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Laptop

1 per Company

1 per 
Professional

1 per 
Engineer

1 per Family

1 per Enterprise

1 per person

Corollary:

100x smaller / decade

Bell’s Law:
A new computing class every decade

“Smart Dust” should 

arrive by ~2017
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And a few mm-scale systems…
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But where is the next class of computing?
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MBus is the missing interconnect that 
enables the mm-scale computing class
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• 22.6 pJ / bit / chip, < 10 pW standby / chip

• Single-ended (push-pull) logic

• Low, fixed wire count (4)

• Multi-master

• Power-aware

• Implemented in over a dozen (and growing) mm-scale chips
• CPU, Radio

• Flash Memory

• Temperature, Pressure, Imager

• To make half a dozen (and growing) mm-scale systems



Modularity is key for fast, iterative design, but was 
previously absent from mm-scale systems

• Phoenix 2008:
‒ World’s lowest power computer

‒ Basically a temperature sensor

The Phoenix Processor: A 30pW Platform for Sensor Applications, Mingoo Seok, 
Scott Hanson, Yu-Shiang Lin, Zhiyoong Foo, Daeyeon Kim, Yoonmyung Lee, 
Nurrachman Liu, Dennis Sylvester, David Blaauw , VLSI ‘08

A Cubic-Millimeter Energy-Autonomous Wireless Intraocular Pressure Monitor, Gregory 

Chen, Hassan Ghaed, Razi-ul Haque, Michael Wieckowski, Yejoong Kim, Gyouho Kim, David 

Fick, Daeyeon Kim, Mingoo Seok, Kensall Wise, David Blaauw, Dennis Sylvester, ISSCC ‘11

• Intraocular Pressure 2011:
‒ Collaboration for glaucoma health

‒ A pressure sensor

From mm-scale temperature sensor to 

mm-scale pressure sensor took 3 years



MBus enables a modular, composable
ecosystem of mm-scale components

2 uAh
Battery

5 uAh
Battery

DecapControl/
PMU

Temp
Sensor

Radio
+ CDC

Motion
Detection/
Imager

Pressure Sensing Temp. Sensing

MEMS
P. Sensor

Visual Sensing

From 
temperature 

sensor to 
pressure 

sensor:
3 months.
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Existing interconnects have served us well for 30 
years. What makes mm-scale systems unique?

Node volume is dominated by 
energy storage

And volume is shrinking cubically
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Battery
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Batteries

“Sensor”

Battery

“Sensor”

10’s μW active, 10’s nW sleep, DC 0.1%



10’s μW active, 10’s nW sleep, DC 0.1%

Existing interconnects have served us well for 30 
years. What makes mm-scale systems unique?

Node volume is dominated by 
energy storage

And volume is shrinking cubically
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I/O pads begin to account for 
non-trivial percentage of node 
surface area

Battery
“Phone”

Batteries

“Sensor”

Battery

“Sensor”

1 mm = 1,000 μm

50 μm, minimum viable bond pad

16-20 maximum I/O pins for 3D stacking



SPI and I2C are like the USB and Firewire of 
embedded interconnects

• Nearly every microcontroller has both

• Nearly every peripheral has one or the other

• Very few use anything else
‒ (except maybe UART)
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What is wrong with how are systems 
composed today?
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• SPI, invented by 
Motorola in ~1979

• One master, N slaves

• Shared clock: SCLK

• Shared data bus: MOSI

• Shared data bus: MISO
• One Slave Select line per slave

• Key Properties

• One dedicated I/O line per slave
• Master controls all communication

SCLK

MOSI

MISO
SS

Slave 1

SCLK

MOSI

MISO
SS

Slave 2

SCLK

MOSI

MISO

SS0
SS1

…

Master



What is wrong with how are systems 
composed today?
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• SPI, invented by 
Motorola in ~1979

• One master, N slaves

• Shared clock: SCLK

• Shared data bus: MOSI

• Shared data bus: MISO
• One Slave Select line per slave

• One interrupt line per slave

• Key Properties

• One Two dedicated I/O lines per slave
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• Interrupts must be out-of-band
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SPI’s I/O overhead and centralized architecture
do not scale to mm-scale systems
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• SPI, invented by 
Motorola in ~1979

• One master, N slaves

• Shared clock: SCLK

• Shared data bus: MOSI

• Shared data bus: MISO
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• One interrupt line per slave

• Key Properties
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I2C has fixed I/O requirements and a 
decentralized architecture
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• I2C, invented by 
Phillips in 1982
‒ Any-to-(m)any on 

one shared bus

• Key Properties
‒ Fixed wire count (2)

SCL

SDA

Node1

SCL

SDA

Node3

SCL

SDA

Node2



I2C has fixed I/O requirements and a 
decentralized architecture
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• I2C, invented by 
Phillips in 1982
‒ Any-to-(m)any on 

one shared bus

• Key Properties
‒ Fixed wire count (2)

‒ Open-collector
• Multi-master

• Flow Control

SCL

SDA

Node1

SCL

SDA

Node3

SCL

SDA

Node2

Open-collector (aka wired-AND)



The problem is the energy costs of running 
an open-collector
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Send a “1”: 0 J

VDD = 1.2 V

Send a “0”: 174 pJ

@400 kHz

80% VDD as 1

R = 15.5 kΩ

(“the best”)

No setup, no hold



The problem is the energy costs of running 
an open-collector
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Send a “1”: 0 J

VDD = 1.2 V

R = 15.5 kΩ

(“the best”)

Send a “0”: 174 pJ SCL Alone: 70 μW

@400 kHz

80% VDD as 1

@400 kHz

No setup, no hold

Bigger R?



The problem is the energy costs of running 
an open-collector
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Send a “1”: 0 J

VDD = 1.2 V

Send a “0”: 174 pJ SCL Alone: 70 μW

@400 kHz

80% VDD as 1

@400 kHz

R = 15.5 kΩ

(“the best”)

No setup, no hold



The energy demands of open-collectors 
make them unsuitable for mm-scale systems
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SCL Alone: 70 μW

~ 3.1 mm

Two batteries

• Active Energy Budget: 20 μW

• Not an arbitrary number:
- Volume Target

- Lifetime Target

@400 kHz



Can we modify I2C to bring energy costs in 
line with mm-scale?
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Replace the passive pull-up resistor with 
active circuitry

The Good : Able to achieve 88 pJ / bit (measured)

The Bad : Required clocks running at 5x bus clock on every chip
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A Modular 1 mm3 Die-Stacked Sensing Platform with Low Power I2C 

Inter-die Communication and Multi-Modal Energy Harvesting 
Yoonmyung Lee, Suyoung Bang, Inhee Lee, Yejoong Kim, Gyouho Kim, Mohammed 

Hassan Ghaed, Pat Pannuto, Prabal Dutta, Dennis Sylvester, David Blaauw
IEEE Journal of Solid-State Circuits



Replace the passive pull-up resistor with 
active circuitry

The Good :Able to achieve 88 pJ / bit (measured)

The Bad : Required clocks running at 5x bus clock on every chip

The Bad : “I2C-like” is not I2C – required FPGA to integrate with COTS chips

The Ugly : Hand-tuned, ratioed logic on every chip – Not synthesizable
23

Ultra-Constrained Sensor Platform 

Interfacing
Pat Pannuto, Yoonmyung Lee, Benjamin Kempke, 

Dennis Sylvester, David Blaauw, and Prabal Dutta
IPSN 2012 (Demo)



“Dark silicon” is more like “dimly lit silicon”

• Clock-gated modules still exhibit static leakage
‒ Blows mm-scale power budget

• mm-scale systems perform power-gating
‒ This means modules are cold-booting all the time

• Manageable for monolithic designs because 
something always powered on

24

CPU

Sensor Flash

Radio
Timer
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Modular mm-scale components introduce novel 
circuits problems and novel systems problems

CPU

Sensor Flash

Radio
Timer

• Clockless cold boot circuits are tricky

• How do you know what’s awake?

• How do you communicate with   
“pitch black” silicon to wake it up?
‒ I2C-variant: custom “wakeup” signal



The MBus design follows from a careful 
consideration of all the requirements for modular, 
mm-scale systems
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Mediator

MBus 

Member

MBus 

Member

MBus 

Member

MBus 

Member

Clock

Data

• Ring Topology

• 2 lines – 4 I/O per node
‒ Clock

‒ Data

• “Shoot-Through”

CLK_IN

CLK_OUT



To be extensible and respect I/O constraints, wire 
count must be independent of node count
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Supporting interrupts with a fixed number of single-
ended connections requires an arbitration protocol

• Recall: “shoot through”

• C wants to send a message
‒ Stop forwarding, drive 0

• The mediator does not 
forward during arbitration 
‒ Also generates the bus clock
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Supporting interrupts with a fixed number of single-
ended connections requires an arbitration protocol

• Recall: “shoot through”

• C wants to send a message
‒ Stop forwarding, drive 0

• The mediator does not 
forward during arbitration
‒ Also generates the bus clock
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Supporting interrupts with a fixed number of single-
ended connections requires an arbitration protocol

• What changes if B tries to 
send as well as C?
‒ B and C drive DATA_OUT to 0

• B’s DATA_IN high, wins

• C’s DATA_IN low, loses

• MBus has topological priority
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Tradeoff between globally unique addresses, 
address length, and overhead

• Embed addresses in message frames
‒ Overhead proportional to number of uniquely addressable device

• I2C uses 7-bit device addresses with design-time LSBs
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• Requires I/O not available

• Makes packaging assumptions
‒ mm-scale systems not always PCB

‒ Routing may not be easy
• 3D stack

• Flip-chip + TSVs
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Tradeoff between globally unique addresses, 
address length, and overhead

• 3 Options
‒ Short static addresses and allow device conflicts

‒ Long static addresses to avoid device conflicts

‒ Non-static addresses

• MBus does all 3
‒ 4-bit: Static short prefixes (device class)

‒ 24-bit: Static long prefixes (unique device ID)

‒ 4-bit: Runtime enumeration protocol (replaces short prefix)
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Unbounded messages maximize flexibility 
and minimize overhead

• An MBus message is 0…N bytes of data

• Embed length in message
‒ Imposes large overhead for short messages

‒ Forces fragmentation of long messages

• “End-of-message” sentinel byte(s)
‒ Imposes large overhead for short messages

‒ Requires escaping if sentinel is in transmitted

‒ Data-dependent behavior, hard to reason about
• Worst case 2x overhead!
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D
A

T

A

MBus “interjections” provide an in-band
end-of-message with minimal overhead

• During normal operation, Data 
toggles slower than Clock
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MBus “interjections” provide an in-band
end-of-message with minimal overhead

• During normal operation, Data 
toggles slower than Clock
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MBus “interjections” provide an in-band
end-of-message with minimal overhead

• During normal operation, Data 
toggles slower than Clock
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Transaction-level ACKs minimize common-case 
overhead while interjections preserve flow control
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• Clockless cold boot circuits are tricky

• How do you communicate with   
“pitch black” silicon to wake it up?
‒ How do you know what’s awake?

• A power-gated node cannot send
‒ Use arbitration edges to drive the    

cold-boot circuitry
• (Minimal frontend: 35 gates, 4 regs)

‒ Nodes awaken before addressing

• Nodes appear to be “always on”
‒ No need to know or track power states
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circuits problem and a systems problem
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These primitives enable an architectural shift 
in system design

• CPU acts as configurator instead of overseer
‒ Preprogram temperature sensor to send radio packets

‒ Not unlike modern SOCs (sleepwalking, μDMA), but distributed
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Seamless and transparent interaction between 
power-aware and power-oblivious chips

• Facilitates integration with COTS chips

40
*No current COTS chip support MBus, these integrations leverage more traditional buses still



The majority of interconnect research is focused 
on performance at the expense of power and area
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Specification and Verilog at http://mbus.io
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MBus-based smart dust now on display at the 
computer history museum



Protocol Overhead and message length
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Energy per bit of goodput (useful data)
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Power Draw Comparison
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Goodput of parallel MBus
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Saturating Transaction Rate
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Adding additional nodes does not have 
significant impact on MBus latency
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~7 MHz
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Some low-hanging fruit…

• Full Duplex is trivial

50

• “Selectively parallel”



Arbitration Detail
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Interjection Detail
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Tertiary node power-on request
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Hierarchical Power Domains
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Implementation
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