
MBus: A power-aware interconnect for ultra-low power micro-scale system design

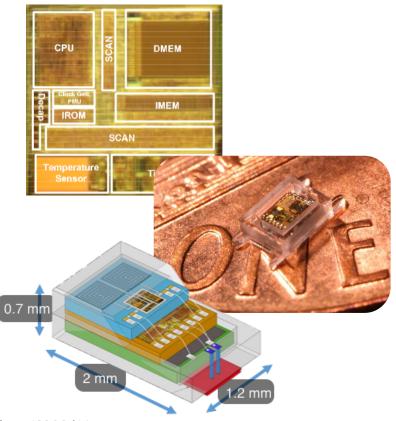
Pat Pannuto, University of Michigan ppannuto@umich.edu

Advisor: Prabal Dutta, University of Michigan / UC Berkeley prabal@umich.edu

PI: Dennis Sylvester, University of Michigan dmcs@umich.edu

MBus is the interconnect for Michigan's nanopower chips

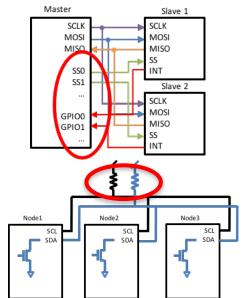
Growing ecosystems of MBus chips and systems

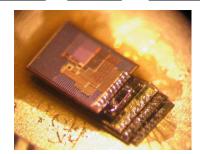

- Processor (PRC/PREv13)
 - ARM Cortex MO
 - 8 generations with MBus
- Radios (RADv10, SIRv2, FFRv1, MRRv1)
 - 900 MHz near field ; med range
 - ~1 GHz far field
- Flash Memory (FLSv2, FLPv1)
 - Long-term data retention
- Sensor (SNSv7)
 - Generic CDC frontend

- Energy Harvesters
 - SOLv5, HRVv4, GAPv3
- Power Management (PMUv2)
 - Power regulation, brown-out detection
 - Imager (IMGv3)
 - 160x160 pixel imager with < 1 μW motion detection
- GPS Correlator (CORv2)
 - Acquire & record raw I/Q data
- N-ZERO chips?

MBus addresses a modularity need

- Michigan has a well-established history of low-power circuit design
 - Next challenge: low-power systems
 - Phoenix '08, 30 pW temperature sensor
- Monolithic designs slowed progress
 - Intraocular Pressure '11, semi-modular design
- What would it take get reusable components?


The Phoenix Processor: A 30pW Platform for Sensor Applications, M. Seok, VLSI '08 A Cubic-Millimeter Energy-Autonomous Wireless Intraocular Pressure Monitor, G. Chen, ISSCC '11

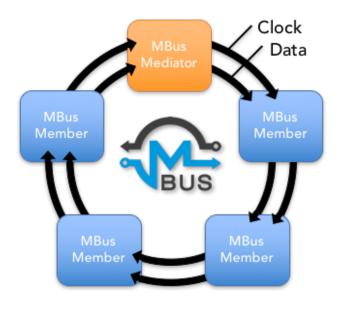


No existing embedded interconnect satisfied our needs

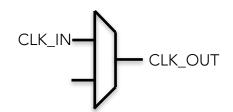
• SPI

- I/O overhead: per-chip select, interrupt lines
- Centralized architecture inefficient
- I²C
 - Pull-ups consume too much energy (~100 uW)
- First Try: I²C variant
 - Not easily synthesizable, energy state tracking
 - Y. Lee, S. Bang, I. Lee, Y. Kim, G. Kim, M. H. Ghaed, P. Pannuto, P. Dutta, D. Sylvester, and D. Blaauw, "A modular 1 mm³ die-stacked sensing platform with low power I²C inter-die communication and multi-modal energy harvesting," in IEEE Journal of Solid-State Circuits, vol. 48, 2013

The driving goals of the MBus design


- Three things <u>really</u> motivated the team at first:
 - Power
 - Area
 - Reliability

• Clean slate design compelled rigorous feature evaluation

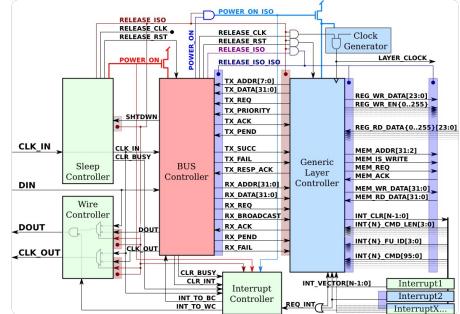

- Power, area, reliability, synthesizability, scalability (address space), flexibility (multi-master / interrupt), efficient (broadcast, HW ACK)
- System design revelation: Power-aware

MBus Overview

- FOM (meas)
 - Active: 22 pJ / bit / chip
 - < 10 pW standby / chip</p>

- Ring Topology
- 2 lines 4 I/O per node
 - Clock
 - Data
- Transaction oriented
 - Arbitration
 - Address Transmission
 - Data Transmission
 - Interjection
 - Control (ACK/NAK)
- "Shoot-Through"

In a distributed sensing system, automatic power management makes life much, much easier


- Managing power modes presented some of the biggest challenges
 - Power state: which chips are on? CPU must turn peripherals on to talk to each other
 - Wakeup circuitry: custom clockless cold-boot required for each chip
- Insight: Interconnect can handle power management
 - Arbitration protocol puts a few clock edges on the global bus
 - 1. Node is awake and participating in arbitration
 - 2. Node is asleep, bus frontend clocks wakeup circuitry on arbitration edges and powers on having just lost arbitration
 - Hierarchical power domains make this efficient
 - Minimal always-on frontend (7 gates)
 - Bus controller listens for address, provides byte-interface to bus, and powers rest of chip only when needed

The other big design accelerant for M3 systems was to standardize the layer controller

- Common design pattern:
 - Chip state-machines triggered by register-file interface
 - Some require a small amount of configuration memory (registers)
 - Some require large actual memory (images, audio, etc)
- All M3 chips have the same logical interface: MPQ
 - Essentially a distributed DMA interface
 - Facilitates distributed state machines
 - Send configurable messages on events, very flexible / composable

Status of MBus today

- Synthesizable Verilog
 - Free, open source license
 - No process-specific parameters
 - (ratioed logic, etc)
- FPGA and big-banged MCU implementations
- Protocol Analyzer for Saleae Logic
- Python library + debug board
 - Real-time programmatic interaction, read/write MBus from a PC
- Exploring formal protocol verification

Additional Information

Overview

 Pat Pannuto, Yoonmyung Lee, Ye-Sheng Kuo, ZhiYoong Foo, Benjamin Kempke, Gyouho Kim, Ronald G. Dreslinski, David Blaauw, and Prabal Dutta. "<u>MBus: A System Integration Bus for the</u> <u>Modular Micro-Scale Computing Class</u>". In: vol. 37. Micro Top Picks 3. May 2016.

Architectural Design and Protocol Logic

 Pat Pannuto, Yoonmyung Lee, Ye-Sheng Kuo, ZhiYoong Foo, Benjamin Kempke, Gyouho Kim, Ronald G. Dreslinski, David Blaauw, and Prabal Dutta. "<u>MBus: An Ultra-Low Power Interconnect</u> <u>Bus for Next Generation Nanopower Systems</u>". In: *Proceedings of the 42nd International* <u>Symposium on Computer Architecture. ISCA</u> '15. Portland, Oregon, USA: ACM, June 2015.

• Circuit Design and Power Domains

- Ye-Sheng Kuo, Pat Pannuto, Gyouho Kim, ZhiYoong Foo, Inhee Lee, Benjamin Kempke, Prabal Dutta, David Blaauw, and Yoonmyung Lee. "MBus: A 17.5 pJ/bit Portable Interconnect Bus for Millimeter-Scale Sensor Systems with 8 nW Standby Power". In: CICC '14: IEEE Custom Integrated Circuits Conference. San Jose, California, USA, Sept. 2014.
- Specification
 - <u>http://mbus.io/spec.html</u>
- Verilog
 - <u>https://github.com/mbus/mbus</u>
- Homepage
 - <u>http://mbus.io</u>

For more information, specification, and reference verilog: http://mbus.io http://github.com/mbus/mbus

MBus Team: Pat Pannuto, Yoonmyung Lee, Ye-Sheng Kuo, ZhiYoong Foo, Benjamin Kempke, David Blaauw, Prabal Dutta

PI: Dennis Sylvester, University of Michigan dmcs@umich.edu

Backups

FOM's

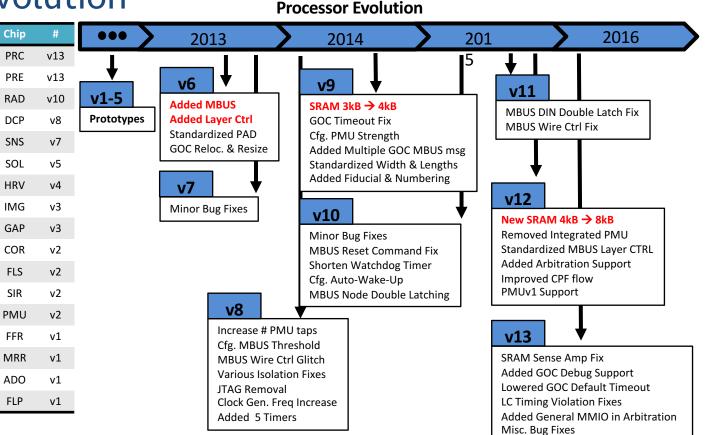
	I ² C	SPI	UART	Lee-I ² C	MBus
Critical					1
I/O Pads (n nodes)	2/4†	3 + <i>n</i>	$2 \times n$	2/4 [†]	4
Standby Power	Low	Low	Low	Low	Low
Active Power	High	Low	Low	Med	Low
Synthesizable	Yes	Yes	Yes	No	Yes
Global Uniq Addresses	128		_	128	224
Multi-Master (Interrupt)	Yes	No	No	Yes	Yes
Desirable					l I
Broadcast Messages	No	Option	No	No	Yes
Data-Independent	Yes	Yes	Yes	Yes	Yes
Power Aware	No	No	No	No	Yes
Hardware ACKs	Yes	No	No	Yes	Yes
Bits Overhead (n bytes)	10 + <i>n</i>	2 [‡]	$(2-3)^{\$} \times n$	10 + <i>n</i>	19, 43 *

[†] When wirebonding, a shared bus requires two pads/chip (or a much larger shared pad/trace)
[‡] Asserting and de-asserting the chip-select line
[§] Depending on the stop condition; assumes 8-bit frames and no parity
^{*} Depends on whether short (more common) or long addressing is in use

Module	Verilog SLOC	Gates	Flip-Flops	Area in 180 nm			
Bus Controller	947	1314	207	27,376 μm ²			
<i>Optional</i>							
Sleep Controller	130	25	4	3,150 μm ²			
Wire Controller	50	7	0	882 μm ²			
Interrupt Controller	58	21	3	2,646 μm ²			
Total	1185	1367	214	37,200 μm ^{2§}			
Other Buses:							
SPI Master [†]	516	1004	229	37,068 μm ²			
I ² C [‡]	720	396	153	19,813 μm ²			
Lee I ² C [14]	897	908	278	33,703 μm ²			

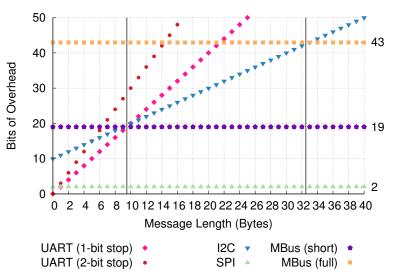
[§] Includes a small amount of additional integration overhead area
 [†] SPI Master from OpenCores [32] synthesized for our 180 nm process
 [‡] I²C Master from OpenCores [10] synthesized for our 180 nm process

_		Energy per bit
Member+Mediator Node	sending	27.5 pJ/bit
Member Node	receiving	22.7 pJ/bit
Member Node	forwarding	17.6 pJ/bit
Average		22.6 pJ/bit


The TODOs in the specification

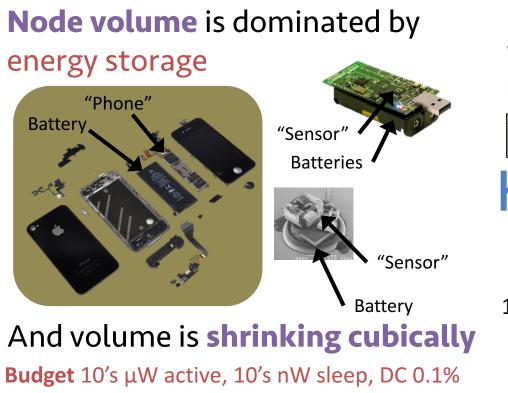
- Some interoperability questions
 - Minimum drive strength
 - Standards or bounds for bus clock speed
- CPU MMIO interface to MBus / MPQ internals
 - This is a more niche issue that should be in a different spec
- "Future Extensions"
 - Obviated by MPQ streaming

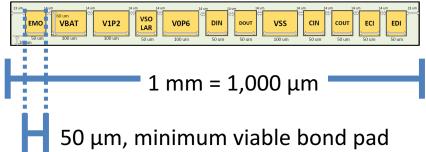
M3 Evolution


SIR

FLP

Embedded interconnect technology has not changed in over 30 years


- If we re-examine...
 - Addressing
 - Acknowledgements _


I²C acknowledges every byte

- How often do NAKs happen?
 - To a random byte?
- 12.5% overhead
- MBus ACKs transactions
 - Receiver can interject message

Millimeter-scale systems are small

I/O pads begin to account for non-trivial percentage of node **surface area**

16-20 maximum I/O pins for 3D stacking