

LESSONS FROM FIVE YEARS OF MAKING MICHIGAN MICRO MOTES (M³)

Pat Pannuto, Yoonmyung Lee, ZhiYoong Foo, Gyouho Kim, David Blaauw, and Prabal Dutta

University of Michigan

6th Workshop on Architectural Research Prototyping (WARP '15) June 14, Portland, Oregon, USA

Behind the scenes on what was required to realize an ecosystem of mm-scale computers

On display now at the computer history museum

2008: The Phoenix Processor

World's lowest power computer

- Set records for volume and energy
- And could be used by at best the grad students that built it

Mingoo Seok

Scott Hanson Yu-S

g Lin ZhiYoong Foo

Daeyeon Kim Yoonmyu

Yoonmyung Lee Nurrachman Liu Dennis Sylvester

David Blaauw

The Phoenix Processor: A 30pW Platform for Sensor Applications, M. Seok, VLSI '08

From temperature sensor to pressure sensor: **3 Years.**

- Motivating application for mm-scale sensor: Intraocular pressure
 - Critical diagnostic tool for glaucoma

A Cubic-Millimeter Energy-Autonomous Wireless Intraocular Pressure Monitor, G. Chen, ISSCC '11

<u>cm-scale</u>

• Step 1: Buy a low-power temperature sensor

mm-scale

• Step 1: Design a low-power temperature sensor

~10 pW standby, < 1 μ W active

<u>cm-scale</u>

- Step 1: Buy a low-power temperature sensor
- Step 2: Buy a low-power microcontroller

mm-scale

- Step 1: Design a mm-scale temperature sensor
 - Step 2: Design a mm-scale CPU

~10 pW standby, < 1 μ W active

<u>cm-scale</u>

- Step 1: Buy a low-power temperature sensor
- Step 2: Buy a low-power microcontroller
- Step 3: Add low-power communications

mm-scale

- Step 1: Design a mm-scale temperature sensor
- Step 2: Design a mm-scale CPU
 - Step 3: Design a mm-scale radio

~10 pW standby, ~5 μ W active

<u>cm-scale</u>

422 ---3#0.* :=-

- Step 1: Buy a low-power temperature sensor
- Step 2: Buy a low-power microcontroller
- Step 3: Add low-power communications
- Step 4: Add a power supply

mm-scale

- Step 1: Design a mm-scale temperature sensor
- Step 2: Design a mm-scale CPU
- Step 3: Design a mm-scale radio
 - Step 4: Add power supply and storage

Energy Harvesting

Energy Storage

<u>cm-scale</u>

+2--

왕 영화 문

- Step 1: Buy a low-power temperature sensor
- Step 2: Buy a low-power microcontroller
- Step 3: Add low-power communications
- Step 4: Add a power supply
 - Step 5: Integrate the chips

mm-scale

- Step 1: Design a mm-scale temperature sensor
- Step 2: Design a mm-scale CPU
- Step 3: Design a mm-scale radio
- Step 4: Add power supply and storage
 - Step 5: Integrate the modules

<u>cm-scale</u> – Modular System

- Step 1: Buy a low-power temperature sensor
- Step 2: Buy a low-power microcontroller
- Step 3: Add low-power communications
- Step 4: Add a power supply

422 -348.* :::::

Step 5: Integrate the chips

<u>mm-scale</u> – Monolithic System

- Step 1: Design a mm-scale temperature sensor
- Step 2: Design a mm-scale CPU
- Step 3: Design a mm-scale radio
- Step 4: Add power supply and storage
 - Step 5: Integrate the modules

<u>cm-scale</u> – Modular System

- Integrate components using well-defined, standard interfaces
 - SPI
 - UART
 - I²C

<u>mm-scale</u> – Monolithic System

- Integrate components using Verilog
 - temp_sense t1 (

```
...

.sample_valid_out

(to_proc_t1_sample_valid),

.sample_out (to_proc_t1_sample),

);

processor p1 (

...

.temp_valid_in (to_proc_t1_sample_valid),

.temp_in (to_proc_t1_sample),
```

What's different?

<u>cm-scale</u> – Modular System

• Integrate components using well-defined, standard interfaces

<u>mm-scale</u> – Monolithic System

Previously unseen constraints on volume

<u>cm-scale</u> – Modular System

• Integrate components using well-defined, standard interfaces

<u>mm-scale</u> – Monolithic System

Previously unseen constraints on volume and energy

<u>cm-scale</u> – Modular System

• Integrate components using well-defined, standard interfaces

mm-scale – "Modular" Systems

Ad-hoc composition results in poor use of volumetric space

MBus, the missing interconnect that enables the mm-scale computing class

- 22.6 pJ / bit / chip, < 10 pW standby / chip
- Single-ended (push-pull) logic
- Low, fixed wire count (4)
- Multi-master
- Power-aware
- Implemented in over a dozen (and growing) mm-scale chips
 - CPU, Radio
 - Flash Memory
 - Temperature, Pressure, Imager
- To make half a dozen (and growing) mm-scale systems

MBus enabled modular components, key to the rapid development cycle we now enjoy

Learn more about MBus at ISCA

- Session 10B
 - MBus: An Ultra-Low Power Interconnect Bus for Next Generation Nanopower Systems
- Wednesday, 13:50 in Oregon 204

Digging into what a mm-scale system looks like and why that really matters

- Flashy pictures from a good camera can be misleading.
- In practice several nodes fit on a period

How do you bootstrap (program) a node that's too small to attach wires to?

• Visible light communications

Gyouho Kim, Yoonmyung Lee, Suyoung Bang, Inhee Lee, Yejonng Kim, Dennis Sylvester, David Blaauw, "A 695 pW Standby Power Optical Wake-up Receiver for Wireless 19 mis nodes," IEEE Custom Integrated Circuits Conference (CICC), September 2012

Open Q: How do you debug a node that's too small to attach wires to?

- Partial answers
 - Breakout system
 - Visible light debugging
 - Inject arbitrary messages
 - Power trace debugging
 - Each state has a power signature
 - Bus snooping
 - Plug-in for Saleae logic analyzer
- Big Open Q: Postmortem

[Recent efforts] How do you solder a node that's too small to attach wires to?

Integrating mm-scale chips with COTS chips

• Recent issues: Metals for both soldering and wirebonding (to 50 µm pads)

Re-discovering packaging problems from the MEMS community

• Bio-compatible pressure sensor

- Can seal electronics in bio-compatible epoxy
- How to expose the pressure sensor?

And adding some new packaging problems of our own

- Bio-compatible pressure sensor
 - Can seal electronics in bio-compatible epoxy
 - How to expose the pressure sensor?
 - Some of the electronics are light sensitive

Systems considerations fit into the packaging puzzle too

• Bio-compatible pressure sensor

- Can seal electronics in bio-compatible epoxy
- How to expose the pressure sensor?
- Some of the electronics are light sensitive
- The node relies on solar (or IR) harvesting to charge [and program...]

How do you reliably manufacture a mm-scale system?

Most systems are "stair-step" stack of chips

- Thin wafers (300 \rightarrow 150 microns) [now brittle]
- Then dice on die-attach film
- Then flip onto stack and wirebond

Each step requires some learning...

How do you reliably design a mm-scale system?

- Conceptually simple: Turn off what you aren't using
- In practice, lots of diagrams that look like this:

Clock-gating != Power-gating. Need to eliminate static leakage as well

• What is this diagram actually showing?

- Three hierarchical power domains
- Power control signals between domains
- Isolation gates between domains

Absence of tool support is biggest challenge

- Isolation correctness validated by hand
- Effects of isolation simulated "by hand"
 - Often not at all

How to bring a new chip into M³ ecosystem?

R1: Dedicated test chip

- Lots of I/O, scan, etc

Mohammad Hassan Ghaed, Skylar Skrzyniarz, David Blaauw, Dennis Sylvester, "A 1.6nJ/bit, 19.9µA Peak Current Fully Integrated 2.5mm2 Inductive Transceiver for Volume-Constraned Microsystems," IEEE Custom Integrated Circuits Conference (CICC), September 2014

R2: Integrate

- Add MBus frontend
- Remove most debug pins, expose via registers

R3+: Bugs!

THERE IS A NATURAL TENSION BETWEEN BUILDING WORKING SYSTEMS AND WORKING CHIPS

Need to avoid designing "modular" chips that only work in one system

MPQ: A protocol standard for register and memory access brings SOC efficiency to multi-chip systems

- Architectural shift: Remove CPU from steady-state operation
 - Pre-programmed commands:
 - ADC: "Every 128 samples, send DMA to radio"
 - RF: "On DMA CH1 event, send buffer as payload of PKT_TEMPLATE_1"
 - Atmel's "sleepwalking", TI's µDMA controller

SOCs:

Efficiency demands pushing designs back to a monolithic architecture

But the extensible parts aren't efficient!
CPU can't program sensor to send packet

MPQ: A protocol standard for register and memory access brings SOC efficiency to multi-chip systems

- Architectural shift: Remove CPU from steady-state operation
 - Pre-programmed commands:
 - ADC: "Every 128 samples, send DMA to radio"
 - RF: "On DMA CH1 event, send buffer as payload of PKT_TEMPLATE_1"
 - Atmel's "sleepwalking", TI's µDMA controller

The clean break of a new bus is an opportunity to standardize basic constructs

- MPQ "For those who mind their P's & Q's on MBus"
 - Does not specify device behavior, command interface, etc
 - Only specifies
 - What a "register" looks like
 - What "memory" looks like
 - And how to read and write registers and memory
- This is enough to enable powerful system synthesis constructs

And aligns with how systems are already designed today

MBus and MPQ are available today: mbus.io

- "MBus Compatible"
- Logo certification

• Specification and Verilog available (free forever)

MBus + MPQ: Standard interface for mm-scale components

It takes a village...

Mingoo Seok

Scott Hanson Yu-Shiang Lin

ZhiYoong Foo

Daeyeon Kim

Yoonmyung Lee Nurrachman Liu

Jonathan Brown David Wentzloff

Ryan Rogel

Hyeongseok Kim

Gregory Chen

David Blaauw

Elnaz Ansari

Razi-ul Haque Michael Wieckowski

Ye-Sheng Kuo Benjamin Kempke Wanyeong Jung

Yejoong Kim

Gyouho Kim

Inhee Lee

Hassan Ghaed

Mohammad

