

Slocalization

$Sub-\mu W \ Ultra \ Wideband \ Backscatter \ Localization$

Pat Pannuto, Benjamin Kempke, and Prabal Dutta

IPSN'18 April 13, 2018, Porto, Portugal

Let's think bigger about localization: Can we locate every physical thing?

Can we make location a piece of first-class context, available to every device?

Ultra Wideband affords extremely highfidelity localization

Ultra Wideband Radios (or impulse generators) are energy-hungry

				Update	Multiple				
System	Technology	Precision	Accuracy	Rate	Tags?	Top Tag Speed	Tag Power	Tag Volume	Max Tag/Anchor Dist
WASP [35]	NB (5.8 GHz) ToA	16.3 cm	50 cm (82%ile)	10 Hz	Yes	Several m/s	2-2.5 W	Not Published	Not Published
UbiSense [38]	UWB TDoA+AoA	99% w/in 30 cm	15 cm	33.75 Hz	Yes	Not Published	Not Published	24.5 cm^3	160 m
TimeDomain [2]	UWB TW-ToF	2.3 cm	2.1 cm	150 Hz	Yes	Not Published	4.2 W	97 cm ³	"hundreds of m"
Lazik et. al [27]	Ultrasonic TDoA	Not Published	3 cm (med) 12 cm (90%)	0.9 Hz	Yes	Not Published	$1.1 \mathbb{W}^{\mathbb{M}}$	88 cm ³	100 m
Harmonia [19]	UWB TDoA	Not Published	39 cm (med) 82 cm (90%)	56 Hz	No	Not Published	120 mW**	Not Published	Not Published
Tagoram [42]	NB (UHF) SAR	Not Published	+12.3 cm (med)	At most 30 JJz		ic 75 r	N/A	8 cm ³	10 m
WiTrack [3]	UWB ToF	Not Published	L DOVV 3 cm (90%)	400 Hz	VVD No	Not Published	IIVV N/A	32,700 cm ³ (avg torso [6])	(Not Published) > 11 m
RF-IDraw [40]	NB (UHF) Interferometry	3.6 cm (med) 3.7 cm (90%)	19 cm (med) 38 cm (90%)	At most 53 Hz		0.5 m/s*	N/A	8 cm ³	9 m
PolyPoint [20]	UWB ToF	31 cm	39 cm (med) 140 cm (90%)	16 Hz	No	Not Published	170	9 cm ³	50 m
Harmonium [21]	UWB TDoA	9 cm (med) 16 cm (90%)	14 cm (med) 31 cm (90%)	19 Hz	No	2.4 m/s ^{††}	75 mW	1.5 cm ³	78 m
Chronos [39]	Bandstiched UWB ToF	Not Published	65 cm (med) 170 cm (90%)	12 Hz	No	Not Published		2.7 cm ^{3¶}	Not Published
SurePoint	UWB ToF	12 cm (med) 28 cm (90%)	29 cm (med) 50 cm (90%)	1-12 Hz	Yes	at least 2.4 m/s	280 mW	3 cm ³	50 m

Backscatter renaissance is redefining lowpower for wireless

• Wireless communication from W/mW to μW/nW

- Zhang, Pengyu, Jeremy Gummeson, and Deepak Ganesan. "Blink: A high throughput link layer for backscatter communication." MobiSys'12
- Kellogg, Bryce, Aaron Parks, Shyamnath Gollakota, Joshua R. Smith, and David Wetherall. "Wi-Fi backscatter: Internet connectivity for RF-powered devices." SIGCOMM'14
- Zhang, Pengyu, Pan Hu, Vijay Pasikanti, and Deepak Ganesan. "Ekhonet: High speed ultra low-power backscatter for next generation sensors." MobiCom'14
- Zhang, Pengyu, Dinesh Bharadia, Kiran Joshi, and Sachin Katti. "Hitchhike: Practical backscatter using commodity wifi." SenSys'16
- Ma, Yunfei, Nicholas Selby, and Fadel Adib. "Minding the billions: Ultra-wideband localization for deployed RFID tags." MobiCom'17
- Varshney, Ambuj, Oliver Harms, Carlos-Perez Penichet, Christian Rohner, Frederik Hermans, and Thiemo Voigt. "LoRea: A Backscatter architecture that achieves a long communication range." SenSys'17
- Carlos Pérez Penichet, Claro Noda, Ambuj Varshney, Thiemo Voigt. "Battery-Free 802.15.4 Receiver" IPSN'18

Slocalization: Ultra wideband backscatter whole-room localization for <1 μW

There has to be a catch.... There is a new tradeoff to introduce

- <1 μ W tag
 - (COTS, can do order of magnitude or more better with VLSI)
- Covers areas 30m+
- Decimeter accurate
- (Nearly) unlimited number of concurrent tags
- 1-15+ minutes per location fix
 - Introducing the latency/energy tradeoff for localization

Can we locate every physical thing? Most things don't move!

- Location is fundamental to contextual relationships
 - Little is more basic to human perception than physical juxtaposition, and so ubiquitous computers must know where they are
 - Mark Weiser, The Computer for the 21st Century
- Towards "search not file" for the physical world

Outline

- Most things don't move
- Building blocks of Slocalization
 - UWB localization
 - UWB backscatter
 - Putting them together
- Does it actually work?
- What comes next

Why RF, why UWB for ubiquitous localization?

UWB can transmit 54 million times less power than traditional narrowband devices

- 3-10 GHz UWB → -41.3 dBm
- 900 MHz ISM → 36 dBm
- 900 MHz unlicensed
 - − Control → -13.3 dBm
 - − Periodic → -21.2 dBm

UWB Backscatter is passive reflection of a lot less energy

UWB Backscatter is passive reflection of a lot less energy

UWB Backscatter is passive reflection of a lot less energy

	Dackot		Typical		
	Error	Data Rate	Receiver Sensitivity	Units	
					Ň
	1%	110 kbps	-106	dBm/500 MHz)
т.					
	/pica		iver ser	ISILIVIL	-159 dBm
	cond	oc fror	$\sim 0/t$	0 106	
	ang		11-24 (0875100	
	1%	850 kbps	-101	dBm/500 MHz	-56 dBm
		6.8 Mbps	-93 (*-97)	dBm/500 MHz	50 dBm
		110 kbps	-106	dBm/500 MHz	
	10%	850 kbps	-102	dBm/500 MHz	4 -
		6.8 Mbps	-94 (*-98)	dBm/500 MHz	15

How do we recover a signal that is way below the noise floor?

• Exploit tag stationarity and environmental stability

16

How do we recover a signal that is way below the noise floor?

• Exploit tag stationarity and environmental stability

17

Ideally, the only change in the channel impulse response is the tag reflection

• Subtracting the environment finds the tag

The goal is to estimate the time difference of arrival (TDoA) and laterate

- - First peak is anchor—anchor path, then anchor—tag—anchor

Extracting the tag signal in the real world has a few additional challenges

- The environment is not actually static
 - But noise is largely white & Gaussian
 - And we can filter out the rest
- When to add and when to subtract?

If you know what the tag is doing, then you know when to add or subtract

Extracting the tag signal in the real world has a few additional challenges

- The environment is not actually static
 - But noise is largely white & Gaussian
 - And we can filter out the rest
- When to add and when to subtract?
 - Problem: Need to know when the tag is reflecting or absorbing
 - Solution: Guess and brute force search
 - Tag stability limits Slocalization range
- More details in the paper...

Outline

- Most things don't move
- Building blocks of Slocalization
 - UWB localization
 - Backscatter
 - Putting them together
- Does it actually work?
- What comes next

• $R_1 = 6 m, R_2 = 24 m$

6 seconds

Raw Channel Impulse Response

• $R_1 = 6 m, R_2 = 24 m$

50 seconds

Raw Channel Impulse Response

• $R_1 = 6 m, R_2 = 24 m$

Raw Channel Impulse Response

• $R_1 = 6 m, R_2 = 24 m$

Raw Channel Impulse Response

Can we localize?

Yes!

•

Can we really cover whole rooms?

• 15 minutes can cover 30 meters

Environmental Factors?

- Most environment noise is < 150Hz, filter
 - Sets floor for tag frequency (and in turn active power)

- Problem: A fan at a bad speed is a bad day for slocalization

Does it scale to multiple tags?

• Can use PN codes for concurrent tags

• ... But processing is expensive

Outline

- Most things don't move
- Building blocks of Slocalization
 - UWB localization
 - Backscatter
 - Putting them together
- Does it actually work?
- What comes next

Numerous diversity sources allows Slocalization to scale to very many tags

- Frequency division scales linearly in frequencies
 - Caveat: 256.00 Hz low-power RTCs exist, less so 256.20 Hz, etc
 - Caveat: Power draw scales linearly with switching frequency
- PN codes scale linearly in tag length
- Temporal code rotation scales *factorially*, but is very slow
 - Idea: Exploit tag stationarity further, rotating PN codes over time

 $f_{\text{STEPS}} * \text{PN}_{\text{bits}} * \text{Codes} = 1,280 * 63 * 4! = 1,935,360 \text{ concurrent tags}$ Feasibility? Time Time in roughly a few hours Power?

Can we localize every physical thing? Even dust?

- Super-resolution technique from MobiCom'17
 - Use frequency information to refine localization

- Key idea:
 - If traditional localization can get close (7cm), refine estimate based on the estimate from each frequency

Slocalization:

Sub-µW Ultra Wideband Backscatter Localization

- Decimeter accurate, FCC-compliant, sub-µW localization
- Ultra wideband backscatter platform
- Ultra wideband backscatter recovery from below noise floor
- Demonstrated over 30m anchor-tag-anchor in LoS & NLoS
- Designs, firmware, processing, etc:
 - github.com/lab11/slocalization

