
future devices, this architecture encourages adoption by end
users, manufacturers, and application creators, and could finally
enable truly modular and adaptive applications.

VII. DISCUSSION

Our prototype system presents several areas for future work
and exploration.

A. Authentication

The system we propose provides a method for users to access
data and control devices but does not provide a mechanism for
validating that the users should be able to access those devices.
We intentionally do not build authentication into the host server
as this does not provide a method for revoking access. A user
can cache a wrapper and execute it later, even if the user
could not re-request the wrapper from the server. Therefore,
authentication must exist between the executing wrapper and the
end device. This, however, requires the wrapper to understand
the identity of the user and perform the possibly complex
authentication procedure itself, burdening the wrapper creator.

A possible solution is to allow the runtime to perform
the authentication on behalf of the wrapper and then have it
provide the wrapper with a token that it can use in its requests.
This approach is feasible if specifying the authentication
scheme and authentication parameters can be done in a



concise way for a range of devices, that is, that there are
only a handful of authentication schemes used in practice
that can be consistently parameterized. Surveying currently
used authentication mechanisms and integrating them into the
architecture is left as future work.

B. Authorizing Device Communication

Once devices can communicate, there needs to be a mech-
anism for determining if they should communicate. While
devices may initially be trusted, bugs or malicious code should
not be able to cause devices to interact in a manner the user
does not expect. The port based definition of devices allows for
one natural method to restrict communication. A management
environment can issue a pair of cryptographic keys for the
communicating devices that are assigned to the relevant ports.
Those devices will now only listen to messages for specific
ports that are encrypted with the correct keys. Any attempts
by a misbehaving device to control a device it is not allowed
to will be ignored.

C. Seamless Cloud Interaction

Device wrappers and the standard device model provide
two natural mechanisms for leveraging cloud resources with
device interactions. First, certain low-capability devices that
are constrained by energy-harvesting power supplies or limited
network connectivity can be proxied in the cloud. That is,
a cloud endpoint (or equivalently a local gateway/cloudlet)
would provide the port interface on behalf of the device, and
all interactions would be handled by the cloud instead of the
actual device. Second, specified ports could be handled by the
cloud instead of the device. For instance, in a power metering
example, the power meter can easily handle a current power
query, but a port that provides historical power data over some
time range may be much easier to implement with a cloud
service that is collecting the historical data. A mechanism
similar to an HTTP redirect issued by the device would likely
make the hand-off seamless.

VIII. CONCLUSIONS

Our contribution in this work is a coherent architecture
for networked devices. We identify the key abstraction layers
between an abstract application concept—“turn the lights off
when I leave the room”—and the details of exactly how and
when to send what bits to which devices. This starts with
defining ports and attributes for devices and modeling all
interaction with the device as interactions with this interface.
It builds to presenting the interface to applications with device
wrappers, or small adapters that encapsulate the device-specific
API. These wrappers share interfaces among devices, further
raising the level of abstraction when designing applications. It
ends with application frameworks that help create and execute
applications on top of the networked devices. This architecture
facilitates communication between previously incompatible
devices to enable the applications that a fully-connected world
promises.
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