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Abstract
Low power devices, sensors, and real time systems are increas-
ingly connected. With this connectivity, embedded devices now
face a more complex attack surface, underscoring the importance
of device security. Embedded operating systems are able to span
diverse application and hardware domains because they are highly
configurable. This flexibility, however, implies that downstream
embedded applications may be flexible in how they use security
features. This paper investigates how downstream applications use
configurable security features in practice. We find that a majority of
applications do not alter the default configuration provided by their
chosen runtime, and as a result, do not utilize available security
options. Early evidence suggests that this under-utilization is due
to both runtime and development overhead.

CCS Concepts
• Software and its engineering → Software design tradeoffs; •
Security and privacy → Operating systems security.
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1 Introduction
Embedded and connected devices have become a ubiquitous and
integral part of our world. From medical devices and smart home
products to industrial controllers, these devices perform an in-
creasing set of complex, critical tasks. To abstract these complexi-
ties, embedded operating systems (OSes) evolved to provide rich
development environments and high-level abstractions, such as
platform-independent hardware models and separable tasks. De-
spite the availability of these abstractions and isolation mechanisms
for tasks, we find that in practice many embedded applications lack
strong isolation and do not enable security reinforcements. This
paper explores projects using embedded OSes to quantify how con-
figurable security features are used and how they factor into the
given project’s design.

We focus on microcontroller-class embedded devices, i.e. those
that are severely resource constrained in terms of memory, compute,
and, often, energy. These systems typically have 64 kB or less of
SRAM, have simple in-order cores running at tens of MHz, and
may not have access to constant power. As a result, embedded
OSes must differ significantly from traditional OSes in how they
provide feature-rich libraries, concurrency, and security isolation.
For instance, embedded OSes are often aggressively modular to
provide flexibility as unused features can adversely affect binary

sizes and runtime overhead. In many cases, even isolation and
security protections can be and are relaxed in favor of performance.
Given the modular and configurable nature of embedded operating
systems, we ask the question: do applications built upon embedded
OSes enable configurable, opt-in security features? This paper studies
popular, open source embedded OSes to answer this question and
gather insights around end-application usage of configurable and
opt-in security features.

Historically, embedded devices did not offer connectivity. For
instance, industrial controllers or automotive Electronic Control
Units (ECUs) required a technician physically access and “plug-into”
the device. As embedded devices have evolved into the Internet of
Things (IoT), many now offer internet connectivity to gather data,
offer remote control, and provide firmware updates. Developers
now expect embedded OSes to provide library features such as
over-the-air updates and network stacks. Internet connectivity and
the global scale of many billions of deployed devices implies that
embedded devices now face an attack surface more akin to that of a
traditional operating system. As such, the security embedded OSes
provide is paramount.

Manufacturers of embedded devices have reacted to these risks,
and the need for secure systems, by introducing isolation mecha-
nisms such asmemory protection units (MPUs) andARMTrustZone
[4]. Some proprietary OSes, such as SafeRTOS, require the usage
of MPUs to isolate processes1 and guard against stack overflows.
This provides enhanced security for safety critical applications [10].
Many general purpose embedded OSes, however, leave decisions
around MPU-based isolation up to downstream developers. Sub-
sequently, the responsibility to integrate these mechanisms and
secure such applications falls upon the developer.

To investigate the usage of configurable security features, we
first provide background on the OSes we study. Following this, Sec-
tion 3 presents our survey of repositories on GitHub, in addition to a
quantitative analysis of memory protection overheads. In Section 4,
we further provide case studies that analyze two particular appli-
cations in more detail. Finally, based on these results and studies,
Section 5 proposes likely causes for applications’ under-utilization
of configurable security features.

2 Background
This study analyzes three popular, open-source embedded OSes:
FreeRTOS, Zephyr, and RIOT. These systems were selected to pro-
vide a sampling of projects varying in popularity, longevity, and

1We consider the terms tasks and processes interchangeable in this paper.
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Hardware
Stack Guard

Kernel/Process
Isolation

Process/Process
Isolation MPU Support

FreeRTOS

RIOT × ×
Zephyr

× No support Supported, default-off Supported, default-on

Table 1: Survey of features available across embedded OSes.

target focus. FreeRTOS and Zephyr represent two popular projects
with widespread adoption. RIOT is geared towards usability in IoT.

In this section, we provide a brief overview of the OSes we study.
We consider their primary advertised use case(s), configuration
parameters, and whether security features are enabled by default.
We do not consider OSes lacking MPU support, such as Contiki-NG
[8]. Moreover, we exclude OSes such as SafeRTOS [10] or TockOS
[5] that mandate these features, as we are interested in what down-
stream developers do when presented with a choice. Prior work
investigates embedded operating systems’ support for memory
protection and isolation primitives [13]. In this work, Zhou et al.
survey embedded OS support for code integrity protection, data
execution prevention, coarse-grained stack guard, kernel memory
isolation, user task memory isolation, and peripherals isolation. We
select a subset of this taxonomy to investigate in the wild, namely
MPU-based stack protection and process isolation.2 Our chosen tax-
onomy is shown in Table 1. This subset aligns with the configurable
security features available for the particular OSes we study.

2.1 FreeRTOS
FreeRTOS is a real time embedded operating system for microcon-
trollers that offers support for many core libraries and Amazon
Web Services IoT integrations [1].

Applications built upon FreeRTOS specify kernel configurations
using #define statements in the FreeRTOSConfig.h file. FreeRTOS
provides MPU support for a number of ARMv7-M and ARMv8-M
microcontrollers [2]. By default, all FreeRTOS processes are con-
sidered privileged and are spawned with the xTaskCreate function
call. Privileged processes grant unrestricted access to peripher-
als and memory. FreeRTOS supports process isolation and stack
overflow protection using the xTaskCreateRestricted function call.
Subsequently, developers using FreeRTOS configure their usage of
MPU security by deciding whether to use privileged or restricted
processes.

FreeRTOS also offers software stack overflow detection that can
be enabled with the configCHECK_FOR_STACK_OVERFLOW flag. FreeR-
TOS software stack guards serve as wrappers to confirm the stack
is valid following a context switch. Notably, software stack guards
are added automatically during compilation (if enabled by the de-
veloper) and “introduce a context switch overhead” [3]. FreeRTOS
is the only surveyed OS that provides support for software stack
guards. Given that software stack guard’s impose a performance

2We define process isolation for the purpose of this paper to include both process-
process and kernel-process isolation.

but not developer overhead (i.e. automatically compiled if enabled),
surveying their usage provides insight to configurable feature usage
in light of developer and performance overhead.

2.2 Zephyr
Zephyr is a real time embedded OS, hosted under the Linux Foun-
dation, that ‘provides cross platform support for over 600 boards
and emphasizes portability and connectivity’ [12]. Zephyr provides
support for MPUs, hardware stack protection, and process isolation
that must be enabled explicitly [11]. Configuration of these con-
stants occurs in a project-defined .conf file. To enable usermode
processes, Zephyr developers must enable the CONFIG_USERSPACE

flag. Notably, Zephyr usermode processes run at a reduced privilege
level, may only access the stacks of processes within the same mem-
ory domain, and, by default, will detect process stack overflows. To
detect stack overflows in privileged processes, the developer must
enable the CONFIG_HW_STACK_PROTECTION flag.

2.3 RIOT
RIOT advertises itself as the “friendly Operating System for IoT ” [9].
This embedded OS offers a preemptive, tickless scheduler, support
for over 200 boards, and extensive network stack support. RIOT
offers hardware stack protection by default on all boards that fea-
ture an ARMv7-M MPU. Developers can opt-out of this protection
feature by disabling the CONFIG_MPU_STACK_GUARD flag. RIOT does
not support process isolation.

3 Methodology & Results
To quantify application usage of configurable embedded OS security
parameters, we conduct a survey of GitHub projects using the se-
lected embedded OSes. We also benchmark Zephyr’s MPU-imposed
runtime overhead. In this section, we present our methodology and
results for the survey and benchmarking.

3.1 Configurable Security Analysis
We first create a dataset of applications built using each embedded
OS. To form this dataset, we employ the following process:

(1) Search GitHub to collect repositories whose metadata con-
tains the name of the operating system or contains a code
snippet/filename unique to that operating system.

(2) Union these two searches, excluding forks.
The GitHub API search queries are shown in Table 2. One limitation
of our repository search is that GitHub limits each search to 1000
results. The metadata search uses the GitHub repository search API
which allows for results to be sorted by stars. For the purposes of
our study, this helps to ensure the 1000 repositories obtained using
the repository search are the most popular repositories. In addition
to the repository search, we also utilize GitHub’s code search API to
gather projects with repository metadata insufficient to be found
by the repository search.

Our survey faces the challenge of potentially being skewed to-
wards “toy projects” that are perhaps underdeveloped. We mitigate
this risk by excluding stale projects (i.e. most recent commits older
than five years) and projects with less than 10 stars. Although stars
are an imperfect measure of a repository’s use, this serves as a proxy
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Embedded OS GitHub Query Terms Search Type

FreeRTOS
freertos (RS)

filename:FreeRTOSConfig.h (CS)

Zephyr
zephyr (RS)

filename:west.yml (CS)

RIOT RIOTBASE ?= (CS)

Table 2: GitHub query terms used for each project’s reposi-
tory search (RS) and code search (CS).
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Figure 1: Surveyed embedded OS application results for en-
abling optional MPU features.

to a project’s activity and interest from the broader community.
The number of projects meeting the aforementioned criteria for
each embedded OS are shown in Figure 1. Our search exclusively
considers the open source projects we are able to access through
GitHub’s API; our survey does not account for the numerous closed
source projects that also utilize the selected embedded OSes.

After curating our downstream application dataset, we now
search this dataset to determine which projects enable the selected
configurable security features. For the purposes of this study, we
combine process–process and kernel–process isolation under the
umbrella term of process isolation. We use repository specific key-
words, shown in Table 3, to perform our search.

We identify three interesting survey findings below. Each se-
lected Table 4 result provides contextualization to the developer
usage of configurable security features:
Result 1: Zephyr & FreeRTOS MPU Feature Usage. Zephyr and

FreeRTOS offer similar MPU-based security configurations,
and both disable process isolation and stack overflow pro-
tection by default. Of surveyed Zephyr and FreeRTOS appli-
cations, 17% of Zephyr and 8% of FreeRTOS projects enable

Embedded OS Keyword Feature

FreeRTOS

taskCreateRestricted() Process Isolation

taskCreateRestricted() HW Stack Guard

configCHECK_FOR_STACK_OVERFLOW SW Stack Guard

Zephyr

CONFIG_USERSPACE Process Isolation

CONFIG_USERSPACE

HW Stack GuardCONFIG_HW_STACK_PROTECTION

CONFIG_MPU_STACK_GUARD

RIOT mpu_stack_guard HW Stack Guard

Table 3: Embedded OS configuration keywords used to search
repository dataset and determine configurable feature usage.

Hardware
StackGuard

Process
Isolation

Software
Stackguard Total Surveyed

FreeRTOS 20 20 121 249
Zephyr 35 15 – 87
RIOT 10 – – 10

Table 4: Embedded OS application usage of configurable se-
curity features.

both process isolation and hardware stack guards. We sub-
sequently observe that 89% of surveyed FreeRTOS/Zephyr
projects do not enable the full suite of opt-in, configurable
MPU security features. We do not include RIOT in this
result as RIOT does not support MPU process isolation.

Result 2: SW/HW Stackguard Usage. Surveyed FreeRTOS repos-
itories exhibit a more than sixfold increase of software-
based stackguards usage in comparison to hardware-based
stack guard usage.

Result 3: Opt-out Configuration Usage. For RIOT platforms pos-
sessing an MPU, RIOT enables mpu_stack_guard by default.
We find that no surveyed project disables this feature.

3.2 Benchmarking
We further investigate the overhead of enabling hardware-based
stack protection. We use an nRF52840DK board featuring an ARM
Cortex-M4F CPU and execute ten million context switches with
CONFIG_USERSPACE enabled and disabled respectively.We count yield-
operations between two threads and record the overall time over-
head of enabling CONFIG_USERSPACE. We measure the overall time in
ticks.
Result 4: Runtime Overhead. We find that the average over-

head from ARMMPU-based memory protection is 224 CPU
cycles per context switch.

4 Case Study
We select two widely used projects as case studies of real world
embedded security. These projects were chosen for their popularity
and inclusion in many consumer devices.
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4.1 Zephyr OS – Embedded Controller Firmware
Intel provides a Zephyr OS-based reference firmware for Embedded
Controllers.3 The Embedded Controller (EC) is a dedicated micro-
controller present in x86 platforms. It is responsible for performing
many low-level system tasks and has a high degree of control
over the host system. For instance, an EC is responsible for power
sequencing, handling keyboard and mouse input, thermal manage-
ment, and other tasks. As such, an EC represents a privileged central
system component that runs a significant number of independent
tasks and interfaces with many different peripherals.

The provided reference firmware by Intel targets, among other
EC chips, the Microchip MEC172x controller which features an
ARM Cortex-M4F with support for the MPU. This firmware is
organized as multiple tasks (such as for power sequencing and
thermal management) where each task accesses a set of dedicated
and shared peripherals, for instance the common Enhanced Serial
Peripheral Interface (eSPI) bus connected to the host CPU.

This reference firmware does not enable any of Zephyr’s optional
isolation or security mechanisms. We identified code-paths where
functions called from within the context of one task directly oper-
ate on memory managed by another task (e.g., power sequencing
and the keyboard input controller). This code pattern is incom-
patible with hardware-based process isolation, which would re-
quire all interactions between tasks to go through kernel-mediated
channels, such as Inter-Process Communication. As a consequence,
downstream users of this reference firmware cannot easily enable
additional isolation features without substantially changing the
firmware’s architecture.

4.2 FreeRTOS – InfiniTime
InfiniTime4 is a firmware for the PineTime smartwatch. This firmware
is built on the FreeRTOS embedded OS and the NimBLE Bluetooth
Low Energy library. This firmware supports running multiple apps,
an Apple HealthKit integration, and over-the-air updating. The
PineTime watch is built using the nRF52832, a Cortex-M4 featuring
an MPU.

InfiniTime uses software-based stack guards and exclusively
uses privileged tasks with shared global state. Because privileged
tasks are able to access all peripherals and memory, their us-
age in PineTime allows any tasks to interfere with another tasks.
To test this claim, we use the InfiniSim InfiniTime simulator. In-
finiTime presents a system display task and a heartbeat monitor
task that share access to a common object containing references to
all other apps. To demonstrate that task state is shared, we invoke
app->heartRateController.Stop() within the display refresh loop
and are able to stop the heart rate controller in InfiniSim.

5 Discussion of Results
Our results show that a majority of surveyed projects do not explic-
itly enable optional, off-by-default OS security features (Result 1).
We now discuss potential reasons for this trend.

3https://github.com/intel/ecfw-zephyr For this case study, we consider revision
dd258906a7db9f of May 14, 2024 of this repository.
4https://github.com/InfiniTimeOrg/InfiniTime. For this case study, we consider revi-
sion f8f8993fac0bdd of June 19, 2024.

5.1 Device vs. Developer Overhead
Hardware security features unavoidably increase a system’s run-
time and potentially space overhead as they require the OS to store
MPU related state and re-configure MPU registers upon context
switches. FreeRTOS and Zephyr both explicitly state this concern
in their documentation. Zephyr’s recommended security practices
explain that:

[memory protection] is optional as it leverages hard-
ware features (such as Memory Protection Units or
Memory Management Units), and incurs in some
overhead that smaller systems might not be able to
afford. [7]

FreeRTOS echoes this sentiment in MPU documentation stating:
“If you need every last drop of performance out of your processor, then
the overhead of using an MPU might be a deal breaker for you” [6].

Our preliminary benchmarking of Zephyr in Result 4 finds that
hardware security features impose a mere 224 cycle overhead per
context switch. This result agrees with the above documentation
excerpts and shows an overhead that is in fact noticeable, but likely
only problematic for high performance applications. We argue that
the vast majority of IoT embedded applications do not require “ev-
ery last drop of performance,” but instead that the primary overhead
impeding the usage of configurable security features is not perfor-
mance but developer overhead.

Result 2 supports this hypothesis, with a sixfold increase in
software-based stack guard usage compared to hardware stack
guards in FreeRTOS.5 These hardware stack guards are instantiated
through the use of “restricted tasks” which in turn are implemented
with the help of the MPU. Using restricted tasks prevents state from
being shared across processes. Conversely, software stack guards
also incur overhead, however they do not require manual MPU
configuration. Instead, software stack guards need only be enabled
during compilation and are entirely hidden from the developer.
We attribute this to be a major contributing factor towards the
prevalence of software- over hardware-based stack guards. In short,
this suggests that features with little development overhead are
more likely to be used.

Our case studies highlight the challenge of enabling hardware
protection mechanisms as both analyzed applications utilize shared
state across processes. Because sharedmemory is disallowed6 across
isolated processes, enabling hardware stack guards and process iso-
lation for these applications would require re-architecting their
codebase. This would require integrating interprocess communi-
cation and increase development complexity. This complexity is
detailed in FreeRTOS’ documentation, stating that:

Use of an MPU necessarily makes application design
more complex because: first the MPU’s memory re-
gion restrictions must be determined and described
to the RTOS; and second the MPU restricts what ap-
plication tasks can and cannot do. [2]
You should also be wary that working with an MPU
can be difficult and, at times, frustrating. It will take

5FreeRTOS hardware stack guards are enabled via restricted tasks, which also confer
process isolation and prevent shared state across tasks.
6Some MPU configurations allow tasks to be placed within the same memory pool.

https://github.com/intel/ecfw-zephyr
https://github.com/InfiniTimeOrg/InfiniTime
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more time to design your application as youmust con-
sider MPU regions for each of your tasks. Mistakes in
these regions, such as incorrect region lengths, per-
missions or not linking the data of your application
correctly can be confusing to debug. [6]

6 Closing Thoughts
This paper shows the disparity between the configurable security
features the studied embedded OSes offer and the features that
are actually used in the wild. Our preliminary results and analysis
suggest the primary overhead limiting the use of these features is
developer overhead. Nonetheless, further investigation is required
to gain a more complete understanding of why these features are
left disabled by developers. So long as downstream applications
see limited use in enabling such optional features, the potential
security benefits embedded OSes can provide is left unrealized. This
is particularly problematic given the increased attack surface of
modern IoT devices.

As is, this survey provides a sampling of popular OSes, but is
somewhat limited in scope. To address this, future work can expand
this study to include OSes such as Mbed OS, NuttX, LiteOS, and
ChibiOS/RT. Beyond understanding why developers do not enable
opt-in hardware security features, investigating why OS designers
allow these features to be optional in the first place warrants further
study. Our preliminary RIOT results suggest that opt-out features
are less likely to be disabled. Although this seems to imply that
opt-out security features are superior, there likely exists a design
tradeoff. Subsequently, better understanding the motivations for
opt-in security can provide useful context for designing improved
interfaces and modular design.
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